
ENSEMBLE METHODS IN

SUPERVISED LEARNING:

REVIEW TOWARDS AN APPLICATION IN A MODEL

FOR PREDICTIONS ABOUT ECOLOGY

NURIA GÓMEZ VARGAS

Final Degree Project

Supervised by Rafael Blanquero Bravo

University of Seville

June 2020

Published in June 2020 by
Nuria Gómez Vargas
Copyright © MMXX
nuriagomv@gmail.com

mailto:nuriagomv@gmail.com

Rafael Blanquero Bravo,

MAKES CERTAIN

that Nuria Gómez Vargas, has performed under my supervision the project entitled

Ensemble Methods in Supervised Learning:
review towards an application in a model for predictions about ecology

Once reviewed, I authorize the beginning of the procedures for its presentation as
Final Degree Project to the court to judge.

Signed,

Rafael Blanquero Bravo
at University of Seville

16/06/2020

I, Nuria Gómez Vargas with ID 47564221Z,

DECLARE

my authorship of the work presented in the memory of this Final Degree
Project which is entitled

Ensemble Methods in Supervised Learning:
review towards an application in a model for predictions about ecology

Signed,

Nuria Gómez Vargas
at University of Seville

16/06/2020

i

En primer lugar me gustaría agradecer a mi tutor, Rafa, por su voto de confianza y
acompañamiento durante estos meses; y a mis padres, sin vuestra ayuda Marta y yo
no podríamos haber llegado a donde estamos.

La carrera de Matemáticas es preciosa y más cuando tienes el placer de compartirla
con tan buenas amigas - puede que esta etapa termine, pero tened por seguro que
siempre vais a poder contar conmigo - y un profesorado que no sólo siente pasión por
esta ciencia, sino también por transmitirla.

Por último, deseo a gradecer a Falk Huettmann que me proporcionara su libro,
Machine Learning for Ecology and Sustainable Natural Resource Management, pues ha
sido mi fuente principal de inspiración y la herramienta para comprender que el
Aprendizaje Automático nos brinda una solución innovadora al problema ecológico
global en el que estamos sumidos.

ii

iii

ABSTRACT
Advancements in Machine Learning techniques such as Ensemble Methods provide a
powerful tool for quickly building accurate predictive models for sustainable decision
making. These algorithms help to enhance predictions by combining the decisions of a
set of models. Here, we use Stacking, Boosting and Bagging to asses countries footprint
regarding ecological deficit or reserve using data collected by the Global Footprint
Network. The comparison of those techniques in this context allows us to conclude
that the first one provides the most accurate model (Accuracy> 0.97), although the
others have the advantage of a lower cost and complexity, also providing remarkable
predictions.
Keywords — Ensemble, Supervised Learning, Stacking, Boosting, Bagging, Classification, R,
Ecology

RESUMEN
Los avances en las técnicas de Aprendizaje Automático, como los Métodos de Ensemble,
proporcionan una herramienta poderosa para construir rápidamente modelos predictivos
precisos para una toma de decisiones sostenible. Estos algoritmos ayudan a mejorar las
predicciones al combinar las decisiones de un conjunto de modelos. Aquí, utilizamos las
técnicas de Stacking, Boosting y Bagging para evaluar la huella de los países con respecto al
déficit o reserva ecológica utilizando los datos recopilados por la Global Footprint Network. La
comparación de esas técnicas en este contexto nos permite concluir que la primera proporciona
el modelo más exacto (Precisión > 0.97), aunque las otras tienen la ventaja de un menor coste
proporcionando también predicciones destacables.
Palabras clave — Ensemble, Aprendizaje Supervisado, Stacking, Boosting, Bagging, Clasificación,
R, Ecología

iv

CONTENTS

v

1 Introduction 1

2 Machine Learning 3

2.1 Unsupervised Learning . 6

2.2 Semisupervised Learning . 7

2.3 Supervised Learning . 8

2.3.1 Model assessment and effectiveness measures 11

3 Ensemble Methods 19

3.1 Stacking . 25

3.2 Boosting . 27

3.2.1 AdaBoost . 28

3.3 Bagging . 30

3.3.1 Random Forests . 32

4 Application: prediction model about ecology 35

4.1 Building Ensemble Algorithms with R . 35

4.2 Approaching the problem . 38

4.3 Software implementation . 40

4.4 Results . 70

Bibliography 73

1

INTRODUCTION

1

Un país sin investigación es un país sin desarrollo.

Margarita Salas

The increase in world population, technological development and the fever for rapid
consumerism, are some of the factors that have influenced the deterioration of the environment.
Humanity currently faces serious global environmental problems such as Climate Change, loss
of biodiversity and ecosystems, depletion of annual natural resources at alarmingly early dates,
etc. To solve these problems and try to remedy their consequences, it is necessary to develop
efficient and scientifically backed actions that contribute to the sustainability and conservation
of nature. Fortunately, the development of new technologies also provides us with tools that
we can use to benefit the environment.

We are currently at the time of the fourth industrial revolution, marked by emerging
technological advances in several fields such as Artificial Intelligence, the Internet of Things or
Big Data. It is precisely this development, which has contributed so much to the generation
of negative situations and environmental problems, that provides us with tools that help
us to improve our understanding of environmental processes and increase the protection
of our ecosystem. For example, researchers from the project "Conservation management of
endangered wildlife species in Slovenia" assessed brown bear habitat using existing geocoded
data on bear population spatial distribution as well as geographical information system (GIS)
data layers covering several aspects of the study area [1]. They aimed to construct a model that
supported spatial decisions, such as the extension of the current core bear protection area.
Among its broad possibilities, Artificial Intelligence also offers us powerful tools to predict
scenarios of air quality, environmental changes, etc. The University of Alaska Fairbanks carried
out a cluster analysis that used historical climate data to develop land-cover categories, to
predict changes in the distribution of renewable resources [2]. The results of projecting climate
data one century into the future showed that profound changes can be expected across the
study area, with some regions having up to three dynamic landscapes, considering those that
are least likely to change as potential refugia.

Each Machine Learning algorithm certainly has its assets and liabilities and, consequently,

choosing the right algorithm to employ could be quite a hard task to do. While their use
will always be essential in ecological data analysis, it is necessary to explore new techniques
to model and treat the flood of environmental data from sources with different provenances
and complexities such as drones, acoustic monitoring devices, tagged animals, and more.
Ensemble Methods help with this, enhancing predictions by combining the decisions of a set of
models. Moreover, the use of these techniques has proven [3, 4, 5] that it will change ecology
management and decision making for the better.

With the intent to extend the applications of the Ensemble Methods to the Ecology and
promote their use, this Final Degree Project presents a bibliographic review of these techniques
towards a subsequent implementation thereof. First of all, we look over the foundations
of Machine Learning, part of Artificial Intelligence oriented to "educate" the machinery to
promote its autonomy. This field is mainly divided into Unsupervised and Supervised
Learning. The latter allows predictions based on labelled data and, as we have a "supervisor",
it is possible to assess model performance. So as not to fall in overfitting, the dataset is splitted
into a training sample and a test sample for assessment. When there is not enough data, this
division can be done by sample re-use, for instance, via cross-validation. Ensemble techniques
belong to Supervised Learning, and their way to proceed is to give a final decision based on
a vote or average of the predictions obtained from several base models. Some of the most
prominent ensemble-based algorithms are Stacking, Boosting and Bagging.

The purpose of this project is to implement these three types of algorithms with an
environmental dataset, for which the R statistical software [6] is used. The dataset has been
chosen from the Global Footprint Network [7] database. In 2019, this organization informed
that the annual natural resources of the entire planet were depleted in just seven months, which
is the earliest date since there are records. The measurement and knowledge of this footprint
help countries to improve sustainability and well-being. If the ecological deficit or reserve
status were known in advance, countries could implement environmental policies to reverse
their situation or continue to do so as well as so far.

2

2

MACHINE LEARNING

3

Reserve your right to think, for even to think wrongly is better than not to think at all.

Hypatia of Alexandria

We can formally define Machine Learning (ML) as the science and art by which computers
learn things by themselves [8].

The birth of ML dates back to the end of World War II, when Alan Turing creates the "Turing
Test" (1950) to determine if a machine was actually intelligent. To pass the test, the computer
had to exhibit a human behaviour in natural language conversations. Only a couple of years
after this, Arthur Samuel writes the first computer program capable of learning, designed to
play checkers and improve game after game.
In the 1960s, we come across with a boom of interest in Machine Learning, due to Frank
Rosenblatt’s first neural network, the ’Perceptron’, a technology that resembles the human
brain by connecting a network of nodes, where simple decisions are made, to a larger program
to solve complex problems.
However, in the decade of the 70s different agencies cut the funds for Artificial Intelligence (AI)
research after numerous years of very little progress, resulting from the limited computational
power. In 1967, the "Nearest Neighbor" algorithm was written. This milestone is considered as
the birth to the field of pattern recognition.
In the early 80s, Gerald Dejong introduces the concept of ’Explanation-Based Learning’ (EBL),
where a computer analyzes training data and creates a general rule that can be followed to
discard data.
We soon enter the era of computers and internet through the 1990s. It was during this time
when Machine Learning gained popularity thanks to computer science and statistics, that led
to probabilistic approaches in AI. People were bombarded with vast amounts of data, and this
technology began to be used in commercial areas for data mining, web applications or text
learning.
The arrival of the new millennium brought a great development as computers got more
powerful. It was during this period when machine learning (primarily through a few select
algorithms) was picked up in ecology [9]. Nowadays, everything points out that we will

continue having more and more data to feed our algorithms while the scientific community
does not seem to run out of ideas to continue advancing in the field.

ML methods are deployed to solve challenging real-world problems that usually involve
large amounts of data, especially when efficient decision-making is demanded, for instance, in
the case of natural resource management. Let us consider the extraction of non-renewable
resources such as petroleum, mainly used to generate energy. We have at our disposal a
set of examples consisting of georeferenced occurrences data and environmental variables
(topography, soil type or latitude) associated with the appearance of these resources or not.
In order to extract the relevant features to characterize the extraction, we will have to make
some questions at this point, e.g., is terrain relief an important variable in this study? We name
these variables input variables because we will use them to learn some concept or predict over
unobserved scenarios whether extractions might occur in space and time or not. The output
variable can be an integer value, which assumes 1 for "yes", 0 for "no". ML algorithms solve the
problems in an indirect way [10]; firstly, these associations are modeled and then the model is
used to predict the label of a new input data point. That is to say, ML is the scientific discipline
in charge of enabling machines to learn and predict using past experiences.

But Machine Learning is not just a database problem; it is also a part of Artificial Intelligence
[11]. The breadth of AI field of study covers computational models focused on carrying out
human activities based on two of our primary characteristics as thinking beings: reasoning
and behaviour, whereas ML is oriented to "educate" the machinery to promote its autonomy. It
can also provide insights into structures and patterns within large datasets [10].

In practice, it is always recommended to test and compare the behaviour of different
algorithms to choose the most appropriate one in each specific case. This behaviour might
be influenced, for example, by the available data or number of features. Therefore, selecting
the right algorithm becomes an important factor. Building a ML model is not just selecting
the right algorithm, although it is a crucially important factor, but it is a process that usually
involves the following steps [12]:

4

Raw data
Prepared

data

Apply
pre-processing

to data

Train the
algorithm

Test the
model

Candidate
model

Chosen
model

Figure 2.1: Machine Learning process

When we have collected the data, it is necessary to look over them in order to detect those
that are incomplete, inconsistent or maybe with too much noise. That is why we start with the
pre-processing step [13], to give the data the correct format to feed the learning algorithm for
training. This step is divided into two tasks: data preparation, which is in charge of initializing
the data properly (by integrating data from different sources into a single and homogeneous
dataset, cleaning the errors, smoothing the noise, transforming data from one format to another,
etc), and data reduction, which allows us to obtain a lessened representation of the data (it is
carried out by reducing the number of attributes, which is helpful when interpreting, or when
the original dataset has a huge number of instances, by replacing with a smaller representation
of the data). After this stage, algorithms must be able to extract useful information from
the prepared data and then make predictions efficiently. To test the algorithm is to evaluate
how accurate the algorithm is in its knowledge extraction and predictions. If the expected
performance is not obtained, we can go back to the previous step and continue training the
algorithm by changing some parameters until achieving acceptable results.

As far as tools for data science are concerned, R [6] and Python [14, 15] are the tools of
choice in most of the research groups and universities. A new programming language is also
emerging, Julia [16], which is being welcomed by the statistical community.

The area of Machine Learning is typically organized in two main branches [17]: Supervised
Learning and Unsupervised Learning. But there is also room for another distinction in the
classification which falls somewhere between the previous two techniques: Semisupervised
Learning. We will discuss with some examples their tasks and applications in the following
sections.

5

CHAPTER 2. MACHINE LEARNING

2.1 UNSUPERVISED LEARNING

Unsupervised Learning takes place when we only know the input data, but there is no
output data that corresponds to a given input. That is to say, there is no such supervisor,
meaning that we lack of labelled data available for training. Therefore, we can only describe
the structure of the data, to try to identify trends of similarity that simplifies the analysis. In
this way, it has an exploratory character and is considered a pre-processing step, as it is as well
used for knowledge discovery before another Machine Learning technique is applied [18]. A
marked method for Unsupervised Learning is the cluster analysis.

• Clustering: The goal of this task is to put into different groups the input data points, in a
manner which the points within a cluster share properties in common. We do not have
training data to learn what the clusters are. Instead, they are inferred from the dataset
by maximizing intra-cluster similarity and inter-cluster dissimilarity.
An application is, e.g., cluster analysis as a means of defining ’cliomes’ (climate envelope
based biomes) [2], to show how regionalized climate data can be and to be later projected
100 years into the future. Each data point was assigned 24 variables, representing mean
monthly temperature and precipitation. The model provided natural groupings, which
also allowed identifying outliers, this is, rare events.
We can highlight two families of clustering algorithms:

– Hierarchical clustering looks for building a hierarchy in which elements are grouped. In
this way, it shows the proximity relations that exist between the elements and therefore,
the choice of distance measurement is important for clustering to make sense, as with
different measures we will have different groupings. Among the proximity measures
between clusters we find: single link (the proximity between two clusters is defined
as the proximity between the two closest elements that belong to different clusters),
complete link (it is defined as the proximity between the two farthest elements that
belong to different clusters), group average (it is defined as the average proximity
between all pairs of elements that belong to different clusters), distance between
centroids (the proximity between two clusters is defined as the proximity between the
centroids of each cluster, that is, the vectors whose coordinates are the means of the
components of the variables in the cluster) and Ward’s method (at each stage, the joined
clusters are those two that lead to the cluster with the least sum of squared errors). When
performing a hierarchical clustering it is not necessary to determine in advance the
number of clusters that we are going to form. In a graphic representation, the elements
are nested in a tree-shaped hierarchy called dendrogram. Two recursive methods can be
then given for obtaining hierarchical clustering schemes [19], depending on the direction
in which the algorithm executes the grouping: agglomerative procedures (we begin

6

2.2. SEMISUPERVISED LEARNING

to group from each individual element and at each iteration the two closest clusters
merge until there is only one cluster that brings together all the elements) and divisive
procedures (we proceed in reverse, we start from a single cluster containing all the
elements and at each stage we divide into smaller clusters).

– Partitional clustering has as objective to obtain a partition of the elements into
groups in such a way that all the objects belong to one of the possible k (fixed in
advance) disjointed clusters. Each cluster has a centroid associated (geometric centre
of the cluster) and the data are assigned to the cluster whose centroid is closest, using
any distance metric. Iteratively, the centroids are updated based on the assignments
of points to clusters, until the centroids stop changing. One of the most widely used
methods in practical implementations because of its simplicity is the k-Means method
[20]. This method was proposed by McQueen in 1967 , but the most efficient algorithm
is the one proposed by Hartigan and Wong, which is initialized by randomly choosing a
centroid configuration (this is repeated several times with different configurations to get
the best one). Secondly, we assign each point to the nearest cluster and the new centroids
are recalculated. After this step, we reassign each object to the nearest centroid. We will
repeat from step two until a certain stop criterion is reached. Nevertheless, the k-Means
algorithm is sensitive to the presence of outliers. To limit their influence, the k-Medoids
method looks for the k partitioning representative individuals (or medoids) among
the set of observations. In each iteration, one of the representatives is replaced with a
representative from the current data, in order to check if the quality of the clustering
improves [20].

