
Context-aware energy-efficient applications for cyber-physical 
systems

Jose-Miguel Horcas ∗, Mónica Pinto, Lidia Fuentes

Universidad de Málaga, AndalucÃa Tech, Spain

Keywords:

Energy efficient cyber-physical systems

software sustainability

self-adaptive greenability

Dynamic Software Product Lines

a b s t r a c t 

Software systems have a strong impact on the energy consumption of the hardware they use. This is es- 

pecially important for cyber-physical systems where power consumption strongly influences the battery

life. For this reason, software developers should be more aware of the energy consumed by their sys- 

tems. Moreover, software systems should be developed to adapt their behavior to minimize the energy

consumed during their execution. This can be done by monitoring the usage context of the system and

having runtime support to react to those changes that impact the energy footprint negatively. Although

both the hardware and the software parts of cyber-physical systems can be adapted to reduce its energy

consumption, this paper focuses on software adaptation. Concretely, the paper illustrates how to address

the problem of developing context-aware energy-efficient applications using a Green Eco-Assistant that

makes use of advanced software engineering methods, such as Dynamic Software Product Lines and Sep- 

aration of Concerns. The main steps of our approach are illustrated by applying them to a cyber-physical

system case study.
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. Introduction

The percentage of global emissions attributable to Information

ystems is expected to further increase in the coming years, due

o the proliferation of Internet-connected devices omnipresent in

ur daily lives [1] . Software never consumes energy in itself, rather

ts design, implementation and usage context strongly affect the

nergy consumed by the hardware [2,3] . So developers should be

ore aware of the energy consumed by these systems, and try to

uild energy-efficient applications that self-adapt their behavior to

inimize the power consumed during their execution, i.e., develop

elf-greening applications. 

Regrettably, there is a narrow view of developers and users

bout their responsibility for the energy consumed during appli-

ation execution. They rarely address energy efficiency as some

ecent studies show [4,5] . Moreover, existing experimental re-

ults about how to optimize energy consumption at design

ime [3,6,7] were not conceived as reusable solutions of runtime

nergy optimizations. Therefore, although software energy effi-

iency is becoming increasingly important, development processes

f self-greening systems supported by tools are still in their in-

ancy. 
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The energy consumption of an application depends on several

actors, such as the hardware resources, operating system, input

arameters, and workload [6] . Several works identify which parts

f an application’s code influence the energy consumption, for ex-

mple encryption and compression algorithms, communication, or

torage [8,9] . Indeed, once the application is deployed, these ap-

roaches evidence the strong influence that the usage context has

n the energy consumed by certain functionalities [10] . It depends,

or example, on the amount of data the system needs to store,

ransfer or query, or on how the user interacts with the system.

his means that self-greening applications should not only be pre-

ared at design time to be energy-efficient; they also need to be

ontext sensitive in order to adapt their behavior to minimize the

nergy consumed during their execution [4,5] . 

In our approach, the usage context is defined in the energy

cope as all aspects that vary under different usage conditions of a

unctionality and affect product performance for the energy-efficiency

ttribute . For example, the amount of data to be exchanged (e.g.,

he size of the objects to be sent from one device to another), the

ommunication frequency between the devices, or the communica-

ion protocol (e.g., WiFi, Bluetooth), are all aspects that affect the

nergy consumption of a specific functionality. Identifying the us-

ge context’s variables for each functionality and analyzing how

hey affect the energy consumption is a complex task, since the

sage context has a high degree of variability. For instance, each

ontextual variable (e.g., size of the object to be sent) can take
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1 http://www.aosd.net/
different values (e.g., between 1 and 10 0 0 MBytes) based on the

usage of the application. 

This paper shows how advanced software engineering methods,

such as Dynamic Software Product Lines (DSPLs) [11] and Sepa-

ration of Concerns (SoC) [12] , can help to develop self-greening

energy-efficient applications for cyber-physical systems. Concretely,

we present a Green Eco-Assistant for the development of context-

aware energy-efficient applications. We propose to collect energy-

related information at design time and use it at runtime to adapt

the application behavior to the real energy consumption. Our ap-

proach is illustrated through a running example in the domain of

Intelligent Transportation Cyber-Physical Systems (CPS). Although

in this example we focus on the monitoring, storing, communi-

cation and compression concerns, the Green Eco-Assistant could

include any other large consumer concern where several design

and implementation solutions can be identified. We demonstrate

that there are scenarios in which CPS applications can reduce their

energy-consumption up to 70%, depending on the current usage

context. 