2.2 SEMISUPERVISED LEARNING

Approaching the field in which Ensemble Methods are registered, where we will consider
labelled data, this section addresses the problem of learning from a small set of labelled
examples and a large set of unlabelled examples [21], i.e., Semisupervised Learning [22].
Currently we deal with a large amount of data, however, not all of them are assigned a label
with which to create a classifier. The clearest example of this is the availability of untagged text
and images. The challenge is to see if unlabelled points can be combined with those labelled
ones to build a better classifier due to labelling, which is often done manually, is associated
with a high cost. The algorithm uses the labelled data points to build a classification function.
It is necessary to point out that every class must have some labelled examples.
Assume that we want to create the animal inventory of a natural reserve. To exemplify a basic
case, there are only five categories of interest: mammal, bird, fish, reptile and amphibian. For
this task, we need thousands of images of animals in the five categories, and for some of these
images we need to identify and manually tell the machine whether the image represents, for

7

CHAPTER 2. MACHINE LEARNING

example, a mammal or a fish. From this set of images (mostly unlabelled), the algorithm will
find similarities images and all similar images will get the same tag. Thereby, the machine can
use what has already taken in for its further learning as the animal population in the natural
reserve grows. Clearly, Semisupervised Learning is quite useful and researchers in the field
have discovered that its use can significantly improve learning accuracy.

2.3 SUPERVISED LEARNING

Supervised Learning is compound of a set of techniques that allows future predictions
based on labelled data. The label is just the response variable Y related to the explanatory
variables X = (x1, ..., xp), the analysed characteristics, which we already know and have
registered in the dataset. The prediction obtained is represented by means of a function that
takes the explanatory variables as input and returns the variable to be predicted as output, with
the objective of understanding the relationship between them but also to predict Y for future
observations (or test sample) of xi, i = 1, ..., p. This output is continuous in regression problems
and categorical in classification problems. There are two main tasks in Supervised Learning
that should be discussed, function approximation and classification.

• Function approximation: We consider an input, X, an output, Y, and the task is to
learn the mapping from the input to the output [11]. Regression is a type of function
approximation.
Let us consider the analysis of the abundance of the soft coral species [23] from the
Australian central Great Barrier Reef. We want to predict the ratings of abundances of
Asterospicularia laurae (the numeric response variable): 0 (absent), 1 (few), 2 (uncommon),
3 (common), 4 (abundant), 5 (dominant). The explanatory variables used in the model
are: shelf position, site location and depth. Let X be the spatial attributes and Y the
abundance of the species. The mapping mentioned in the beginning is a model that
depends on certain parameters:

Y = f (X,ϑ)

here, f is the regression function with parameters ϑ. The ML techniques estimate ϑ so
that the approximation error is minimized and thus have good predictions.

• Classification: Classification problems are characterized by having a qualitative or
categorical variable as response. The classifying methods use explanatory variables to
assign the category of the observations.
Identifying brown bear habitat [1] is an example of a classification problem where we
consider two categories: habitat and non-habitat. The information about bear sightings
includes data that are relevant in categorizing the study area: percentage of forest,

8

2.3. SUPERVISED LEARNING

proximity to settlements, elevation above see, and so forth. The assessment is carried
out making use of existing geocoded data on bear population spatial distribution as well
as data containing ecological features of the study area. Once the algorithm has been
trained with the input data, it learns a set of rules providing the association between
the attributes which characterize an area and brown bear habitat. The function that
distinguishes the different classes is called discriminant, e.g.,

IF elevation <= 541 THEN non-habitat

ELSE

IF percentage-of-rural-population <= 1 THEN habitat

...

That is, the algorithm creates a model that fits the past data with a goal, to be able to pick
out a class for future observations.

Classification Regression

Figure 2.2: Supervised Learning tasks

Focusing on algorithms, we will briefly introduce the principal supervised learning methods
hereunder:

• Decision Trees are tree-like representations of possible solutions to a decision based on
certain conditions, and can perform both classification or regression tasks. To classify
an observation the algorithm determines the main class in the terminal node in which
this observation falls. On the other hand, with a new observation under consideration,
regression is done by assigning as response the average of all the response variables of
the training observations in that partition. The best known methodologies for building
decision trees are CART (classification and regression trees), C4.5 or C5.0.

• The Naive Bayes classifiers are especially appropriate when the dimension of the input
space is high, making density estimation unattractive [24]. They are based on the
application of Bayes’ theorem, with strong assumptions of independence between the
features. They are a particular case of the so-called Bayesian networks [25].

9

CHAPTER 2. MACHINE LEARNING

• Ordinary Least Squares Regression is a method to perform linear regression [26]. The
OLS approach adjusts the coefficients β of the linear model to minimize the residual sum
of squares RSS(β) = ∑n

i=1(yi − xT
i β)2.

• Logistic regression is a classification method that estimates the probabilities of the k
classes, P[Y = i|X = x] (i = 1, . . . ,k), via linear functions in the independent variables
using the cumulative distribution function of logistic distribution, F(t) = 1

1+e−t .

• Support Vector Machine is a powerful algorithm for binary classification [27]. Given a
set of points of two types, SVM generates a hyperplane to separate the data into two
groups. We say that the hyperplane is an optimal separating hyperplane if it maximizes
the distance between the hyperplane and the closest observation. There is also a version
for regression tasks know as SVR (Support Vector Regression) [28].

• k-Nearest Neighbor, shortened k− nn, is an algorithm which classifies each new data in
the corresponding group, according to k closer neighbors to one group or another. To
proceed with the classification, it calculates the distance of the new element to each of
the existing ones, and orders those distances from least to greatest to select the group
to which they belong. This group will therefore be the one with the highest frequency
considering the shortest distances.

• Neuronal Networks are a set of algorithms specially designed for pattern recognition.
These networks are inspired by biology: resembling how neurons work in our brain,
they try to simulate the way people make decisions. They are based on a basic structure,
the "perceptron", and on the "backpropagation" mechanism, which allows the neuron to
learn by itself and discover the hidden information in the input data with which we train
the network. Deep Learning is a particular case of neural networks that is characterized
by having multiple layers of neurons connected to each other. Although what defines
deep learning is the hierarchical data processing, that is, the use of neural networks to
obtain increasingly significant representations of the data through layered learning.

• Regularization techniques are used for model selection and to avoid overfitted models
when predicting. In the context of linear models, we can give a generic formulation of
the regularization techniques as follows:

β̂ = argmin
β

{
n

∑
i=1

(yi −
p

∑
j=1

β jxij)
2 + φλ(β)

}
where β =

(
β1, . . . , βp

)
, λ ≥ 0 and φλ(β) = λ ∑

p
j=1 φj(|β j|) is the penalty function on the

size of β, which depends on λ.
A family of penalty functions that is widely used is the one corresponding to the Lq norm,
q > 0, given by

φλ(β) = λ
(
||β||q

)q
= λ

p

∑
j=1
|β|q

10

2.3. SUPERVISED LEARNING

Among these techniques, we can highlight the Ridge Regression, which takes as penalty
function the L2 norm. Thus, the estimate will be given by the coefficients that minimize
the corresponding function, this is

β̂ridge = arg min
β∈Rp+1

{
n

∑
i=1

(yi − β0 −
p

∑
j=1

β jxij)
2 + λ

p

∑
j=1

β2
j

}
= arg min

β∈Rp+1

{
RSS + λ

p

∑
j=1

β2
j

}

where λ ≥ 0 is the fixed parameter that controls the shrinkage.
As an alternative to this type of regression, we find the LASSO (least absolute shrinkage
and selection operator), with a slight difference in the penalty that has important
consequences. Meanwhile with Ridge Regression we control the size of the coefficients β,
the LASSO regression performs variable selection due to the L1 norm, which looks more
like #

{
j : β j , 0

}
. We can formulate the problem as

β̂lasso = arg min
β∈Rp+1

{
n

∑
i=1

(yi − β0 −
p

∑
j=1

β jxij)
2 + λ

p

∑
j=1
|β j|
}

= arg min
β∈Rp+1

{
RSS + λ

p

∑
j=1
|β j|
}

Lastly, the regularization technique known as Elastic Net [29] combines the advantages of
Ridge (highly correlated predictors have similar estimated coefficients) and Lasso (sparse
solutions). We can define the Naive Elastic Net estimator as

β̂ene = argmin
β

L(λ1,λ2, β) = argmin
β
|y− Xβ|2 + λ2|β|2 + λ1|β|1

where |β|2 = ∑
p
j=1 β2

j , |β|1 = ∑
p
j=1 |β j| and |y− Xβ|2 = RSS.

The described techniques can be combined through the so-called Ensemble Methods to build
a final model. These learning algorithms are the case of study in this project and will be
extensively introduced in the next chapter.

2.3.1 Model assessment and effectiveness measures

The objective of this subsection is to assess model performance, meaning the predictive
ability on new and independent data. This assessment is a fundamental step in application to
practice, as it provides the quality of the chosen model via different effectiveness measures.

Let us consider the case of a regression problem, where the target Y associated with
the input variables in a vector X is numerical. Let also f̂ (X) = Ŷ be the prediction of the
target inferred in the model. To quantify the notion of "good", we consider a loss function
L(Y, f̂ (X)) = L(Y, Ŷ) that takes both Y and its predictor and returns a real number which
indicates the loss (or cost, or undesirability) of predicting f̂ (X) when the correct label is Y
[30]. Specifying this notion of goodness of fit, the commonly used functions to measure the
loss are the following ones:

11

CHAPTER 2. MACHINE LEARNING

– Mean Absolute Error (MAE): It is an average of the absolute errors |ei| = |yi − f̂ (xi)| and so, it
is given by

MAE =
∑n

i=1 |yi − f̂ (xi)|
n

– Root Mean Squared Error (RMSE): The calculation of the RMSE is carried out considering the
square root of the average Euclidean distance between observed and estimated values.

RMSE =

√
∑n

i=1(yi − f̂ (xi))2

n

– Relative Absolute Error (RAE): It takes the absolute errors and it is relative to a simple predictor,
which is just the average of the actual values, y. The RAE index ranges from 0 to infinity, with
0 corresponding to the ideal [31] as the numerator is equal to zero for a perfect fit.

RAE =
n

∑
i=1

|yi − f̂ (xi)|
|yi − y|

– Root Relative Squared Error (RRSE): This measure is similar to the previous one in the sense
that it is relative to the simple average of the values but instead of using the absolute error, it is
calculated making use of the Euclidean distance.

RRSE =

√
n

∑
i=1

(yi − f̂ (xi))2

(yi − y)2

Similarly, if we consider now a categorical response G and the problem is to
estimate the probability of G taking a category given the input X, or simply producing
Ĝ(X), we would contemplate the loss function L(G, Ĝ(X)). A typical choice would be
L(G, Ĝ(X)) = I(G , Ĝ(X)) (0-1 loss). But there are other tools that allow the visualization of
the performance of a classification algorithm. Focusing on a binary classification problem (e.g.,
positive and negative classes), we can define a confusion matrix as the 2x2 matrix whose rows
are named according to the actual classes, while each column represents the classes provided
by the model. Thus, each instance represents the number of predictions in each case. Let us
introduce some notation related to the four possible cases when predicting:
· True Positive (TP) is the number of positives that were correctly classified as positive by the
model.
· True Negative (TN) is the number of negatives that were correctly classified as negative by
the model.
· False Negative (FN) is the amount of positives that were incorrectly classified as negative.
· False Positive (FP) is the amount of negatives that were incorrectly classified as positive.

12

2.3. SUPERVISED LEARNING

Predicted

Positive Negative

R
e
al

Positive True Positive
(TP)

False Negative
(FN)

Negative False Positive
(FP)

True Negative
(TN)

n = 5400
Predicted

Positive Negative

R
e
al

Positive 35 237

Negative 15 5113

Figure 2.3: Confusion matrix in a binary classification problem

These matrices summarize the class allocations made in each analysis from which accuracy
may be assessed and may also provide valuable information for later users of the classification
[32]. We can define a useful series of effectiveness measures based on the values of this
confusion matrix:
– Accuracy (AC): It is no more than the percentage of cases correctly allocated.

AC =
TP + TN

Total

– Misclassification Rate (MR): It indicates the percentage of the data that is classified incorrectly.

MR =
FP + FN

Total

– Sensitivity: Also known as recall or True Positive Rate, it is the proportion of cases that were
correctly identified by the algorithm in the positive class.

Sensitivity =
TP

TP + FN

– Specificity: Also known as True Negative Rate. When the class is negative, it indicates what
percentage is correctly classified.

Speci f icity =
TN

TN + FP

13

CHAPTER 2. MACHINE LEARNING

– Precision: When positive is predicted by the model, it shows what percentage is correctly
classified.

Precision =
TP

TP + FP

– Negative Predictive Value: When negative is predicted, it shows what percentage is correctly
classified.

NPV =
TN

TN + FN

– F-Measure: Also know as F1 score or F score, it is a measure of a test’s accuracy in statistical
analysis. It is a harmonic mean that combines the values of precision and recall, and reaches its
best value at 1 (perfect precision and recall) and worst at 0.

F1 =
2

recall−1 + precision−1 = 2
precision · recall

precision + recall

– Kohen’s Kappa statistic: It is an index that is used to measure concordance among a set of coders
making category judgments [33] (interrater reliability), taking into account the possibility of the
agreement occurring by chance. If the raters completely agree, then κ = 1. On the contrary, if
there is no agreement other than what one would expect by chance, κ = 0. Let us denote by
p0 the proportion of observed agreement among raters, and by pe the hypothetical probability
that the raters would randomly both agree. The formula to calculate Cohen’s kappa is

κ =
p0 − pe

1− pe
= 1− 1− p0

1− pe

The convenience of using one metric or another as a measure of the estimator goodness
will depend on each particular case. We will never be able to guarantee that the percentage
of correct will be 100% and, in fact, improving the proportion of TP will lower TN and vice
versa. One way to observe the relationship between sensitivity and specificity is with ROC
(Receiver Operator Characteristic) curves. In ROC space, one plots the False Positive Rate
(which coincides with 1− Speci f icity) on the x-axis and the sensitivity (TPR) on the y-axis [34].
Ideally, the area under the curve (AUC) should be as large as possible, because this would mean
that to guarantee a high sensitivity it is not necessary to inflate the amount of false positives.

14

2.3. SUPERVISED LEARNING

Figure 2.4: ROC curve example and its AUC

Thereupon, our predictors will be defined to minimize the expected prediction error E[L]. For
convenience, we will talk in terms of Y and f̂ (X), i.e., a regression problem (explanations in
terms of a classification problem can be easily deduced). Our predictor will depend on a tuning
parameter or vector of parameters α, which adjusts the complexity of the model. We express
this by f̂α(x) and, being consistent with what was said above, we will choose the value of α

that minimizes the error.

In order to develop the concept of prediction error correctly, first it is necessary to talk about
the procedure to follow regarding the use of the sample. If we are rich in data, the suitable
method is to randomly split the dataset into two parts: a train sample and a test sample. The
train sample is used in the Supervised Learning part in charge of model construction. Whereas
with the test sample we check if the model predictions fit well with their real values. Ideally, the
test set should be kept in a "vault", and be brought out only at the end of the data analysis [35].
There is no general rule to divide the data, but we should leave a larger sample for training.

Figure 2.5: Train and test split

With these concepts in mind, we are prepared to go in depth in the effectiveness measures.

15

CHAPTER 2. MACHINE LEARNING

We are interested in knowing the expected prediction error (or expected test error) of our model
over an independent test sample

Err = E[L(Y, f̂ (X))]

Considered only the information in the same training set, we can average the loss over this
sample of length ntrain with the training error

err =
1

ntrain

ntrain

∑
i=1

L(yi, f̂ (xi))

The following lines will give an explanation for why the training error is not suitable to estimate
the test error. Training error consistently decreases with model complexity, typically dropping
to zero if we increase the model complexity enough [35]. In this way, we would obtain an
overfitted model that provides poor predictions on unseen data. Also, if the data points in
the test sample are used to build and choose the final model, the prediction error would be
considerably minimized and we would not obtain the true error in the test.

Nevertheless, it may be necessary to consider situations in which we do not have enough
data to make the split, as in most real world problems. There are methods for these
circumstances, which will approximate the error by sample re-use:

• Cross-validation (CV):
K-fold cross-validation is a straightforward way for estimating prediction error. A positive
integer K is taken, and the sample is randomly divided into K groups of the same size
approximately. For each group, we take it as test sample and fit the model to the rest. In
total, K models have been fitted with the K − 1 parts defining the training sample, and
we take as prediction error the average of the K errors obtained in each model.

16

2.3. SUPERVISED LEARNING

Data Set

Training folds Test fold

Iteration 1

Iteration 2

Iteration 3

Iteration K

E1

E2

E3

EK

𝐸 =
1

𝐾
෍

𝑖=1

𝐾

𝐸𝑖

Figure 2.6: K-fold cross-validation

The extreme case, where we consider n folds (being n the length of the whole sample),
is known as leave-one-out. In each step, the model is fitted using all the data except one.
This single data is used as test sample, taking as the prediction error the average of the n
errors obtained.

Going into more detail, let κ : {1, . . . ,n} 7→ {1, . . . , K} be an indexing function that
indicates the partition to which observation i is allocated by the randomization. Denote
by f̂−k(x,α) the model indexed by the tuning parameter α and fitted with the kth part of
the data removed [35]. We define

CV(f̂ ,α) =
1
n

n

∑
i=1

L(yi, f̂−κ(i)(xi,α))

With this function we obtain an estimate of the test error curve, and finally we choose the
tuning parameter α̂ that minimizes it.

• Monte Carlo cross-validation (MCCV):
Monte Carlo validation is another simple and effective method, similar but subtly
different from the previous cross-validation. The technique is based on repeating K times
a procedure that consists of randomly splitting the samples into two parts Strain(k) (of
size ntrain) and Stest(k) (of size ntest), k = 1, . . . , K. The repeated MCCV criterion is defined
[36]:

MCCVntest(k) =
1

ntest
∑

i∈Stest(k)
L(yi, f̂ (xi))

Finally, we take as prediction error the average of the obtained errors, this is,
1
K ∑K

k=1 MCCV(k).

17

CHAPTER 2. MACHINE LEARNING

3rd set

2nd set

1st set

4th set

…

Figure 2.7: Monte Carlo validation (20%)

• The Bootstrap method:
The bootstrap method [?] was introduced in 1979 for estimating the accuracy of statistical
models and it depends on the notion of a bootstrap sample, which is defined to be a random
sample of size n drawn with replacement from the population of n objects x = (x1, . . . , xn),
say x∗ = (x∗1 , . . . , x∗n) [24]. The procedure is repeated B times (we call B the size of the
bootstrap). In each rerun, we take the bootstrap sample for training, and the observations
that have not been drawn (out-of-bag) as test sample. The out-of-bag estimates are
remarkably accurate [37]. As in the previous techniques, we select as prediction error
the average of the out-of-bag estimates of the loss function. This average is gotten as
follows: if f̂ ∗b(xi) is the predicted value at xi, from the model fitted to the bth bootstrap
data set (b in {1,. . . ,B}), our estimate is [24]

Êrrboot =
1
B

1
n

n

∑
i=1

L(yi, f̂ ∗b(xi))

Figure 2.8: Bootstraping validation technique

18

3

ENSEMBLE METHODS

19

there are mountains growing
beneath our feet

that cannot be contained
all we’ve endured

has prepared us for this
bring your hammers and fists

we have a glass ceiling to shatter

rupi kaur

Within the uses of Machine Learning models for prediction, a set of techniques that stands
out and has enjoyed growing attention over the last two decades is Ensemble Methods. So
far, we have introduced many individual models for prediction regarding classification and
regression problems in supervised learning. After building many models, we can wonder if it
is possible to combine them to produce a better predictor. Going back to what was introduced
in the previous chapter, the way to proceed in ensemble learning is to build a final model by
combining the strengths of a collection of simpler base models [35]. As one can see, the idea
behind this technique is nothing new to us; as humans, we use this method in in our day to day
whenever we seek the opinions of different people or even experts when we have to make a
decision. For example, reading user reviews before starting to watch a new series or consulting
with several doctors before agreeing to take a detrimental medical treatment, are examples of
ensemble-based decision making.

When using ensemble techniques, the final decision for each new test sample instance is
made based on a (typically weighted but also unweighted) vote of the predictions obtained
from the base models. Ensemble systems have proven themselves to be very effective and
extremely versatile in a broad spectrum of problem domains and real-world applications [38].
The global discussion on climate change - probably one of the greatest concerns of our time and
hence, the motivation of this project - is assessed at The Intergovernmental Panel on Climate
Change (http://www.ipcc-data.org/), which has been using ensemble models for sustainable
decision-making for over a decade already. Another application to mention when referring

to ecology is forecasting of the species niche for endemic subspecies, such as Snow Crab
(Chionoecetes opilio) [3].

The beginning of the development of ensemble systems dates back to 1979, with one
of the first researches on ensemble learning, Dasarathy and Sheela’s work on composite
classifier system design [39], which addresses the partition of the input space using more
than one classifier. Shortly after, in 1990, Hansen and Salamon concluded that an ensemble
of similarly configured artificial neural networks can improve the generalization performance
of the network [40]. Throughout the same year, Schapire proved that a strong classifier on a
binary classification problem can be built by merging weak classifiers, in a procedure he named
Boosting [41], the precursor of the algorithms which extended this concept to multiple class
and regression problems, the so-called AdaBoost algorithms. Due to the undeniable success of
these algorithms, many researches in this field have been carried out since then, resulting in
new ensemble-based algorithms: stacked generalization and bagging (with random forests as
a particular case), among others.

As mentioned above, ensemble methods usually build better predictors than simple
algorithms, this is, we get to minimize the prediction error. To address the statistical motivation
for ensembles, it is necessary to insert an aside about this error before continuing on the subject.
In the previous section we assumed a model Y = f (X) + ε, where X and ε are independent
random variables. The latter is the inherent noise in the problem that has zero mean and
variance σ2

ε . We can derive an expression for the expected prediction error of a regression
fit f̂ (X) at a fixed input point X = x0, using squared-error loss [35]. This expectation is taken
over all possible training sets T - because datasets are always of finite size, we may think of T
as a random vector that follows the joint distribution Pr(X,Y) - for when we change training
sets we will change the value of f̂ (x0) since f̂ is learned from the dataset T .

Err(x0) = ET
[
(Y− f̂ (x0))

2|X = x0

]
= ET

[
(f (x0) + ε− f̂ (x0))

2
]

= ET
[
(f (x0)− f̂ (x0))

2 + ε2 + 2 · ε · (f (x0)− f̂ (x0))
]

= ET
[
(f (x0)− f̂ (x0))

2
]
+ σ2

ε

= ET
[
(f (x0)− ET

[
f̂ (x0)

]
+ ET

[
f̂ (x0)

]
− f̂ (x0))

2
]
+ σ2

ε

= ET
[
(f (x0)− ET

[
f̂ (x0)

]
)2 + (ET

[
f̂ (x0)

]
− f̂ (x0))

2+

+2 · (f (x0)− ET
[

f̂ (x0)
]
) · (ET

[
f̂ (x0)

]
− f̂ (x0))

]
+ σ2

ε

=
(

f (x0)− ET
[

f̂ (x0)
])2

+ ET
[
(ET

[
f̂ (x0)

]
− f̂ (x0))

2
]
+ σ2

ε

=
(

f (x0)− ET
[

f̂ (x0)
])2

+ VarT
(

f̂ (x0)
)
+ σ2

ε

= ModelBias2 + ModelVariance + IrreducibleError

20

In this way, the error has two components that we can control: bias, the accuracy of our
estimate, and variance, the precision of the predictor when trained on different samples. The
bias-variance tradeoff goes like this: models with low bias have a higher variance across
samples, and vice versa. When our model suffers from high bias, the average response of
the model is far from the true value and we call this underfitting. On the contrary, when the
variance is high, this is usually a result of its inability to generalize well beyond the training
data and we call this overfitting. In addition, another fact on which we base on is that averaging
smooths (reduces variance) our model. Hence, the goal of ensemble systems is to create several
classifiers with relatively fixed (or similar) bias and then combining their outputs, say by
averaging, to reduce the variance [38].

Model Complexity

Er
ro
r

O
p

ti
m

u
m

M
o

d
el

C
o

m
p

le
xi

ty Total Error

Variance

Bias²

Figure 3.1: Bias - Variance tradeoff

Note that it is not always guaranteed to obtain a better prediction model when combining
the classifier. Rather, the probability of choosing a poor estimate is reduced. Let us explain in
depth the reason for the reduction of this probability. Hansen and Salamon pointed out in their
work [40] that, in order to have an ensemble of classifiers which improves the generalization
performance, this is, with the ensemble we provide more accurate classifications compared
to its individual base models, we need these base members to be accurate and diverse.
Respectively, these properties refers to a model that has an error rate of better than random
guessing and, if we compare two of them, they make different errors on new data. To exemplify
this improvement, let us consider an ensemble of three classifiers, {h1, h2, h3}, and a new data
point x. If these classifiers are not diverse, then if one is wrong when predicting on x, then the
other two will also give an incorrect classification. Nevertheless, if the errors are uncorrelated,
then when, for example, h1(x) is wrong, h2(x) and h3(x) may be correct, so that a majority
vote will correctly classify x. If we denote for p1, p2 and p3 the error rates of these classifiers,

21

the expression for the consensus error rate (we consider an error if and only if at least two of
the participating classifiers make an error regardless of whether their erroneous classification
coincide) is p1 p2 p3 + p1 p2(1− p3) + p1(1− p2)p3 + (1− p1)p2 p3. More precisely, if the error
rates are all equal to p < 0.5, we can see that it does pay to use consensus classification.
However, with error rates exceeding 0.5, the error rate of the ensemble will increase as a
result of the voting. Hence, one key to successful ensemble methods is to construct individual
classifiers with error rates below 0.5 whose errors are at least somewhat uncorrelated [42].

The guidelines from the previous paragraphs can be harnessed to produce a better model
when addressing ensemble learning, which is done after developing the base models from
the training data and consists mainly in one task: combining them in some of the many
existing ways to form the composite predictor. The mechanism chosen to combine the
individual models depends very much on the type of algorithm used in the ensemble members
construction. In the case of classifiers, the output are discrete-valued labels and the most
used combination rule for such outputs is (simple or weighted) majority voting. When
continuous outputs, we have more rules at our disposal, such as arithmetic (sum, product,
mean, . . .) combiners. Even thought usually we can apply these combiners immediately after
we obtain the base members, more complex combination algorithms may require an additional
training step (as used in stacked generalization) [38]. We now describe these combination rules
according to the type of output.

• Combining class labels: In the case of considering class labels, let us define T as the
number of classifiers, C as the number of classes and so, dt,c ∈ {0,1} the decision of the
tth classifier on class ωc (t = 1, . . . , T; c = 1, . . . ,C). If the tth classifier, ht, chooses class ωc,
then dt,c = 1, and 0 alternatively.

dt,c =

1, if ht chooses ωc

0, otherwise

Majority voting

Among the most commonly used ensemble learning methods we find majority voting,
in which each of the classifiers involved makes an independent prediction and it selects
as consensus the one that has been chosen by the majority. We can highlight two families
in the majority voting methods: voting, which uses models of different families (k-nn,
SVM, etc.) with the same data set to obtain the metaclassifier, and bagging, which trains
the same family of models with different data sets, expecting that each one specializes in
different data. Majority voting has three strands subjected to how the ensemble decision
is made: unanimous voting, if the decision is the class on which all classifiers agree, simple
majority, if the decision is the class predicted by at least one more than half the number
of classifiers, and plurality voting, when the decision is the class that receives the highest

22

number of votes. When the strand is not specified, majority voting usually refers to
plurality voting, which can be mathematically defined as follows: choose class ωc∗ where
c∗ =arg maxc ∑T

t=1 dt,c.

Weighted Majority Voting

If we believe that some classifiers are more accurate than others, putting a heavy
weight on the decision of those classifiers can improve the overall performance of our
metaclassifier. But if we knew, a priori, which classifiers will predict better, we would
only use those classifiers. As we lack of such information, we can use the performance
of the classifiers on a separate validation dataset as an estimate of the generalization
performance of each classifier. We then assign a weight wt to classifier ht proportional
to its estimated generalization performance, commonly in a way that voting weights are
normalized such that they add up to 1. Mathematically, we can define the procedure as
follows: choose class ωc∗ where c∗ =arg maxc ∑T

t=1 wt · dt,c.

Borda Count

Borda Count is a decision method where the participants express their votes through
an ordering of the options. It owes its name to the French mathematician Jean-Charles
de Borda, who devised it in 1770. Bear in mind that there are several variants of the
method. One of them is with the ordering done as follows: if there are C classes, the first
class receives C− 1 votes, the class with the second highest support receives C− 2 votes,
and so on until assigning 0 votes to the case ordered in the last position. Borda Count
takes into account the consensus among the classifiers, in a way that if all the classifiers
position a class near the winning class, then its Borda number (the corresponding vote)
will be high so it will be among the first positions in the final ordering; on the other hand,
if a single classifier is the one that puts a certain class in a privileged position, it doesn’t
mean necessarily that it will remain in a high position in the final rearrangement. This
method treats all classifiers equally, which may not be desirable and one solution could
be to add weights that express the quality of the classifier.

• Combining continuous outputs: In the case of combining continuous outputs, let T be
the number of base members and so, ot(x) the prediction output of the tth member (t =
1, . . . , T) on the instance x.

Algebraic Combiners

In algebraic combiners, the final output is obtained as a simple algebraic function of the
predictions made by individual classifiers. There are several combination functions,

Mean Rule: The final output is the average of all the individual ones, this is, o f (x) =
1
T ∑T

t=1 ot(x).

Trimmed mean: Sometimes predictors may erroneously give unusually low or high values
such that the correct predictions of other members are not enough to undo the damage

23

done by this unusual output. Trimmed mean avoids this problem by discarding the
highest and lowest predictions before calculating the mean. For a R% trimmed mean,
R% of the ordered values from each end is removed, with the mean calculated on the
remaining ones.

Minimum/Maximum/Median Rule: These functions simply take the minimum, the
maximum, or the median among the predictions from the base models.

Generalized Mean: All of the rules mentioned above are special cases of the generalized

mean, defined as o f (x) =
(

1
T ∑T

t=1 oα
t (x)

)1/α
. Different choices of α lead to different

combination rules. For instance, α → −∞ leads to minimum rule, for α → 1 we get

the mean rule, and α→ 0 leads to o f (x) =
(

∏T
t=1 ot(x)

)1/T
, the geometric mean.

Figure 3.2: Ensemble Learning, example in classification

Once that we have provided a background on ensemble systems, in the following sections
we present an overview of some of the most prominent ensemble-based algorithms.

24

3.1. STACKING

3.1 STACKING

Also known as stacked generalization, it is a technique whose purpose is to achieve a
generalization accuracy which is as high as possible [43]. We find two versions of stacking
depending on the number of base models under consideration: when one has only a single
predictor, stacking is used as a technique to improve it; but its main implementation (and the
one considered in this section) is for combining many predictors. In this technique, proposed
by Wolpert in 1992, we come across a different way of combining multiple base models through
the concept of meta learner. This concept refers to a combiner system which, unlike voting, can
be a nonlinear combination of the outputs of the base models.