In summary, this paper renders the following contributions: 

• A software engineering approach that assists developers during

the design and development of context-aware energy-efficient

applications.

• A process for modeling the usage context and the configurable

implementations of recurrent functionalities that can affect the

energy efficiency of the applications. This includes a generic

schema or template to model the variability of the usage con-

text and the configurable parameters.

• A non-intrusive design and implementation solution that en-

dows applications with self-greening capacities at a low energy

cost.

After this introduction, Section 2 discusses the background and

Section 3 the related work. Section 4 presents the CPS case study

used to illustrate our approach. Then, Section 5 presents the main

challenges and an overview of how our approach addresses these

challenges. Sections 6, 7 , and 8 give the details of applying our ap-

proach to the CPS case study. Section 9 evaluates our approach and

discusses the threats to validity. Finally, Section 10 concludes the

paper. 

2. Background

This section briefly presents background information about Dy-

namic Software Product Lines and Separation of Concerns. 

2.1. Dynamic Software Product Lines 

A Software Product Line (SPL) is “a set of software-intensive sys-

tems that share a common, managed set of features satisfying the

specific needs of a particular market segment or mission and that

are developed from a common set of core assets in a prescribed

way” [13] . A feature is a characteristic or end-user-visible behavior

of a software system. Features are used in SPL engineering to spec-

ify and documenting commonalities and differences of the prod-

ucts, and to guide structure, reuse, and variation across all phases

of the software life cycle. A Dynamic Software Product Line (DSPL)

brings this engineering process to runtime, where a single system

is able to adapt its behavior at runtime [11] . 

Variability modeling is the main activity of both SPLs and DSPLs,

where the common and variable features of the system are speci-

fied in a variability model or feature model . Then, the SPL engineer-

ing process generates products by selecting specific characteristics

specified in the variability model. In a DSPL, the variability model

describes the potential range of variations that can be produced at

runtime for a single system — i.e., the dynamic variation points.
herefore, the software architecture supports all possible adapta-

ions defined by the set of dynamic variation points [11] . 

.2. Separation of Concerns and Aspect-Orientation 

Aspect-Oriented Software Development (AOSD) 1 ~[14] promotes

he principle of separation of concerns throughout all the phases

f the software life cycle, by separating crosscutting concerns . In S.

pel el al, Crosscutting is a structural relationship between the repre-

entation of two concerns . Since crosscutting concerns are normally

ard to find, understand and work with, separating and specifying

hem as aspects enhances the reconfiguration management of the

ystem. 

Several techniques (e.g., design patterns, mixing classes) have

een developed for dealing with the problem of modularization of

rosscutting concerns. One of the most advanced and sophisticated

echnique is Aspect-Oriented Programming (AOP) [15] . In AOP, im-

lementation of crosscutting concerns are encapsulated in a new

ntity named aspect , and the code of the base application contains

nly the main functionality of the system excluding any reference

o the crosscutting concerns. Modeling of crosscutting concerns as

 separate entity, such as an aspect, in which its implementation

ppears encapsulated only in a part of the program, smooths cou-

ling between modules and increases cohesion of each of them.

oreover, as a consequence of low coupling and a high cohesion,

he maintainability of the global system improves due to the fact

hat changes in a module affect only that module; and thus, this

acilitates the reconfiguration of the system. Also the reusability

mproves due to both base code and aspects that can be reused

asier in different systems. There are a lot of crosscutting concerns

hat are usually useful to treat separately and so can be modeled

s examples of aspects: logging, authentication, trace, coordination,

ynchronization, security, persistence, fail-over, error detection and

orrection, memory management, internationalization, localization,

onitoring, data validation, transaction processing, caching, etc. 

. Related Work

The software developer community is starting to pay more and

ore attention to the energy efficiency attribute. Here we sum-

arize some representative works ( Table 1 ). For each considered

pproach, we indicate the type of study, the main output, and the

nowledge that is derived from each work. 