This algorithm belongs to the heterogeneous aggregation methods. An important factor
when creating the stacked ensembles is to choose a diverse variety of base models, due to each
one should contribute somehow to the final meta learner. In order to add information not
already in known and keep clear of redundancies, one should avoid models that are simply
variations of one another. The algorithm goes as follows:

• Before starting stacked learning, we need to choose a quantity M of algorithms that we
want to combine: L1, . . . , LM. And we denote by L the learning algorithm for our meta
model.

• Let D = {(X1,Y1), . . . , (Xn,Yn)} denote our dataset. In the first stage, to build the
so-called level-0 models or generalizers, we apply the level-0 learning algorithms to the
original data set randomly splitted using cross-validation to train and test the upcoming
models. This is, hm = Lm(D) for m = 1, . . . , M.

• For each Xi of the level-0 test samples, we use each generalizer to predict their response
variable. We denote then the output by zmi = hm(Xi).

• These outputs, along with their true values Yi, form a prediction vector with M + 1
coordinates (Yi,z1,i, . . . ,zM,i). For each instance on the test sample, these vectors are
collected into a new datasetD ′, the level-1 data.

• The latter allows training and testing L, the level-1 learning algorithm. We apply it to the
new dataset in the same way as before. In notation, h = L(D ′).

• To predict on a new data, the obtained generalizers h1, . . . , hM and h are used. The final
prediction on a new data x is:

f (x) = h(h1(x), . . . , hM(x))

25

CHAPTER 3. ENSEMBLE METHODS

Original
dataset

Algorithm 1

Algorithm 2

Algorithm M

Generalizer 1

Generalizer 2

Generalizer M

Prediction 1

Prediction 2

Prediction M

Meta
learner

Final
prediction

Level 0 Level 1

Figure 3.3: Stacked generalization: algorithm

The stacked generalization framework is quite flexible, allowing us to play around with
some architectures. A settings that may help improve a stacked ensemble performance is
restacking: we pass the data set unchanged from one layer to the other. This may improve
the stacked ensemble performance in some cases, especially for more complicated ensembles
with multiple layers. The intuition behind this model is derived from the fact that the higher
level algorithm has extracted information from the input data, but rescanning the input space
may yield new information that is not obvious from the first passes. The scheme for restacked
generalization can be exemplified with the following graphic:

X

KNN classifier

Neuronal network

SVM classifier

XGB classifier

Logistic Regression

Figure 3.4: Restacking example

26

3.2. BOOSTING

If we put in balance our trained stacked combiner with a fixed rule, such as voting or any of
the others described at the beginning of this chapter, we find disadvantages and points in favor
of both of them: the flexibility in stacked generalization framework that has just been discussed
above may provide less bias, but adds extra parameters and risks introducing variance [11];
meanwhile with a fixed rule it is possible that we have lower accuracy, but it does not need
extra time and data for training.

As application of this algorithm, we find the R package "SSDM" [44] to predict distribution
of species richness and composition based on a stacked generalization of different species
distribution models [45]. Stacked species distribution models (SSDMs) combine multiple
individual species distribution models (SDMs) to produce a community-level model. An
SDM (also referred as to "ecological niche model", "habitat suitability model" and "predictive
habitat distribution models") refers to the process of using a statistical method to predict the
distribution of a species in geographical space on the basis of a mathematical representation of
its known distribution in environmental space [46]. A major strength to highlight of an SSDM
is that it can predict species assemblages.

3.2 BOOSTING

The Boosting algorithm is based on creating each base model sequentially, instead of
independently. The subsequent predictors "manipulate" the training instances by assigning
a heavier weight to the ones that were previously predicted in a wrong way, while the weights
of the instances that are correctly classified remain the same. This is, with boosting we actively
try to generate complementary base learners.

The original boosting procedure by Schapire (1990) combined three weak learners to
generate a strong learner. A weak learner is capable of producing predictors with probability
of error strictly - but only slightly - less than that of random guessing (0.5 in the binary case);
and a strong learner is able to yield models with arbitrarily small error probability. This initial
version of boosting consists in, given a large training set X , randomly dividing it into three.
We use X1 to train the first model, h1. We then use the second set X2 to feed it to h1 and to
train h2. This is, we train the second model with all the instances misclassified by h1 but also
the ones on which h1 is correct from X2. We then feed h1 and h2 with the last set, X3. Finally,
the training set of h3 are the instances on which h1 and h2 disagree (here remains the idea of
building complementary models). The ensembled decision is as follows: given an instance, we
give it to h1 and h2; if they agree, that is the response, otherwise the response of h3 is taken as
the output [11]. This system can also be used recursively, by executing a boosting algorithm of
three models used as hj in a higher system.

The main downside we can highlight when approaching this method is that it requires a

27

CHAPTER 3. ENSEMBLE METHODS

very large training sample to be divided into three. In addition, the third predictor is only
trained on a subset formed by the instances that were mispredicted by the other two.

Once again returning to the applications in ecology, ensemble algorithms such as boosting
are of great help in the study of vulnerable species, especially when little is known regarding
their habitats, which loss is the primary cause of their diminish. We can give as an example
the use of boosting to infer stopover habitat selection and distribution of Hooded Cranes (Grus
monacha) during Spring Migration in Lindian, Northeast China [4]. For instance, for roosting
site selection, 249 optimal trees were generated from 1000 possible trees and the ROC curve
was studied for the knowledge of the model discrepancy (accuracy).

3.2.1 AdaBoost

As a variant, Freund and Schapire (1996) proposed the most popular boosting algorithm
known as AdaBoost, short for adaptive boosting. The key idea behind AdaBoost is to use weighted
versions of the same training data instead of randomly subsamples thereof. The same training
set is repeatedly used and, for this reason, it does not need to be very large, unlike earlier
boosting methods [38]. Furthermore, AdaBoost can combine an arbitrary number of base
learners, not only three, but they should be simple so that they do not overfit.

The idea behind the weighted training sample is to modify the probabilities of drawing the
instances as function of the error. Let us denote by pij the probability of drawing the instance
pair (Xi,Yi) ∈ X to train the jth base learner. At the beginning, pi1 = 1

n (i = 1, . . . ,n), which
means the algorithm starts by building the first base learner training on the dataset with equal
weights.
Let also be ε j the error rate of the base learner hj not on the original problem but on the dataset
used at step j. Since we require that learners are weak, the error rate is compared against a
threshold ε symbolizing the probability of error in random guessing, that is, ε j < ε∀j. If this
constraint is not met, we stop adding new base-learners.
We then define β j =

ε j
1−ε j

< 1. If hj mispredicts, we set pi(j+1) = pij; otherwise we set
pi(j+1) = β j · pij. The effect of this assignment is that the probability of drawing a mispredicted
instance increases, while the probability for a correctly predicted one decreases. We should
normalize pij as they are probabilities so that they sum up to 1.
Once these settings are made, at each step j + 1 we train the learner hj+1 by drawing a
new sample of the same size, with replacement, from the original dataset according to these
modified probabilities. Once training is done, AdaBoost has a weighted voting scheme. Given
a new data point x, all the hj decide, with weights proportional to their previous accuracies on
the training set: wj = log 1

β j
.

Notice that as each new learner focuses more on mispredicted instances by the preceding
model, the base-learners are chosen to be simple and not accurate. If this were otherwise,

28

3.2. BOOSTING

Algorithm 1 AdaBoost algorithm
1: n = number of instances
2: pij = P[drawing instance i to train base learner j]
3: ε = probability of error in random guessing
4: for i = 1, . . . ,n do
5: pi1 =

1
n

6: end for
7: for j = 1, . . . , J do
8: Obtain base learner hj(X) that minimizes the error rate ε j = ∑i:yi,hj(Xi)

pij

9: if ε j ≥ ε then
10: EXIT
11: end if
12: β j :=

ε j
1−ε j

13: pi(j+1) := β j · pij

14: if hj mispredicts then
15: pi(j+1) := pij

16: end if
17: for j = 1, . . . , J do
18: Normalize the weights so that they sum up to 1 pi(j+1) :=

pi(j+1)

∑n
k=1 pk(j+1)

19: end for
20: Classifier weight calculation for the final classifier ωj := log 1

β j

21: end for
22: Final classificator H(X) = argmaxc ∑J

j=1 ωj · djc where djc is the decision of learner
hj on class c.

29

CHAPTER 3. ENSEMBLE METHODS

the upcoming training samples would contain only a few outliers and many noisy instances.
On the other hand, a consequence of weighting the instances is that, after all the runs, the
mispredicted ones assigned with heavier weights are "hard" patterns to learn; these patterns
are probably outliers. This is a kind of side effect of AdaBoost, which can be used for outlier
detection on a given training set [38].

Training sample

Weighted
sample 1

Weighted
sample J-1

h1

h2

hJ

Weighted
Majority

Vote

h1(X)

h2(X)

hJ(X)

H(X)

Figure 3.5: Graphical idea of the adaptative boosting algorithm

3.3 BAGGING

Bagging, acronym for Bootstrap Aggregating, was proposed by Leo Breiman in 1994. It is a
method for generating multiple versions of a predictor and using these to get an aggregated
predictor [47]. These versions are trained over different resamples of the original dataset
X with the same size generated via bootstrap, i.e., randomly drawing each instance with
replacement. When this is done to generate B samples Xb, b = 1, . . . , B, each of the independent
observations follow the same underlying distribution as X . After resampling is done, the base
predictors hb are trained with these B samples Xb.

The key element is the instability of the learning algorithm. A learning algorithm is an
unstable algorithm if small changes in the training set causes a large difference in the generated
model, namely, the learning algorithm has high variance. Bagging trains the B base models
using an unstable learning procedure [11], which can improve accuracy and push a significant
step towards optimality. Some examples of unstable learning methods are decision trees or
rule induction algorithms; on the contrary, k-nearest neighbor and naive Bayes classifiers are
stable techniques, for which bagging may degrade the accuracy. Then, when combining the
predictors during testing, it takes an average in the case of regression (or even the median to
be more robust), or makes use of plurality vote when classifying the outcomes.

30

3.3. BAGGING

Note that because Bagging has no memory - each base model is fitted independently
without any awareness of the other base-learners that have already been selected - it is easily
parallelizable. This divisibility is a computational advantage of the algorithm [48].

Figure 3.6: Bagging scheme

We now focus on the squared-error loss, Err = (y − f̂ (x))2, to expound on the help
of this method: bagging reduces the variance. Let the "idealized" bagging estimator be
h̄(x) = E[hb(x)]. Using simple linear algebra and properties of the expectation (linearity and
the inequality E[X2] ≥ E2[X]), we can operate and obtain:

E[(y− hb(x))2] = E[y2 − 2 · y · hb(x) + hb(x)2]

= y2 − 2 · y · E[hb(x)] + E[hb(x)2]

≥ y2 − 2 · y · E[hb(x)] + E2[hb(x)]

≥ (y− E[hb(x)])2

≥ (y− h̄(x))2

We deduce then that the mean-squared error of h̄(x) is lower than the mean-squared error
averaged of the predictors hb trained over the bootstrap samples. This is, the aggregation
never increases the squared error, and it often reduces it. How much lower depends on how
unequal the two sides of E2[hb(x)] ≤ E[(h2

b(x))] are. The effect of instability is clear. If the
predictor does not change too much with the boostrap replicates, the two sides will be nearly
equal, and aggregation will not help. So, the more highly variable the models are, the more
improvement aggregation may produce [47]. Nevertheless, bagging a bad classifier can make
the classification worse, as the above argument does not hold for classification because of the
"non-additivity" of bias and variance.

31

CHAPTER 3. ENSEMBLE METHODS

Even though bagging has been applied frequently in fields such as biostatistics, its use
is uncommon in the field of ecology. However, we can find papers in which it is used for
environmental studies, such as the predictive vegetation mapping under current and future
climate scenarios according to the Canadian Climate Centre global circulation model [5]. This
technique was applied to four tree species common in the eastern United States: loblolly pine
(Pinus taeda), sugar maple (Acer saccharum), American beech (Fagus grandifolia), and white
oak (Quercus alba). Future estimates of suitable habitat after climate change were visually
more reasonable with bagging trees and random forest (which will be described soon below),
with slightly better performance by RF as assessed by Kappa statistics (described in section
2.3.1). Bagging trees and random forest modeling approaches are considered to be robust for
predictive mapping and their inclusion in the ecological toolbox is recommended for better
understanding.

3.3.1 Random Forests

Random Forests is a variant of bagging algorithm introduced by Leo Breiman [49] whose
base models are decision trees. The reason for this choice is that bagging works well on
unstable methods such as trees, which, being notoriously noisy procedures, benefit greatly
from averaging. Moreover, they can capture complex interaction structures in the data and,
if grown sufficiently deep, have relatively low bias. In addition, each tree in the random
forest is fully grown and not pruned. Random forests tend to perform very well, especially
for those datasets containing many features and, as decision trees, they can be used for either
classification or regression problems.

Since each tree generated in bagging is identically distributed (i.d.), the expectation of an
average of B such trees is the same as the expectation of any one of them. This means the bias
of bagged trees is the same as that of the individual (bootstrap) trees, and the only hope of
improvement is through variance reduction [35].
If the trees are independent and identically distributed (i.i.d.) - with σ2 being the variance of
these trees - the average of the B trees has variance

Var

[
1
B

B

∑
i=1

Ti

]
=

1
B2

B

∑
i=1

Var[Ti] =
1

B2 Bσ2 =
σ2

B

But if they are simply i.d. - with variance σ2, expectation µ and pairwise correlation ρ - the

32

3.3. BAGGING

variance of the average is

Var

[
1
B

B

∑
i=1

Ti

]
=

1
B2 Var

[
B

∑
i=1

Ti

]
=

1
B2

E

(B

∑
i=1

Ti

)2
− E2

[
B

∑
i=1

Ti

]
=

1
B2 E

[
B

∑
i=1

B

∑
j=1

TiTj

]
− 1

B2

(
B

∑
i=1

E[Ti]

)2

=
1

B2 E

[
B

∑
i=1

B

∑
j=1

TiTj

]
− 1

B2 (Bµ)2

=
1

B2 E

[
B

∑
i=1

B

∑
j=1

TiTj

]
− µ2

Using the expression of the correlation coefficient

ρ =
E
[
(Ti − µ)(Tj − µ)

]
σ · σ =

E[TiTj]− 2µ2 + µ2

σ2 =
E[TiTj]− µ2

σ2

we obtain that for i , j, E[TiTj] = σ2ρ + µ2; and that E[T2
i] = σ2 + µ2.

Thus the variance of the average is now given by

Var

[
1
B

B

∑
i=1

Ti

]
=

1
B2 E

[
B

∑
i=1

B

∑
j=1

TiTj

]
− µ2

=
1

B2

[
B · E[T2

i] + (B2 − B) · E[TiTj]
]
− µ2

=
1

B2

[
B · (σ2 + µ2) + B(B− 1) · (σ2ρ + µ2)

]
− µ2

=
σ2

B
+

µ2

B
+ (1− 1

B
)(σ2ρ + µ2)

= ρ · σ2 +
1− ρ

B
· σ2

Note that we need the correlation ρ to be positive. As we increase the size of the bootstrap
B, the second term disappears; but the first one remains, and hence the amount of correlation
limits the benefits of averaging.

The key in random forests is to upgrade the variance reduction of bagging by reducing the
correlation between the trees, without increasing the variance too much. This "perturbation"
of the algorithm is carried out when constructing the base trees and is called subset splitting.
The alteration consists in considering only a random subset of the input variables at each node
when building a tree, instead of successively finding the best split at each node by considering
every possible variable.

33

CHAPTER 3. ENSEMBLE METHODS

Figure 3.7: Random Forests scheme illustrating input variables selection

From a computational standpoint, Random Forests are appealing because they depend only
on a few tuning parameters [38]. These are

• m, the number of randomly selected predictor variables chosen at each node.

• J, the number of trees in the forest.

• tree size, as measured by the smallest node size for splitting or the maximum number of
terminal nodes.

The only one of these parameters to which the algorithm is somewhat sensitive appears to be
m. In classification, the standard default is m = b

√
Mc, where M is the total number of input

variables. In regression, the default is m = b n
3 c, where n is the sample size.

Regarding the number of trees, the out-of-bag estimate can be unstable and inaccurate for small
values of J. Even so, the generalization error for forests converges almost surely to a limit as
the number of trees in the forest becomes large. This result explains why random forests do not
overfit as more trees are added, but produce a limiting value of the generalization error [49].
Finally, as for the size of the tree, originally it was recommended to grow very large trees.
Nevertheless, in recent papers some examples have been given for which forests of large trees
overfit. In those cases, out-of-bag error rates can be helpful to tune either the number of nodes
or the smallest node size.

34

4

APPLICATION: PREDICTION

MODEL ABOUT ECOLOGY

35

No one is too small to make a difference.

Greta Thunberg

4.1 BUILDING ENSEMBLE ALGORITHMS WITH R

The R Project was initially developed by Robert Gentleman and Ross Ihaka, from the
Department of Statistics, at the University of Auckland in 1993. R [6] is both a programming
language and a free software environment for advanced statistical analysis with high quality
graphics. It is available for most computer platforms and can be downloaded from CRAN at
cran.r-project.org.

This programming language stands out as one of the most used in scientific research, being
also very popular in the fields of machine learning, data mining, biomedicine and financial
mathematics. This usefulness is greatly enhanced by the possibility of loading extension
packages that enrinch and complement the base R software. Each of them has a specific
purpose, for example, to enhace graphs or add calculations that extend its basic configuration.
The download from CRAN of those which don’t ship with the installation can be easily done
within R. For example, caret [50] or caretEnsemble [51] will be useful to carry out the
implementation of this Final Degree Project and their contents will be described later.

This section presents a review of how to create three of the most powerful types of
ensembles in R: Stacking, Boosting and Bagging. We can summarize these techniques (already
presented in sections 3.1, 3.2 and 3.3, respectively) in a few lines:

• Stacking: building multiple models (better if of differing types) and a meta-model that
learns how to best combine the predictions of the base ones.

• Boosting: building multiple models from the same learner, each of which learns to fix the
prediction errors of a prior model in the chain.

cran.r-project.org

CHAPTER 4. APPLICATION: PREDICTION MODEL ABOUT ECOLOGY

• Bagging: building multiple versions of a model from different bootstrap subsamples of
the training dataset and using these to get an aggregated predictor.

We will look at each in turn. Examples will not be given in this section as their application will
be shown in the software implementation one.

The first R package introduced is caret [50] (short for Classification And REgression
Training), which consists of a set of functions that attempt to streamline the process for creating
predictive models. The package contains tools for data splitting, feature selection, model
tuning using resampling, among other functionality. Related to this one, we also bring up
the caretEnsemble [51] package for making ensembles of caret models.

STACKING ALGORITHMS

For building stacking algorithms we use the helpful caretList() function for creating
a list of standard caret models. Its argument methodList determines the caret models to
ensemble, in a character vector form; also, we can pass to its argument trControl the function
trainControl() specifying the train method for the base learners. Finally, the function
resamples() applied to this list provides methods for analysing and visualizing (for example
with the help of summary() and dotplot()) the set of results for each model applied to the
common data set.
When we combine the predictions of different models using stacking, we already explained
that it is desirable that the predictions made by the base models have low correlation, as this
would suggest that they are skillful in different ways. Otherwise, if the predictions were
highly corrected then they would be making very similar predictions, reducing the benefit
of combining the predictions through the meta learner. This correlation can be checked with
modelCor(), giving the correlation coefficients matrix, or splom(), which draws conditional
scatter plots of these matrices.
Given the list of caret models, the caretStack() function can be used to specify the meta
model to learn how to best combine the predictions of the base models together, which are
given in its argument all.models. We can also type additional arguments to pass to the
optimization function such as metric, choosing for example "Accuracy", or trControl, as
before. Via function print() we can analyse the results.

BOOSTING ALGORITHMS

The most popular boosting algorithms when implementing in R are:

• AdaBoost Classification Trees (which uses decision trees as weak classifiers).

• Iterating boosting using the tree building algorithm C5.0 for the base models.

36

4.1. BUILDING ENSEMBLE ALGORITHMS WITH R

• Gradiente Boost algorithms, from which one can highlight Stochastic Gradient Boosting
and eXtreme Gradient Boosting.

The chosen method is specified in the argument method ("adaboost", "C5.0", "gbm" and
"xgbDART", respectively) of the function train(), which fits predictive models over different
tuning parameters. As in stacking algorithms construction, we can also pass the additional
arguments to this function and results are displayed making use of resamples() via summary()
and dotplot() in the same way.
Instead of using this function, whose functionality is actually based on loading the package
in which the chosen method is defined and setting up a grid of its tuning parameters, we can
directly use all the functions with which these packages complement R. For example, with
the aid of package gbm [52] (short for Generalized Boosted Modeling), we can get efficient
boosted trees by tuning the parameters of the function gbm(), such as n.trees, the total
number of trees to fit; shrinkage, also known as the learning rate or step-size reduction, is
the parameter applied to each tree in the expansion (smaller learning rates typically require
more trees); interaction.depth, the maximum depth of each tree (i.e., the highest level of
variable interactions allowed); or n.minobsinnode, the minimum number of observations in
the terminal nodes of the trees. This package is also very useful when exploring the results:
gbm.perf() estimates the optimal number of boosting iterations for a gbm object and plots
various performance measures; pretty.gbm.tree() extracts the information from a single tree
stored in the gbm object and displays it in a readable form. Also, by applying summary(), a plot
of the relative influence of each variable is given.

BAGGING ALGORITHMS

When implementing bagging algorithms, two of the most outstanding methods are:

• Bagged CART

• Random Forest

As mentioned before, the function train() makes implementing ensemble methods very
simple. For bagging it is the same as for boosting, we just have to change the specification
of the training method ("treebag" and "rf", respectively).
By model averaging, bagging helps to reduce variance and minimize overfitting. Although
it can be used with any base learner, it is usually applied to decision trees [53]. Another
way of building these bagging models is with the aid of packages rpart [54] (short for
Recursive Partitioning And Regression Trees) to fit the decision trees, and ipred [55] (short
for Improved PREDictors), to fit bagged decision trees. The function bagging() makes the
prediction according to its atributes formula, which establishes the formula like response ~

37

CHAPTER 4. APPLICATION: PREDICTION MODEL ABOUT ECOLOGY

predictors; nbagg, an integer giving the number of bootstrap replications; coob, a logical
indicating whether an out-of-bag estimate of the error rate should be computed; and control,
where options that control details of the rpart algorithm must be given. The value of the
last attribute must be provided through the function rpart.control, indicating minsplit,
the minimum number of observations that must exist in a node in order for a split to be
attempted, among other parameters. Moreover, when using decision trees as base model, we
can upgrade the variance reduction via subset splitting with a particular bagging algorithm,
Random Forests. The corresponding R package is randomForest [56], whose main function
randomForest() have several hyperparameters that can be tuned, although the default values
tend to produce good results. Some of them are ntree, the number of trees in the forest;
mtry, the number of features to consider at any given split; or nodesize, the minimum size
of terminal nodes. Another useful function in this package is importance(), which gives
measures of the importance of each variable in building the model.

4.2 APPROACHING THE PROBLEM

The concern about the existence of physical limits to the consumption of natural resources
by human societies is not new, it was already raised by the classical economists of the 19th
century (e.g. Malthus). Nevertheless, sustainability has now become a universal policy goal -
at least in the official rhetoric.

The Ecological Footprint [7] is the measure of the demand on and supply of nature. It is
represented by the area that is necessary to produce the resources and cover the impacts of
human activities.
On the demand side, the Ecological Footprint measures the ecological assets that a given
population requires to produce the natural resources it consumes (including plant-based food
and fiber products, livestock and fish products, timber and other forest products, space for
urban infrastructure) and to absorb its waste, especially carbon emissions.
On the supply side, the biocapacity represents the productive land, which includes cropland,
grazing land, forest land, fishing grounds and built-up land. These areas, especially if left
unharvested, can also absorb much of the waste we generate, particularly additional carbon
dioxide emissions that the oceans cannot lessen.
Both the biocapacity and the ecological footprint are expressed in the same unit: global hectares
(gha) - globally comparable, standardized hectares with world average productivity. One
global hectare is the world’s annual amount of biological production for human use and human
waste assimilation, per hectare of biologically productive land and fisheries.
If the biocapacity of a population exceeds its Ecological Footprint, it has an ecological reserve.
Otherwise, that region runs an ecological deficit: its demand for the goods and services that its
land and seas can provide (food, wood, cotton for clothing and carbon dioxide absorption)

38

4.2. APPROACHING THE PROBLEM

exceeds what the ecosystems can renew and emits carbon dioxide into the atmosphere.

The measurement and knowledge of this footprint help countries improve sustainability
and well-being, and also let individuals understand their impact on the planet. "Sustainable"
implies that the development at service of this aforementioned well-being must come at no cost
to future generations.

The Ecological Footprint trails the use of six different productive surface areas: cropland,
grazing land, forest area, fishing grounds, built-up or urban land, and carbon demand on land
(as said before, measured in global hectares). When the carbon footprint is reported within this
context, it represents the amount of productive land area required to get rid of the tonnes of
carbon dioxide emissions a country lets off.

When trying to predict a country’s ecological reserve or deficit, there are some other
variables that might be taken under consideration. These are the population of the country
(in millions of habitants), its GDP (gross domestic product) per capita (expressed in US
Dollars) and Human Development Index (HDI). The latter is a statistic composite index of life
expectancy, education, and gross national income indicators, which are used to rank countries.
The countries that score highest on the HDI also contribute most, in per capita terms, to
climate change and other forms of ecological breakdown [57]. On the contrary, poor and
underdeveloped countries produce much less per capita damage to nature, but as they develop
- and in this situation are China or India - the index increases implying unsustainability.
Reports by the environmental group World Wildlife Fund (WWF) include graphs where the
ecological footprint is plotted against the United Nations HDI. However, in 2006 and again in
2016, Cuba was associated to a good level of development according to the UN thanks to its
high level of literacy and a fairly high life expectancy, while its ecological footprint is not large
as it is a country with low energy consumption.

In our time, it is quite common to find Artificial Intelligence and Statistics hybrid techniques
so, we could wonder, why not considering other procedures better than Ensemble Methods?
Because of to this plurality, we have the freedom of choice to use the ones that work best
(this is, give us the best predictions). Each ML algorithm certainly has its assets and liabilities
and, consequently, choosing the right algorithm to employ could be quite a hard task to do.
Fortunately, ensembles can help. Based on the researches that have been exposed as examples
throughout these pages, the use of Ensemble techniques will change ecology management and
decision making for the better. At a minimum, these algorithms can analyse vast amounts
of data, and they do so in less time and with greater efficiency than hitherto possible using
traditional statistical approaches [9]. All the above reasons explain why these techniques have
been considered a reasonable way to proceed and an appealing topic for this Final Degree
Project.

39

CHAPTER 4. APPLICATION: PREDICTION MODEL ABOUT ECOLOGY

4.3 SOFTWARE IMPLEMENTATION

The database to be used has been provided by the Global Footprint Network [7]. The
different R files that gather the process of exploiting the raw data until the final extraction
of knowledge are shown below, along with their executions.

40

Preprocessing
The library chosen for the treatment of .xlsx files is xlsx. We load the data set and ask for some information
to check if the variables in the data frame are of the correct type.
library(xlsx)
data = read.xlsx("countries.xlsx", sheetName = "Sheet1", header = TRUE)
attach(data)
str(data)

#change the type of GDP.per.Capita to numeric
GDP.per.Capita = as.numeric(as.character(GDP.per.Capita))

'data.frame': 188 obs. of 20 variables:
$ Country : chr "Afghanistan" "Albania" "Algeria" "Angola" ...
$ Region : chr "Middle East/Central Asia" "Northern/Eastern Europe" "Africa" "Africa" ...
$ Population : num 29.82 3.16 38.48 20.82 0.09 ...
$ HDI : num 0.46 0.73 0.73 0.52 0.78 0.83 0.73 NA 0.93 0.88 ...
$ GDP.per.Capita : chr "614.66" "4534.37" "5430.57" "4665.91" ...
$ Cropland.Footprint : num 0.3 0.78 0.6 0.33 NA 0.78 0.74 NA 2.68 0.82 ...
$ Grazing.Footprint : num 0.2 0.22 0.16 0.15 NA 0.79 0.18 NA 0.63 0.27 ...
$ Forest.Footprint : num 0.08 0.25 0.17 0.12 NA 0.29 0.34 NA 0.89 0.63 ...
$ Fish.Footprint : num 0 0.02 0.01 0.09 NA 0.1 0.01 NA 0.11 0.06 ...
$ Urban.Land : num 0.04 0.06 0.03 0.04 NA 0.1 0.07 NA 0.14 0.15 ...
$ Carbon.Footprint : num 0.18 0.87 1.14 0.2 NA 1.08 0.89 NA 4.85 4.14 ...
$ Total.Ecological.Footprint : num 0.79 2.21 2.12 0.93 NA ...
$ Cropland : num 0.24 0.55 0.24 0.2 NA 2.64 0.44 NA 5.42 0.71 ...
$ Grazing.Land : num 0.2 0.21 0.27 1.42 NA 1.86 0.26 NA 5.81 0.16 ...
$ Forest.Land : num 0.02 0.29 0.03 0.64 NA 0.66 0.1 NA 2.01 2.04 ...
$ Fishing.Water : num 0 0.07 0.01 0.26 NA 1.67 0.02 NA 3.19 0 ...
$ Total.Biocapacity : num 0.5 1.18 0.59 2.55 0.94 ...
$ Biocapacity.Deficit.or.Reserve: num -0.3 -1.03 -1.53 1.61 -4.44 ...
$ Earths.Required : num 0.46 1.27 1.22 0.54 3.11 1.82 1.29 6.86 5.37 3.5 ...
$ Countries.Required : num 1.6 1.87 3.61 0.37 5.7 ...

We create the response variable “Classification” as defined when approaching the problem, and collect it
along the neccessary input variables. All of them are written in a new .xlsx file.
Classification = factor(c(), levels = c("ecological.deficit",

"ecological.reserve"))
for (i in 1:length(Total.Ecological.Footprint)) {

a = (Total.Ecological.Footprint/Total.Biocapacity)[i]
if (!is.na(a)) {

if (a > 1)
{Classification[i] = "ecological.deficit"}

else
{Classification[i] = "ecological.reserve"}

}
}

useful_data = data.frame(Country, Region, Population, HDI, GDP.per.Capita,
Cropland.Footprint, Grazing.Footprint, Forest.Footprint,
Fish.Footprint, Urban.Land, Carbon.Footprint, Cropland,
Grazing.Land, Forest.Land, Fishing.Water, Classification)

write.xlsx(useful_data, file ="TFGdataset.xlsx", row.names=FALSE)

Data Cleansing
We import the file created in the Preprocessing section.
library(xlsx)
data = read.xlsx("TFGdataset.xlsx", sheetName = "Sheet1", header = TRUE)
attach(data)

Detection and Localization of errors
Missing values

First thing is to check for missing values (NAs).

• The complete.cases function detects rows in a data.frame that do not contain any missing value. The
resulting logical can be used to remove incomplete records from the data.frame.