Empirical studies. Recent empirical studies [4,5] made at dif-

erent stages of the software life cycle show that software devel-

pers do not have enough knowledge about how to reduce the en-

rgy consumption of their software solutions. Thus, the majority

f developers are not aware about how much energy their appli-

ations will consume and so, they rarely address energy efficiency.

ven practitioners that have experience with green software engi-

eering have significant misconceptions about how to reduce en-

rgy consumption [5] . These studies also evidence the lack of tool

upport of green computing, not only at the code level, but also at

igher abstraction levels — i.e., requirements and software archi-

ecture levels [16] . 

Experimental works at code level. There are plenty of exper-

mental approaches that try to identify what parts of an applica-

ion influence more in the total energy footprint of an application

i.e., to identify the energy hotspots [7,17,18] . These works pro-

ose to minimize energy consumption by focusing on code level

ptimizations. A common goal to all of them is the definition of

nergy profiles for different energy consuming concerns. They usu-

lly focus on one particular energy consuming concern and report

he energy consumption of different implementations [10] . 

http://www.aosd.net/


Table 1

Comparison of energy-aware approaches.

Type Appr. Output Knowledge

Empirical Studies [4] Qualitative study exploring the knowledge of

practitioners interested on energy consumption from

different perspectives (requirements, design and

construction).

Green software practitioners care and think about

energy; however, they are not as successful as

expected because they lack necessary information and

tool support.

[5] Qualitative study exploring the knowledge of

practitioners about energy consumption.

Programmers rarely address energy. There are

important misconceptions about software energy

consumption.

[16] Qualitative study exploring requirements engineering

practitioners’ behavior towards sustainability.

Lack of methodological support; lack of management

support; requirements trade-off and risks.

Experimental works [7] Empirical evaluation of 21 design patterns. Compiler

transformations to detect and transform patterns

during compilation for better energy efficiency with no

impact on coding practices.

The energy consumption of design patterns highly

depend on the running environment; several studies

identified both patterns and anti-patterns regarding

energy consumption.

[10] Energy profiles of operations on Java Collections. It claims that a per-method analysis of energy

consumption must be made.

[17] Quantitative information about the energy

consumption of 405 Android apps.

More than 60% of energy consumed in idle states; the

network is the most energy consuming component;

developers should focus on code optimization.

[18] Define the SEED framework for the automatic

optimization of energy usage of applications by making

code level changes.

Support is needed to integrate the insights gained by

existing experimental studies to help identifying the

more energy-efficient alternatives.

Reasoning about energy efficiency [2] Architecture Description Language and tool set with

support for the specification, calculation and analysis

of energy consumption.

At the architectural level the energy consumption can

be estimated based on resource consumption (CPU,

HDD, etc.) and usage models.

[19] Plug-in integrated with the AADL tool to support the

specification and analysis of energy consumption.

It focuses in the energy overhead of inter-process

communication, an important service of embedded

systems.

[20] Identify energy efficiency as a quality attribute and

define green architectural tactics for cloud applications.

Identify relationships between different architectural

tactics.

Energy efficiency addressed from a software

architecture perspective. Software architects need

reusable tactics for considering energy efficiency in

their application designs.

Energy-based reconfiguration [9] Maintain the energy consumption of the system within

reasonable levels.

Monitor the consumption of previously identified

energy hotspots at runtime.

[21] Build real-time profiles of energy consumption. Monitor and react to changes to update the behavior of

applications to their “energy usage profile”.

[22] A Dynamically Reconfigurable Energy Aware Modular

Software (DREAMS) architecture.

Dynamic reconfiguration of energy aware software in

sensor networks.

Energy-aware CPSs [23] A green energy powered CPS architecture for fog

computing.

Formulate a energy-efficient CPS service composition

problem and propose a heuristic algorithm.

[24] Context-aware sensing and collection data scheme

with energy efficient in CPS.