• Alternatively the na.omit function, does the same. The result of the na.omit function is a data.frame
where incomplete rows have been deleted. The row.names of the removed records are stored in an
attribute called na.action.

head(complete.cases(data))

[1] TRUE TRUE TRUE TRUE FALSE TRUE
data_complete = na.omit(data)
head(na.action(data_complete))

5 8 19 25 30 31
5 8 19 25 30 31

Outliers

This subsection is in charge of detecting observations which appear to be inconsistent with the dataset.
library(ggplot2)
ggplot(na.omit(data), aes(x = Classification,

y = GDP.per.Capita)) +
geom_jitter(position=position_jitter(0.2)) +
stat_summary(fun.y=mean, geom="point", shape=18,size=3, color="red") +
labs(title = "GDP.per.Capita ~ Classification",

caption = "Scatter plot of GDP.per.Capita depending on
\nthe category in Classification") +

theme(
plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")

)

0

30000

60000

90000

120000

ecological.deficit ecological.reserve
Classification

G
D

P
.p

er
.C

ap
ita

GDP.per.Capita ~ Classification

Scatter plot of GDP.per.Capita depending on

the category in Classification

ggplot(na.omit(data), aes(x = factor(Classification),
y = Urban.Land,
fill = factor(Classification))) +

geom_boxplot() +
theme_bw() +
labs(title = "Urban.Land ~ Classification",

caption = "Boxplot of Urban.Land for each \ncategory in Classification") +
theme(

plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")

)

0.0

0.1

0.2

ecological.deficit ecological.reserve
factor(Classification)

U
rb

an
.L

an
d

factor(Classification)

ecological.deficit

ecological.reserve

Urban.Land ~ Classification

Boxplot of Urban.Land for each
category in Classification

Obvious inconsistencies

In this section, we detect records that contains a value or combination of values that cannot correspond to a
real-world situation.

The edit rules are defined in a .yaml file which we can load and explore.
library(data.table)
library(validate)

v = validator(.file='editrulesTFG.yaml')
for(rule in names(v)){

print(v[[rule]])
}

##
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml
created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml

created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml
created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml
created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml
created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml
created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml
created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml

created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>
Object of class rule.
expr : Population > 0
name : populatedCountries
label : non deserted countries
description: It is obvious that every country has population.
##
origin : editrulesTFG.yaml
created : 2020-05-25 16:34:05
meta : language<chr>, severity<chr>

And we apply (confront) the rules to data. The results are easily seen with a barplot.
cf = confront(data, v)

barplot(cf,
main = "Confront rules to data",
ylab = "Rules",
xlab = "Items")

pssC

rgUC

HDIp

GDPp

nnNF

nnNB

pplC

Confront rules to data

R
ul

es

0 50 100 150

Classification %vin% c("ecological.deficit", "ecological.reserve")

c("Region %vin% c(\"Middle East/Central Asia\", \"Northern/Eastern Europe\", ", " \"Africa\", \"Latin America\", \"Asia−Pacific\", \"European Union\", ", " \"North America\")")

HDI > 0

GDP.per.Capita > 0

c("(Cropland.Footprint >= 0) & (Grazing.Footprint >= 0) & (Forest.Footprint >= ", " 0) & (Fish.Footprint >= 0) & (Urban.Land >= 0) & (Carbon.Footprint >= ", " 0)")

c("(Cropland >= 0) & (Grazing.Land >= 0) & (Forest.Land >= 0) & ", " (Fishing.Water >= 0)")

Population > 0

Items
fails passes nNA

Imputation
In this process, we estimate or derive values for fields where data is missing. There is no one single best
imputation method that works in all cases. The imputation model of choice depends on what auxiliary
information is available and whether there are (multivariate) edit restrictions on the data to be imputed.

For our data, we use kNN-imputation. A distance function d(x_i, x_j) measures the dissimilarity between
records. A missing value is then imputed by finding first the records nearest to the record with one or more
missing values. Next, a value is chosen from or computed out of the nearest neighbors.

The VIM package contains a function called kNN that uses Gowers distance 12 (https://www.rdocumentation
.org/packages/StatMatch/versions/1.2.5/topics/gower.dist) to determine the nearest neighbors.

library(VIM)
data_knn = kNN(data)

We study again the inconsistency of the new complete dataset as before. We delete from our dataset the fails
and then export it to a new file .xlsx that is finally ready to be trained.
cf_new = confront(data_knn, v)
barplot(cf_new,

main = "Confront rules to imputed data",
ylab = "Rules",
xlab = "Items")

pssC

rgUC

HDIp

GDPp

nnNF

nnNB

pplC

Confront rules to imputed data

R
ul

es

0 50 100 150

Classification %vin% c("ecological.deficit", "ecological.reserve")

c("Region %vin% c(\"Middle East/Central Asia\", \"Northern/Eastern Europe\", ", " \"Africa\", \"Latin America\", \"Asia−Pacific\", \"European Union\", ", " \"North America\")")

HDI > 0

GDP.per.Capita > 0

c("(Cropland.Footprint >= 0) & (Grazing.Footprint >= 0) & (Forest.Footprint >= ", " 0) & (Fish.Footprint >= 0) & (Urban.Land >= 0) & (Carbon.Footprint >= ", " 0)")

c("(Cropland >= 0) & (Grazing.Land >= 0) & (Forest.Land >= 0) & ", " (Fishing.Water >= 0)")

Population > 0

Items
fails passes nNA

flags_new = as.data.table(values(cf_new))
data_knn = data_knn[flags_new$populatedCountries, 1:16]

write.xlsx(data_knn, file = "TFGdataset_complete.xlsx", row.names = FALSE)

Stacking

We applied preprocessing to raw data and tackled data cleansing. To carry out the modeling via stacking, we
load the complete dataset we obtained from this last procedure and the libraries caret and caretEnsemble.
set.seed(15)

library(xlsx)
library(caret)
library(caretEnsemble)

dataset = read.xlsx(file = "TFGdataset_complete.xlsx", sheetName = "Sheet1")
attach(dataset)
nFeatures = dim(dataset)[2] - 3

First, we implement Monte Carlo Cross-Validation (MCCV, introduced in section 2.3.1) to obtain the test
assessment by averaging the effectiveness measures in the sample re-uses. K is set to 10 and the train sample
will contain the 80% of the dataset.
K = 10
splits = createDataPartition(y = Classification,

times = K, p = .80, list = FALSE)

sensitivities1 = numeric(K)
specificities1 = numeric(K)
accuracies1 = numeric(K)
kappas1 = numeric(K)

sensitivities2 = numeric(K)
specificities2 = numeric(K)
accuracies2 = numeric(K)
kappas2 = numeric(K)

Now, the base algorithms will be chosen and grids for those with tuning parameters will be defined too.

The base algorithms are:

• Linear Discriminant Analysis

• Random Forest

• Support Vector Machines with Radial Basis Function Kernel

• k-Nearest Neighbors

• Naïve Bayes

• Regularized Logistic Regression
base_algorithms = c("lda")

rf_grid = data.frame(mtry = c(floor(sqrt(nFeatures)), 2, 4))

svmRadial_grid = expand.grid(sigma = seq(from = 0.022, to = 0.032, by = 0.001),
C = c(1e-1, 1e0, 1e1))

kknn_grid = expand.grid(kmax = 5,
distance = c(1, 2),

kernel = c("epanechnikov", "biweight", "gaussian"))

naive_bayes_grid = expand.grid(laplace = c(0, 1, 2),
usekernel = c(TRUE, FALSE),
adjust = c(1,3,5))

regLogistic_grid = expand.grid(cost = c(0.1, 1, 10),
loss = c("L1", "L2_dual"),
epsilon = 0.001)

The loop is initialized.

• For the first run, some results will be shown just to see how the execution works. These are the
best tuning parameters, a graphic with the cv-performance of each algorithm in the train sample, the
correlation matrix (to check for uncorrelated predictions) and the confusion matrix in the test sample
along with the corresponding statistics.

• Repeated Cross-Validation (5 times with 10 folds to reduce the variability of the performance estimator)
is used for the division of the train sample into the train and validation samples, and so choose the best
tune in each run.

• The stacking meta-model is built twice: the first time using a simple linear model via glm (there are no
tuning parameters for this model) and the second time a more sophisticated algorithm such as random
forest is used to combine the predictions.

for (i in 1:K){

#train-test split
split = splits[,i]
trainset = dataset[split,]
testset = dataset[-split,]

#base models construction
myControl = trainControl(method = "repeatedcv", number= 10, repeats = 5,

index = createMultiFolds(y =trainset$Classification,
k = 10, times = 5),

classProbs = TRUE, savePredictions = 'final')

baseModels = caretList(Classification~.-Country-Region,
data = trainset,
trControl = myControl,
methodList = base_algorithms,
tuneList = list(

kknn = caretModelSpec(method='kknn',
tuneGrid=kknn_grid),

rf = caretModelSpec(method='rf',
tuneGrid=rf_grid),

svmRadial = caretModelSpec(method='svmRadial',
tuneGrid=svmRadial_grid),

naive_bayes = caretModelSpec(method='naive_bayes',
tuneGrid=naive_bayes_grid),

regLogistic = caretModelSpec(method='regLogistic',
tuneGrid=regLogistic_grid)),

continue_on_fail = FALSE)

#Meta-model:
stackControl = trainControl(method = "repeatedcv", number = 10, repeats = 5)

stack_linear = caretStack(baseModels, method = "glm",
metric = "Accuracy", trControl = stackControl)

stack_rf = caretStack(baseModels, method = "rf",
metric = "Accuracy", trControl = stackControl)

#predictions
predictions1 = predict(stack_linear, newdata = testset)
cm1 = confusionMatrix(testset$Classification, predictions1)
sensitivities1[i] = cm1$byClass['Sensitivity']
specificities1[i] = cm1$byClass['Specificity']
accuracies1[i] = cm1$overall['Accuracy']
kappas1[i] = cm1$overall['Kappa']

predictions2 = predict(stack_rf, newdata = testset)
cm2 = confusionMatrix(testset$Classification, predictions2)
sensitivities2[i] = cm2$byClass['Sensitivity']
specificities2[i] = cm2$byClass['Specificity']
accuracies2[i] = cm2$overall['Accuracy']
kappas2[i] = cm2$overall['Kappa']

if(i==1){

print("")
print(paste("RUN: ",as.character(i)))
print("")

print("BEST TUNE PARAMETERS")
for(alg in names(baseModels)){

print(alg)
print(baseModels[[alg]][["bestTune"]])

}

results = resamples(baseModels)
print(dotplot(results,

main = "Statistics for each base model"))

print("")
print("CORRELATION MATRIX")
print(modelCor(results))

print("")
print("META-MODEL with glm and with rf")
print("STACK_LINEAR:")
print(stack_linear)

print("")
print("STACK_RF:")

print(stack_rf)

print("")
print("CONFUSION MATRICES for each meta-model")
print("CM FOR STACK_LINEAR:")
print(cm1)

print("")
print("CM FOR STACK_RF:")
print(cm2)

}

}

Statistics for each base model

Confidence Level: 0.95
Accuracy Kappa

naive_bayes

kknn

lda

svmRadial

rf

regLogistic

0.5 0.6 0.7 0.8 0.9

Accuracy

0.5 0.6 0.7 0.8 0.9

Kappa

[1] ""
[1] "RUN: 1"
[1] ""
[1] "BEST TUNE PARAMETERS"
[1] "kknn"
kmax distance kernel
2 5 1 biweight
[1] "rf"
mtry
2 3
[1] "svmRadial"
sigma C
33 0.032 10
[1] "naive_bayes"
laplace usekernel adjust
4 0 TRUE 1
[1] "regLogistic"
cost loss epsilon
3 1 L1 0.001

[1] "lda"
parameter
1 none
[1] ""
[1] "CORRELATION MATRIX"
kknn rf svmRadial naive_bayes regLogistic lda
kknn 1.00000000 0.2920834 0.4857871 0.04570179 -0.1123670 0.3657305
rf 0.29208341 1.0000000 0.4517682 0.43428289 0.2862681 0.4172494
svmRadial 0.48578705 0.4517682 1.0000000 0.40238610 0.2081158 0.5468543
naive_bayes 0.04570179 0.4342829 0.4023861 1.00000000 0.2469142 0.1985397
regLogistic -0.11236701 0.2862681 0.2081158 0.24691422 1.0000000 0.2335506
lda 0.36573053 0.4172494 0.5468543 0.19853968 0.2335506 1.0000000
[1] ""
[1] "META-MODEL with glm and with rf"
[1] "STACK_LINEAR:"
A glm ensemble of 6 base models: kknn, rf, svmRadial, naive_bayes, regLogistic, lda
##
Ensemble results:
Generalized Linear Model
##
755 samples
6 predictor
2 classes: 'ecological.deficit', 'ecological.reserve'
##
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 679, 679, 680, 680, 679, 680, ...
Resampling results:
##
Accuracy Kappa
0.954214 0.8872188
##
[1] ""
[1] "STACK_RF:"
A rf ensemble of 6 base models: kknn, rf, svmRadial, naive_bayes, regLogistic, lda
##
Ensemble results:
Random Forest
##
755 samples
6 predictor
2 classes: 'ecological.deficit', 'ecological.reserve'
##
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 680, 680, 680, 679, 680, 680, ...
Resampling results across tuning parameters:
##
mtry Accuracy Kappa
2 0.9692947 0.9242139
4 0.9695439 0.9245476
6 0.9721895 0.9312534
##
Accuracy was used to select the optimal model using the largest value.

The final value used for the model was mtry = 6.
[1] ""
[1] "CONFUSION MATRICES for each meta-model"
[1] "CM FOR STACK_LINEAR:"
Confusion Matrix and Statistics
##
Reference
Prediction ecological.deficit ecological.reserve
ecological.deficit 25 1
ecological.reserve 0 10
##
Accuracy : 0.9722
95% CI : (0.8547, 0.9993)
No Information Rate : 0.6944
P-Value [Acc > NIR] : 3.352e-05
##
Kappa : 0.9328
##
Mcnemar's Test P-Value : 1
##
Sensitivity : 1.0000
Specificity : 0.9091
Pos Pred Value : 0.9615
Neg Pred Value : 1.0000
Prevalence : 0.6944
Detection Rate : 0.6944
Detection Prevalence : 0.7222
Balanced Accuracy : 0.9545
##
'Positive' Class : ecological.deficit
##
[1] ""
[1] "CM FOR STACK_RF:"
Confusion Matrix and Statistics
##
Reference
Prediction ecological.deficit ecological.reserve
ecological.deficit 25 1
ecological.reserve 0 10
##
Accuracy : 0.9722
95% CI : (0.8547, 0.9993)
No Information Rate : 0.6944
P-Value [Acc > NIR] : 3.352e-05
##
Kappa : 0.9328
##
Mcnemar's Test P-Value : 1
##
Sensitivity : 1.0000
Specificity : 0.9091
Pos Pred Value : 0.9615
Neg Pred Value : 1.0000
Prevalence : 0.6944

Detection Rate : 0.6944
Detection Prevalence : 0.7222
Balanced Accuracy : 0.9545
##
'Positive' Class : ecological.deficit
##

The averaged effectiveness measures for each stacked model with the same base learners are:
(sensitivity1 = mean(sensitivities1))

[1] 0.9884615
(specificity1 = mean(specificities1))

[1] 0.9427273
(accuracy1 = mean(accuracies1))

[1] 0.975
(kappa1 = mean(kappas1))

[1] 0.9383123
(sensitivity2 = mean(sensitivities2))

[1] 0.9712496
(specificity2 = mean(specificities2))

[1] 0.9186436
(accuracy2 = mean(accuracies2))

[1] 0.9555556
(kappa2 = mean(kappas2))

[1] 0.8858277

Boosting
To find the best model to predict based on our dataset, we are going to implement the three algorithms
review in this work. Now, it is the turn of Boosting, for which we will used Generalized Boosted Models with
decision trees as base models.

As usual, we load the complete dataset and we keep only the neccesary explanatory variables.
set.seed(15)

library(xlsx)
library(caret)
library(gbm)
library(ggplot2)

dataset = read.xlsx(file = "TFGdataset_complete.xlsx", sheetName = "Sheet1")
dataset = dataset[,-c(1,2)]
attach(dataset)

As in Stacking, we implement Monte Carlo Cross-Validation with K = 10 folds and the train sample cointaining
the 80% of the data. The statistics we are measuring are sensitivity, specificity, accuracy and the kappa
statistic.
K = 10
splits = createDataPartition(y = Classification, times = K, p = .80, list = FALSE)
senss = numeric(K)
specs = numeric(K)
accurs = numeric(K)
kaps = numeric(K)

We define the grid for the combination of the tuning parameters. The number of boosting iterations (n.trees)
will be computed later by Cross-Validation as gbm includes it in its functionality. The shrinkage is set not to
be higher than 0.01 so that the algorithm learns slowly and thus avoids overfitting, but also, much lower
shrinkages carry an important computational cost; interaction depth is set to small number as boosting
models look for simple base learners; finally, the number of minimum observations in the terminal nodes of the
trees is chosen so as it is not excessively low, taking into account the total number of training observations.
gbm_grid = expand.grid(shrinkage = c(0.01, 0.005, 0.001),

interaction.depth = c(3, 5, 7, 9),
n.minobsinnode = c(5, 10, 15))

The loop is initialized.

• First, the split of the dataset in train and test sets is done.

• For tuning the parameters, the train set is split into train and validation sets. For each combination of
the tuning parameters (i.e., each row of the grid), a model is built. The best tuning is set as the mode
of the grid rows that return the highest statistic, for each statistic.

• Once the tuning parameters are chosen, the final model is constructed. The number of trees built (i.e.,
the number of boosting iterations) is computed by a 10-fold Cross-Validation, where the 20% of the
train set is used as validation set.

• In a final step, class predictions on the new data are done using the “best” number of trees.

• Also, for the first run, some results will be shown just to see how the execution works. These are the row
of the grid with the best tuning parameters, four plots corresponding to each statistic’s performance on
the validation set, a print of the final model, a plot of the relative influence of each variable using the
best estimated number of trees, a partial dependency plot of the two most influential variables (these
graphs show the marginal effect of such variables on the modeled target variable through a heatmap), a

plot of train, validation and test errors estimated by the CV selection of the number of iterations, and
finally the confussion matrix that evals the predictions over the test sample.

for (k in 1:K){

#################################

DIVISIÓN TRAIN TEST

split = splits[,k]
trainset = dataset[split,]
testset = dataset[-split,]

##############################

TUNING OF PARAMETERS

splitValidation = createDataPartition(y = trainset$Classification,
times = 1, p = .80, list = FALSE)

trainset2 = trainset[splitValidation,]
validationset = trainset[-splitValidation,]

sensitivities = numeric(dim(gbm_grid)[1])
specificities = numeric(dim(gbm_grid)[1])
accuracies = numeric(dim(gbm_grid)[1])
kappas = numeric(dim(gbm_grid)[1])

for (i in 1:dim(gbm_grid)[1]) {

shrink = gbm_grid[i,1]
depth = gbm_grid[i,2]
minobs = gbm_grid[i,3]

model_gbm = gbm(formula = Classification~.,
data = trainset2,
distribution = "multinomial", # loss function
n.trees = 1000, # the number of iterations (to be tuned later)
shrinkage = shrink, # learning rate or step-size reduction
interaction.depth = depth, # the depth of each tree
n.minobsinnode = minobs) # min nº of observations in the terminal nodes

probPreds = predict(model_gbm,
newdata = validationset,
n.trees = model_gbm$n.trees,
type = "response")

factPreds = apply(probPreds, 1, which.max) # for a matrix 1 indicates rows
classPreds = factor(colnames(probPreds)[factPreds])

cm = confusionMatrix(factor(validationset$Classification), classPreds)
sensitivities[i] = cm$byClass['Sensitivity']
specificities[i] = cm$byClass['Specificity']
accuracies[i] = cm$overall['Accuracy']
kappas[i] = cm$overall['Kappa']

}

bestTuning = as.numeric(names(
which.max(table(c(which.max(accuracies),

which.max(kappas),
which.max(specificities),
which.max(sensitivities))))))

if (k == 1) {
print(paste("RUN:", as.character(k)))
print("")

print(gbm_grid[bestTuning,])

print(ggplot(data.frame(x = 1:dim(gbm_grid)[1], y = accuracies),
aes(x = x, y = y)) +

geom_point() +
geom_line() +
scale_y_continuous(limits = c(0, NA)) +
labs(x='Tuning parameters grid row', y = 'Accuracy') +
theme_bw() +
labs(

title = "Validation Accuracy depending on the parameters",
caption = "The validation accuracy obtained with the combination \n

of the tuning parameters for each row in the grid") +
theme(

plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")
))

print(ggplot(data.frame(x = 1:dim(gbm_grid)[1], y = sensitivities),
aes(x = x, y = y)) +

geom_point() +
geom_line() +
scale_y_continuous(limits = c(0, NA)) +
labs(x='Tuning parameters grid row', y = 'Sensitivity') +
theme_bw() +
labs(

title = "Validation Sensitivity depending on the parameters",
caption = "The validation sensitivity obtained with the combination \n

of the tuning parameters for each row in the grid") +
theme(

plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")
))

print(ggplot(data.frame(x = 1:dim(gbm_grid)[1], y = specificities),
aes(x = x, y = y)) +

geom_point() +
geom_line() +
scale_y_continuous(limits = c(0, NA)) +
labs(x='Tuning parameters grid row', y = 'Specificity') +
theme_bw() +
labs(

title = "Validation Specificity depending on the parameters",

caption = "The validation Specificity obtained with the combination \n
of the tuning parameters for each row in the grid") +

theme(
plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")
))

print(ggplot(data.frame(x = 1:dim(gbm_grid)[1], y = kappas),
aes(x = x, y = y)) +

geom_point() +
geom_line() +
scale_y_continuous(limits = c(0, NA)) +
labs(x='Tuning parameters grid row', y = 'Kappa statistic') +
theme_bw() +
labs(

title = "Validation Kappa statistic depending on the parameters",
caption = "The validation Kappa statistic obtained with the combination \n

of the tuning parameters for each row in the grid") +
theme(

plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")
))

}

#####################################

Final model with the selected tuning parameters.
To compute n.trees by CV

fit_gbm = gbm(formula = Classification~.,
data = trainset,
train.fraction = 0.8,
distribution = "multinomial",
n.trees = 1000, # the number of iterations
shrinkage = gbm_grid[bestTuning,1],
interaction.depth = gbm_grid[bestTuning,2],
n.minobsinnode = gbm_grid[bestTuning,3],
cv.folds = 10) # Number of cross-validation folds to perform

number of trees with minimum CV error
best_iter = gbm.perf(fit_gbm, method="cv", plot.it = FALSE)

if (k == 1) {
#model
print(fit_gbm)

Plot relative influence of each variable using the best estimated number of trees
print(summary(fit_gbm, n.trees = best_iter,

main = "Relative influence of each variable \n
using the estimated best number of trees"))

print(plot(fit_gbm, i.var = c('Forest.Land', 'Grazing.Land'),
n.trees = best_iter, type = "response",

main = "partial dependency plot of \n
the two most influential variables",

sub = "response > 0.5 ecological.deficit\n
response < 0.5 ecological.reserve"))

PLOT TRAIN VALIDATION TEST ERRORS
nIter = seq(along = fit_gbm$train.error)
print(ggplot(data.frame(nIter = rep(nIter, 3),

error = c(fit_gbm$train.error,
fit_gbm$valid.error,
fit_gbm$cv.error),

type = c(rep('train', length(nIter)),
rep('validation', length(nIter)),
rep('test', length(nIter)))),

aes(x = nIter, y = error, col = type)) +
geom_line() +
geom_point() +
geom_vline(xintercept = best_iter,

linetype = "dashed", color = "black", size = 1.5) +
annotate("text",

x = (best_iter+100),
y = 0.5,
label = as.character(best_iter)) +

theme_bw() +
labs(

title = "Validation, Train and Test errors",
caption = "The erros are plotted against the number of iterations, \n

showing also the best nIter") +
theme(

plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")
))

}

Predict on the new data using the "best" number of trees
probPreds = predict(fit_gbm, newdata = testset,

n.trees = best_iter, type = "response")
factPreds = apply(probPreds, 1, which.max)
classPreds = factor(colnames(probPreds)[factPreds])

cm = confusionMatrix(factor(testset$Classification), classPreds)
senss[k] = cm$byClass['Sensitivity']
specs[k] = cm$byClass['Specificity']
accurs[k] = cm$overall['Accuracy']
kaps[k] = cm$overall['Kappa']
if (k == 1) {

print(cm)
}

}

[1] "RUN: 1"
[1] ""
shrinkage interaction.depth n.minobsinnode
1 0.01 3 5

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Tuning parameters grid row

A
cc

ur
ac

y

Validation Accuracy depending on the parameters

The validation accuracy obtained with the combination

of the tuning parameters for each row in the grid

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Tuning parameters grid row

S
en

si
tiv

ity

Validation Sensitivity depending on the parameters

The validation sensitivity obtained with the combination

of the tuning parameters for each row in the grid

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Tuning parameters grid row

S
pe

ci
fic

ity

Validation Specificity depending on the parameters

The validation Specificity obtained with the combination

of the tuning parameters for each row in the grid

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Tuning parameters grid row

K
ap

pa
 s

ta
tis

tic

Validation Kappa statistic depending on the parameters

The validation Kappa statistic obtained with the combination

of the tuning parameters for each row in the grid

gbm(formula = Classification ~ ., distribution = "multinomial",
data = trainset, n.trees = 1000, interaction.depth = gbm_grid[bestTuning,
2], n.minobsinnode = gbm_grid[bestTuning, 3], shrinkage = gbm_grid[bestTuning,
1], train.fraction = 0.8, cv.folds = 10)
A gradient boosted model with multinomial loss function.
1000 iterations were performed.
The best cross-validation iteration was 314.
The best test-set iteration was 978.
There were 13 predictors of which 13 had non-zero influence.

U
rb

an
.L

an
d

H
D

I

Relative influence of each variable

using the estimated best number of trees

Relative influence

0 5 10 15 20 25 30

var rel.inf
Forest.Land Forest.Land 34.4627436
Grazing.Land Grazing.Land 22.3972641
Carbon.Footprint Carbon.Footprint 15.7138305
Fishing.Water Fishing.Water 9.0108382
HDI HDI 8.2326315
Cropland.Footprint Cropland.Footprint 2.6924769
Grazing.Footprint Grazing.Footprint 2.3708171
Fish.Footprint Fish.Footprint 1.2346053
GDP.per.Capita GDP.per.Capita 1.0102299
Cropland Cropland 0.8549664
Forest.Footprint Forest.Footprint 0.8024714
Population Population 0.6352191
Urban.Land Urban.Land 0.5819061

partial dependency plot of

the two most influential variables

response > 0.5 ecological.deficit

response < 0.5 ecological.reserve

Forest.Land

G
ra

zi
ng

.L
an

d

2

4

6

8

20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

314

0.0

0.2

0.4

0.6

0 250 500 750 1000
nIter

er
ro

r

type

test

train

validation

Validation, Train and Test errors

The erros are plotted against the number of iterations,

showing also the best nIter

Confusion Matrix and Statistics
##
Reference
Prediction ecological.deficit ecological.reserve
ecological.deficit 26 0
ecological.reserve 1 9
##
Accuracy : 0.9722
95% CI : (0.8547, 0.9993)
No Information Rate : 0.75
P-Value [Acc > NIR] : 0.0004132
##
Kappa : 0.9286
##

Mcnemar's Test P-Value : 1.0000000
##
Sensitivity : 0.9630
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.9000
Prevalence : 0.7500
Detection Rate : 0.7222
Detection Prevalence : 0.7222
Balanced Accuracy : 0.9815
##
'Positive' Class : ecological.deficit
##

The averaged effectiveness measures are:
(sens = mean(senss))

[1] 0.9223591
(spec = mean(specs))

[1] 0.8805916
(accur = mean(accurs))

[1] 0.9111111
(kap = mean(kaps))

[1] 0.7634279

Bagging
By last, Random Forest has been chosen as the algorithm with which to implement Bagging in this project.

As usual, we import the complete dataset from the .xlsx file.
set.seed(15)

library(xlsx)
library(randomForest)
library(ggplot2)
library(caret)

dataset = read.xlsx(file = "TFGdataset_complete.xlsx", sheetName = "Sheet1")
attach(dataset)

As in the previous analysis, we implement Monte Carlo Cross-Validation with K = 10 folds and the train
sample cointaining the 80% of the data. The statistics we are measuring are, again, sensitivity, specificity,
accuracy and the kappa statistic.
K = 10
splits = createDataPartition(y = Classification, times = K, p = .80, list = FALSE)
senss = numeric(K)
specs = numeric(K)
accurs = numeric(K)
kaps = numeric(K)

We define the grid for the combination of the tuning parameters. The number of trees in the forest (ntrees),
which needs to be sufficiently large to stabilize the error rate; the number of predictor variables chosen to
split at each node (mtry), usually has the largest impact on predictive accuracy and so is set to every possible
value; the minimum number of observations in terminal nodes (nodesize), is stablished as for boosted trees.
rf_grid = expand.grid(ntree = seq(20, 120, by = 10),

mtry = 1:(dim(dataset)[2]-3-1),
nodesize = c(5, 10, 15))

The loop is initialized.

• First, the split of the dataset in train and test sets is done.

• For tuning the parameters, because of the nature of the bagging process, it is possible to directly
estimate the validation error without the need of an independent validation set using the OOB-error,
since it is estimated on the excluded observations when building the model. For each combination of
the tuning parameters (i.e., each row of the grid), a model is built. The best tuning is set as the grid
row that returns the lowest error.

• Once the tuning parameters are chosen, the final model is constructed and class predictions on the new
data are given.