Increase lifetime and data collection accuracy, and

decreasing data transmission in CPS.
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Reasoning about energy efficiency at design level. There are

ther works that demonstrate that changes at the design level tend

o have a larger impact in energy consumption [3,6] . These works

onsider energy efficiency as a new quality attribute [6] . What is

mportant at this level is to be able to compare the energy con-

umed by different design alternatives, and also to be able to per-

orm a trade-off between energy efficiency and other quality at-

ributes such as performance. There are some relevant approaches

hat focus on the design of catalogs of energy-aware design pat-

erns [7] , as well as new architecture description languages that

ncorporate an energy profile and analysis support [2,6] . The ex-

erimental part of these works consists of checking at the code

evel the effects of applying specific design or architectural pat-

erns [6] . Also, some works [2,19] provide support to specify the

elationships between components modeling different energy con-

erns. These relationships can then be used during the analysis

hase to see how a energy concern (e.g., compression) can influ-

nce in other energy concerns (e.g., communication or data stor-

ge). But, the identification and specification of dependencies be-

ween energy concerns has to be done manually by the software

ngineer. 

Energy-based reconfiguration at runtime level. Here we focus

n proposals that are able to monitor changes on the user behav-

oral patterns and react to the effects of those changes on the con-

umption of energy. They should also be able to update the behav-

or of applications to their “energy usage profile”. The final goal is

o maintain the energy consumption of the software system within
easonable levels. Some proposals monitor the energy consump-

ion of previously identified energy hotspots at runtime [9] , and

thers build real-time profiles of energy consumption [21] . More-

ver, there are examples of the dynamic reconfiguration of energy

ware software in different domains. For instance, DREAMS [22] is

 Dynamically Reconfigurable Energy Aware Modular Software ar-

hitecture for sensor networks. However, none of these work de-

nes a generic and reusable approach as we make. 

Energy-aware cyber-physical systems. Energy efficiency is a

ey factor in CPS since it determines the autonomy of the device.

owever, few attention is paid to energy consumption of CPS at

he software level [23,24] . For instance, in [23] the authors pro-

ose a green energy powered CPS architecture based on a service

omposition in the context of fog computing. But the usage con-

ext and the corresponding reconfiguration of the deployed func-

ionality are omitted. In [24] , the context is considered to increase

he lifetime by reducing the amount of data transmission in CPS

n the cloud. However, they solely focus on communication, while

ur approach is more generic suitable for any energy consuming

oncern. 

Summarizing, there is a lack of methodological and tool support

hat makes the reuse of the energy information collected by exist-

ng experimental works highly difficult. Moreover, the large vari-

bility of design and implementation solutions requires the use of

dvanced software engineering methods in order to reason about

nergy efficiency. Finally, despite the importance of controlling the

nergy consumption of battery-powered devices in CPSs, there are
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not too many works covering this topic from a software perspec-

tive in the context of CPSs. 

4. Intelligent Transportation CPS case study

Our CPS is a road unit consisting of a Raspberry Pi (RPi) and

multiple sensors deployed in a highway that monitor contextual

information about the traffic, road status, weather, etc. The RPi col-

lects all that information, generates a file and sends it to a cloud

server to be processed. The functionality of the road unit can be

highly configured and the question is whether these changes af-

fect the energy consumption of the CPS. 

For instance, we have identified several functionalities as en-

ergy consuming concerns that will influence more or less to the

energy consumption, according to how some of their parameters

vary. Additionally, developers can use different software solutions

to implement these functionalities (e.g. different compression al-

gorithms) and the energy consumption will vary depending on the

selected one. As an example, the road unit can be configured to

monitor a variable set of parameters every second (from 8 up to

128 parameters), so 86,400 samples per parameter are collected

by the end of the day. The size of the generated file depends on

the number of parameters to be monitored, e.g, monitoring 8 pa-

rameters generates a 10 MB file, while monitoring 128 parameters

generates a 160 MB file. The communication with the server can

also be configured with different frequencies. For instance, the file

can be sent every day, or can be archived to be sent once a week.

Due to the space limitation (the maximum storage capacity of the

RPi is 512 MB), the size of the managed files can be reduced using

several compression algorithms that are available in the RPi (e.g.,

LZ77, Burrow-Wheeler, LZMA2,...). 

Let us suppose that, initially, the road unit has been deployed

with a basic configuration that monitors 16 parameters and gen-

erates a file of 20 MB by the end of the day. This file is archived

daily and it is sent to the server once a week that will generate

some statistics and a report about traffic density at different times

of the day for a week. Before sending the file, it is compressed

by using the LZ77 compression algorithm. Several questions arise

here, as for instance, what is the energy consumption of this system

configuration?, is there any other system configuration with similar

functionality but lower energy consumption? 

Moreover, when a context change is detected (e.g., a traffic ac-

cident, rainy days, etc.) the functionality of the road unit should be

dynamically reconfigured to the new context. For example, during

high affluence of traffic (e.g., on summer), the road unit increases

the number of parameters to be monitored up to its maximum

(128). However, what is the impact of this runtime change on the

energy consumption? It is supposed that an increment on the file

size will also increase the energy consumption of the device, but

software developers need evidences of the energy consumption of

their decisions, as well as the possibility of performing a sustain-

ability analysis that helps them to decide among different system

configurations. Using this case study we will illustrate how our ap-

proach helps software developers to answer these questions. 

5. The Green Eco-Assistant: Challenges and Overview

This section identifies the main challenges that arise in the de-

velopment of self-adaptive energy-efficient applications and pro-

vides an overview of how our Green Eco-Assistant copes with

these challenges. 

5.1. Challenges 

Five main challenges have been identified: 
Challenge 1 (C1) : Empirical studies [4,5] show that software

evelopers need help to identify runtime energy hotspots. A run-

ime energy hotspot is a point in the application that when there

s a considerable increase in power consumption due to a change

n the usage context, it is possible to reduce it by modifying the

pplication software components that provoke this power rise. Re-

ent studies propose some green computing practices [10] , how-

ver developers do not know how to apply them in their develop-

ents. The main conclusion is that software developers need more

recise evidence about how to tackle the energy efficiency prob-

em, a methodology, and tool support to effectively address soft-

are sustainability [4,5] . Thus, the first challenge is to provide

he means to identify the runtime energy hotspots. In the con-

ext of our CPS case study, our approach will help software devel-

pers to identify monitoring, communication and compression as

untime energy hotspots. 

Challenge 2 (C2) : Finding the most energy-efficient solution for

ach runtime energy hotspot is not trivial since there is high vari-

bility of components that implement the functionality required by

he hotspot with different energy costs. For example, for the com-

unication energy hotspot, each protocol (e.g., WiFi, Bluetooth)

ill consume a different amount of energy depending on the com-

unication frequency and the size of the data to be sent. Thus,

fter identifying the energy hotspot, software developers need to

odel the energy consuming concerns, being aware of the variabil-

ty of the existing solutions, including the parameters that could

ffect the energy expenditure. The energy consuming concerns are

he concerns that model the runtime energy hotspots at design

ime (e.g., privacy, caching, etc.). The challenge is to explicitly de-

ne the variability of design solutions that can mitigate the en-

rgy consumption according to current user interaction. Follow-

ng with the case study, the variability of the monitoring, commu-

ication and compression concerns are modeled in the Green Eco-

ssist ant, ready to be reused by software developers. 

Challenge 3 (C3) : The energy consumption highly depends on

everal factors, and some of them, such as the usage context, will

ary at runtime. So, the variability of the usage context should

e explicitly modeled and its impact on the power consumption

inked to the different application functionalities. Moreover, the

nergy consumption of each variant of the energy hotspots and

heir usage context should be provided for application develop-

rs in a format so that they can easily access, compare and an-

lyze its impact at runtime. Thus, the third challenge is to pro-

ide developers with tools that help them making a sensible

co-efficiency analysis at design time, about the possibilities of

ptimizing energy consumption at runtime for a given applica-

ion. In our example, software developers can use our approach to

now the energy consumption of their system initial configuration.

ore interesting is the sustainability analysis that can be done to

heck if there are other configurations with similar functionality

nd lower energy footprint. 

Challenge 4 (C4) : The eco-efficiency analysis may result in

ore than one design solution for a given energy hotspot, each

ne fitting a different usage pattern. This means that the appli-

ation needs to be able to react to changes in the usage patterns

t runtime in order to self-adapt to the variant with least energy

xpenditure. There are some related papers that perform dynamic

econfiguration of energy aware software [21,22] , but they are do-

ain specific and do not provide a generic and reusable approach,

hich we consider developers need. So, an important challenge is

o define energy reconfiguration rules to adapt the application

o the varying usage patterns by exploiting the energy saving

cenarios identified in the eco-efficiency analysis. By comparing

ifferent usage contexts and their energy consumption the CPS can

e adapted at runtime not only for the context change identified



Fig. 1. The Green Eco-Assistant approach.
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2 In the paper we use the terms energy-efficiency context and usage context in- 

distinctly, understanding that the energy-efficiency context is the usage context that

affects the energy consumption of applications.
n the system specification, but also to other ones that save energy

ithout penalizing the system quality of service. 