• Also, for the first run, some results will be shown just to see how the execution works. These are the
row of the grid with the best tuning parameters, a plot corresponding to the OOB error for each row of
the grid, a print of the final model, a print and a plot of importance measure referring to the prediction
error on the out-of-bag portion and the node impurities, and finally the confussion matrix that evals
the predictions over the test sample.

for (k in 1:K){

#################################

DIVISIÓN TRAIN- TEST

split = splits[,k]
trainset = dataset[split,]
testset = dataset[-split,]

##############################

TUNING OF PARAMETERS

oobErrors = numeric(dim(rf_grid)[1])

for (i in 1:dim(rf_grid)[1]) {

nt = rf_grid[i,1]
mt = rf_grid[i,2]
ns = rf_grid[i,3]

model_rf = randomForest(formula = Classification~.-Country-Region,
data = trainset,
replace = TRUE,
ntree = nt,
mtry = mt,
nodesize = ns,
importance = FALSE)

cm = model_rf$confusion #based on OOB data
oobErrors[i] = (cm[2]+cm[3])/(cm[1]+cm[2]+cm[3]+cm[4])

}

bestTuning = which.min(oobErrors)
if (k==1){

print(paste("RUN:", k))
print("")

print(rf_grid[bestTuning,])

print(ggplot(data.frame(x = 1:dim(rf_grid)[1], y = oobErrors),
aes(x = x, y = y)) +

geom_point() +
geom_line() +
scale_y_continuous(limits = c(0, NA)) +
labs(x='Tuning parameters grid row', y = 'OOB Error') +
theme_bw() +
labs(

title = "Classification error rate on out-of-bag data",
caption = "the classification error rate obtained with the combination \n

of the tunning parameters for each row in the grid") +
theme(

plot.title = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0, face = "italic")
))

}

######################################

MODEL CONSTRUCTION WITH THE TUNING PARAMETERS

fit_rf = randomForest(formula = Classification~.-Country-Region,
data = trainset,
replace = TRUE,
ntree = rf_grid[bestTuning,1],
mtry = rf_grid[bestTuning,2],
nodesize = rf_grid[bestTuning,3],
importance = TRUE)

if(k == 1){
print(fit_rf)

importance(fit_rf)
varImpPlot(fit_rf, main = "importance measures")

}

predicciones = predict(fit_rf, newdata = testset, type = "response")
cm = confusionMatrix(testset$Classification, predicciones)
senss[k] = cm$byClass['Sensitivity']
specs[k] = cm$byClass['Specificity']
accurs[k] = cm$overall['Accuracy']
kaps[k] = cm$overall['Kappa']

if(k==1){
print(cm)

}

}

[1] "RUN: 1"
[1] ""
ntree mtry nodesize
39 70 4 5

0.00

0.05

0.10

0.15

0 100 200 300 400
Tuning parameters grid row

O
O

B
 E

rr
or

Classification error rate on out−of−bag data

the classification error rate obtained with the combination

of the tunning parameters for each row in the grid

##
Call:
randomForest(formula = Classification ~ . - Country - Region, data = trainset, replace = TRUE, ntree = rf_grid[bestTuning, 1], mtry = rf_grid[bestTuning, 2], nodesize = rf_grid[bestTuning, 3], importance = TRUE)
Type of random forest: classification
Number of trees: 70
No. of variables tried at each split: 4
##
OOB estimate of error rate: 10.6%
Confusion matrix:
ecological.deficit ecological.reserve class.error
ecological.deficit 101 7 0.06481481
ecological.reserve 9 34 0.20930233

Population
Fish.Footprint
Urban.Land
Forest.Footprint
Cropland
Grazing.Footprint
GDP.per.Capita
Cropland.Footprint
HDI
Grazing.Land
Fishing.Water
Carbon.Footprint
Forest.Land

0 2 4 6 8 10
MeanDecreaseAccuracy

Urban.Land
Fish.Footprint
Population
Forest.Footprint
Cropland
Grazing.Footprint
GDP.per.Capita
Cropland.Footprint
HDI
Carbon.Footprint
Fishing.Water
Grazing.Land
Forest.Land

0 5 10 15
MeanDecreaseGini

importance measures

Confusion Matrix and Statistics

##
Reference
Prediction ecological.deficit ecological.reserve
ecological.deficit 26 0
ecological.reserve 1 9
##
Accuracy : 0.9722
95% CI : (0.8547, 0.9993)
No Information Rate : 0.75
P-Value [Acc > NIR] : 0.0004132
##
Kappa : 0.9286
##
Mcnemar's Test P-Value : 1.0000000
##
Sensitivity : 0.9630
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.9000
Prevalence : 0.7500
Detection Rate : 0.7222
Detection Prevalence : 0.7222
Balanced Accuracy : 0.9815
##
'Positive' Class : ecological.deficit
##

The averaged effectiveness measures are:
(sens = mean(senss))

[1] 0.9215247
(spec = mean(specs))

[1] 0.8607937
(accur = mean(accurs))

[1] 0.9055556
(kap = mean(kaps))

[1] 0.7509424

CHAPTER 4. APPLICATION: PREDICTION MODEL ABOUT ECOLOGY

4.4 RESULTS

This subsection analyses the results of the implementation of the three main algorithms
which have been reviewed in this project. The following table summarizes the effectiveness
measures on the test sample obtained with the respective algorithms.

Algorithm Accuracy Kappa statistic Sensitivity Specificity
Stackinglinear 0.975 0.938 0.988 0.943
StackingRF 0.956 0.886 0.971 0.919
Boosting with GBM 0.908 0.757 0.922 0.869
Bagging with Random Forest 0.906 0.751 0.923 0.861

When applying the Stacking algorithms, a wide variety of base algorithms have been
chosen: Linear Discriminant Analysis, Random Forest, Support Vector Machines with Radial
Basis Function Kernel, k-Nearest Neighbors, Naïve Bayes and Regularized Logistic Regression.
Through tuning their parameters to achieve the best performance, we obtain six uncorrelated
models, which is an important factor when creating the stacked ensembles. A significant
generalization accuracy is achieved with a simple linear combination of the outputs, which
shows that the algorithm has been fully exploited, accomplishing that each base learner
contributes somehow to the final meta learner and avoiding redundancies. Even so, more
sophisticated algorithms can used to combine the predictions too. Random Forest algorithm
has been used to check whether the results could be improved. Although the statistics
obtained can be considered practically equivalent, the slight worsening together with the
higher computational and interpretive costs that this latter model entails, lead to that its use
does not make up for.

A Generalized Boosted Model, which implements the gradient boosting method in decision
trees, is computed in second place. In this case, we do not want to adjust very large trees to
gain precision, we focus on generating small trees (with few terminal nodes) and sequentially
readjust the predictions identifying the errors so that the algorithm learns to improve them at
these points. In this sense, the proposed tuning parameters to apply the boosting algorithm to
a data set with decision trees must be chosen taking into account that we want the model to
be simple: the learning rate is not recommended to be greater than 0.01 for the algorithm to
learn slowly and thus avoid overfitting; regarding the depth of the trees, very small values are
selected (even one single division is often enough). As on previous occasions, the trained model
is stored in an object, of class gbm, which overloads common functions to extract information.
It can be seen in the provided graphics that the Forest.Land and Grazing.Land variables
are those that most condition the class of the objective variable Classification. The partial
dependency plot returns a heatmap which shows that countries with the least amount of
hectares in forests and grazing lands have a greater probability of running an ecological deficit.

70

4.4. RESULTS

Finally, once the number of trees built is computed by cross validation, we manage to get nearly
as good generalization measures as with Stacking with a much lower computational cost.

As Bagging works well on unstable methods such as trees, which, being notoriously noisy
procedures, benefit greatly from averaging, Random Forests is the last algorithm implemented
to try to model the ecological footprint. Regarding the tuning parameters, the only one to
which the algorithm is somewhat sensitive appears to be the number of predictor variables
chosen to split at each node, therefore all possible values are provided. When we take a look
at the given importance measures - the first based on the average decrease in the prediction
accuracy over the out-of-bag portion when that variable is excluded, and the second describing
the total decrease of a variable (averaged by all the trees) in the node impurity measured by
the Gini index -, we find that the variables with the highest measures are Forest.land and
Grazing.land. In general, the higher these measurements, the more important the variable
will be, hence, it matches with the information provided above by the Boosting model: the
variable Forest.Land is by far the most important. This information is consistent with the
logical, since it is the main productive land area required to get rid of the tonnes of carbon
dioxide emissions. The results are also impressive with this algorithm.

As for which technique optimally addresses the problem, the choice is not unequivocal
since it is a multiobjective problem: depending on the criterion to be taken into account -
precision of the model, complexity, computation time - some models perform better than
others. All the tested Ensemble Methods provide reliable predictions of the ecological footprint
of the countries, nevertheless, none dominates all the criteria. Stacking provides the best
performance, yet it is the most complex. On the other hand, the lower computational cost
of Boosting because of its sequentially model generation, along with the easy parallelization
of the base model construction of Bagging, makes them very appealing, although the loss in
precision compared to the previous one is considerable.

71

CHAPTER 4. APPLICATION: PREDICTION MODEL ABOUT ECOLOGY

72

BIBLIOGRAPHY

73

[1] A. Kobler and M. Adamic, “Identifying brown bear habitat by a combined gis and
machine learning method,” Ecological Modelling, vol. 135, no. 2-3, 2000. (pages 1 and 8).

[2] K. Murphy, J. Reynolds, J. Jenkins, E. Whitten, N. Fresco, M. Lindgren, and F. Huettmann,
“Predicting future potential climate-biomes for the yukon, northwest territories, and
alaska,” 2012. (pages 1 and 6).

[3] S. M. Hardy, M. Lindgren, H. Konakanchi, and F. Huettmann, “Predicting the distribution
and ecological niche of unexploited snow crab (chionoecetes opilio) populations in
alaskan waters: a first open-access ensemble model,” 2011. (pages 2 and 20).

[4] T. Cai, F. Huettmann, and Y. Guo, “Using stochastic gradient boosting to infer stopover
habitat selection and distribution of hooded cranes grus monacha during spring migration
in lindian, northeast china,” PLoS One, vol. 9, no. 2, 2014. (pages 2 and 28).

[5] A. M. Prasad, L. R. Iverson, and A. Liaw, “Newer classification and regression tree
techniques: bagging and random forests for ecological prediction,” Ecosystems, vol. 9,
no. 2, 2006. (pages 2 and 32).

[6] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2019. (pages 2, 5, and 35).

[7] Global Footprint Network, “https://www.footprintnetwork.org.” (pages 2, 38,
and 40).

[8] A. K. Laha, Advances in Analytics and Applications. Springer, 2019. (page 3).

[9] G. R. Humphries, D. R. Magness, and F. Huettmann, Machine learning for ecology and
sustainable natural resource management. Springer, 2018. (pages 3 and 39).

[10] G. Rebala, A. Ravi, and S. Churiwala, An Introduction to Machine Learning. Springer, 2019.
(page 4).

[11] E. Alpaydin, Introduction to machine learning. MIT press, 2009. (pages 4, 8, 27, and 30).

[12] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011. (page
4).

BIBLIOGRAPHY

[13] S. García, S. Ramírez-Gallego, J. Luengo, J. M. Benítez, and F. Herrera, “Big data
preprocessing: methods and prospects,” Big Data Analytics, vol. 1, no. 1, 2016. (page
5).

[14] P. C. Team, “Python: A dynamic, open source programming language,” Python Software
Foundation, vol. 78, 2015. (page 5).

[15] G. Van Rossum and F. L. Drake, The python language reference manual. Network Theory
Ltd., 2011. (page 5).

[16] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, 2017. (page 5).

[17] R. F. de Mello and M. A. Ponti, Machine Learning: A Practical Approach on the Statistical
Learning Theory. Springer, 2018. (page 5).

[18] A. Thessen, “Adoption of machine learning techniques in ecology and earth science,” One
Ecosystem, vol. 1, 2016. (page 6).

[19] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3, 1967. (page
6).

[20] C. A. Charu and K. R. Chandan, “Data clustering: algorithms and applications,” 2013.
(page 7).

[21] B. Liu, Web data mining: exploring hyperlinks, contents, and usage data. Springer Science &
Business Media, 2007. (page 7).

[22] O. Chapelle, B. Schölkopf, and A. Zien, “Semi-supervised learning. adaptive computation
and machine learning,” MIT Press, Cambridge, MA, USA. Cited in page (s), vol. 21, no. 1,
2010. (page 7).

[23] G. De’ath and K. E. Fabricius, “Classification and regression trees: a powerful yet simple
technique for ecological data analysis,” Ecology, vol. 81, no. 11, 2000. (page 8).

[24] B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC press, 1994. (pages 9
and 18).

[25] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine
learning, vol. 29, no. 2-3, 1997. (page 9).

[26] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis,
vol. 821. John Wiley & Sons, 2012. (page 10).

74

BIBLIOGRAPHY

[27] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support vector
regression machines,” in Advances in neural information processing systems, 1997. (page
10).

[28] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and
computing, vol. 14, no. 3, 2004. (page 10).

[29] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of
the royal statistical society: series B (statistical methodology), vol. 67, no. 2, 2005. (page 11).

[30] M. Hardt, E. Price, N. Srebro, et al., “Equality of opportunity in supervised learning,” in
Advances in neural information processing systems, 2016. (page 11).

[31] M. Cacciola, G. Megali, and F. C. Morabito, “An optimized support vector machine based
approach for non-destructive bumps characterization in metallic plates,” in Intelligent
Computer Techniques in Applied Electromagnetics, Springer, 2008. (page 12).

[32] A. Mathur and G. M. Foody, “Multiclass and binary svm classification: Implications for
training and classification users,” IEEE Geoscience and remote sensing letters, vol. 5, no. 2,
2008. (page 13).

[33] J. Carletta, “Assessing agreement on classification tasks: the kappa statistic,”
Computational linguistics, vol. 22, no. 2, 1996. (page 14).

[34] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” in
Proceedings of the 23rd international conference on Machine learning, ACM, 2006. (page 14).

[35] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol. 1. Springer
series in statistics New York, 2001. (pages 15, 16, 17, 19, 20, and 32).

[36] Q.-S. Xu and Y.-Z. Liang, “Monte Carlo cross validation,” Chemometrics and Intelligent
Laboratory Systems, vol. 56, no. 1, 2001. (page 17).

[37] L. Breiman, “Out-of-bag estimation,” 1996. (page 18).

[38] C. Zhang and Y. Ma, Ensemble machine learning: methods and applications. Springer, 2012.
(pages 19, 21, 22, 28, 30, and 34).

[39] B. V. Dasarathy and B. V. Sheela, “A composite classifier system design: concepts and
methodology,” Proceedings of the IEEE, vol. 67, no. 5, 1979. (page 20).

[40] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, no. 10, 1990. (pages 20 and 21).

75

BIBLIOGRAPHY

[41] R. E. Schapire, “The strength of weak learnability,” Machine learning, vol. 5, no. 2,
pp. 197–227, 1990. (page 20).

[42] T. G. Dietterich, “Ensemble methods in machine learning,” in International workshop on
multiple classifier systems, Springer, 2000. (page 22).

[43] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, 1992. (page 25).

[44] S. Schmitt, R. Pouteau, D. Justeau, F. de Boissieu, and P. Birnbaum, “Ssdm: an r
package to predict distribution of species richness and endemism based on stacked species
distribution models,” Methods in Ecology and Evolution, vol. 8, no. 12, pp. 1795–1803, 2017.
(page 27).

[45] S. Schmitt, R. Pouteau, D. Justeau, F. de Boissieu, and P. Birnbaum, “ssdm: An r package
to predict distribution of species richness and composition based on stacked species
distribution models,” Methods in Ecology and Evolution, vol. 8, no. 12, 2017. (page 27).

[46] A. Guisan and W. Thuiller, “Predicting species distribution: offering more than simple
habitat models,” Ecology letters, vol. 8, no. 9, 2005. (page 27).

[47] L. Breiman, “Bagging predictors,” tech. rep., Technical Report, 1994. (pages 30 and 31).

[48] G. Seni and J. F. Elder, “Ensemble methods in data mining: improving accuracy through
combining predictions,” Synthesis lectures on data mining and knowledge discovery, vol. 2,
no. 1, 2010. (page 31).

[49] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, 2001. (pages 32 and 34).

[50] M. Kuhn, caret: Classification and Regression Training, 2020. R package version 6.0-85.
(pages 35 and 36).

[51] Z. A. Deane-Mayer and J. E. Knowles, caretEnsemble: Ensembles of Caret Models, 2019. R
package version 2.0.1. (pages 35 and 36).

[52] B. Greenwell, B. Boehmke, J. Cunningham, and G. Developers, gbm: Generalized Boosted
Regression Models, 2019. R package version 2.1.5. (page 37).

[53] B. Boehmke and B. M. Greenwell, Hands-On Machine Learning with R. CRC Press, 2019.
(page 37).

[54] T. Therneau and B. Atkinson, rpart: Recursive Partitioning and Regression Trees, 2019. R
package version 4.1-15. (page 37).

[55] A. Peters and T. Hothorn, ipred: Improved Predictors, 2019. R package version 0.9-9. (page
37).

76

BIBLIOGRAPHY

[56] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R News, vol. 2,
no. 3, pp. 18–22, 2002. (page 38).

[57] J. Hickel, “The sustainable development index: Measuring the ecological efficiency of
human development in the anthropocene,” Ecological Economics, vol. 167, 2020. (page
39).

77

	Introduction
	Machine Learning
	Unsupervised Learning
	Semisupervised Learning
	Supervised Learning
	Model assessment and effectiveness measures

	Ensemble Methods
	Stacking
	Boosting
	AdaBoost

	Bagging
	Random Forests

	Application: prediction model about ecology
	Building Ensemble Algorithms with R
	Approaching the problem
	Software implementation
	Results

	Bibliography