Challenge 5 (C5) : The energy reconfiguration rules will drive

he application adaptation at runtime by replacing the modules

hat implement the energy consuming concerns with others more

nergy efficient for a new execution context. The last challenge is

o provide a non-intrusive design and implementation solution

hat endows applications with self-greening capacities at a low

nergy cost. 

.2. Overview 

This section overviews how the Green Eco-Assistant copes with

he challenges presented. The details are provided in the rest of

he paper. Figure 1 presents the approach, where three main steps

re differentiated. Steps 1 and 2 occur at design time and step 3

t runtime: (1) modeling the software energy consumers; (2) per-

orming the sustainability analysis, and (3) the context-aware re-

onfiguration at runtime. 

During the modeling of the software energy consumers the eco-

ssistant copes with Challenges 1 and 2. Learning to recognize en-

rgy hotspots is absolutely essential and helpful in any energy-

ware development process. However, software developers still do

ot have the skills to identify these energy hotspots. Addition-

lly, there are not catalogs of runtime energy hotspots, similar

o the existing catalogs of design patterns. Trying to cope with

his shortcoming, and after analyzing several approaches, we can

onclude that many energy hotspots are recurrent, and appear in

he majority of applications [22] . So, our approach helps devel-

pers in this task by providing a list of the most recurrent en-

rgy hotspots. Then, application developers can select those energy

otspots identified as part of the application’s functionality (e.g.,

ompression), and the variants they want to explore (e.g., to com-

ress the data file in the CPS device or send it without compres-

ion to the server). This selection is done through a set of forms

rovided by the assistant (label 1.1). 

The concerns that model the runtime energy hotspots at design

ime can be considered as energy consuming concerns (label 1.2),

hich could be designed in different ways. For example, there are

ifferent options to store data (in a data structure, cache memory,

tc.), each with a different ener gy consum ption that depends on
ome input parameters that can vary at runtime such as the size

r type of data. In addition, they are usually scattered or crosscut

everal components (i.e., they are crosscutting concerns) [25] , so it

s beneficial to model and implement them independently of the

ystem’s functionality, to facilitate their replacement at runtime by

ore eco-efficient designs or implementations. Moreover, the en-

rgy consumption of these consuming concerns will depend on the

sage context and, for this reason, the part of the usage context

ith an impact on the energy consumption of a concern — i.e.,

he energy-efficiency context 2 needs to be identified and modeled

label 1.3). Taking into account all these factors, our approach cal-

ulates the energy consumption of all the concern variants (label

.4). Since these concerns are common to many applications, we

ropose storing them in the HADAS Green Repository [26] ready

o be reused (label 1.5). 

Challenges 3 and 4 are satisfied by the step 2 (label 2). The key

o the success of self-greening applications is to fully exploit the

nergy saving possibilities arising at runtime. So, the main role of

he Green Eco-Assistant is to provide the necessary means to make

 sustainability analysis (label 2.1), at design time, about the pos-

ibilities of optimizing energy consumption at runtime for a given

pplication. This means that our approach can be used to generate

n initial application configuration that satisfy our energy require-

ents (label 2.2), but also to see whether it is worthwhile specify-

ng a reconfiguration rule to replace, at runtime, a specific concern

mplementation with another due to, for instance, a drastic change

n the usage context (label 2.3). 

Finally, we cope with challenge 5 in the third step (label 3).

nce the initial system configuration has been deployed, the sys-

em has to monitor (label 3.1) and reconfigure the current system

label 3.2). The greatest challenge here is to define a self-greening

echanism that wastes the least amount of energy. The context-

ware reconfiguration loop is an adaptation of the classic MAPE

Monitoring, Analysis, Plan and Execution) reference model [27] .

e mainly (M)onitor the application usage ( Application usage ob-

ervation ), (A)nalyse the context in the context change reaction task

sing the self-greening rules and generate the (P)lan, and finally
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the (E)xecution of the plan is reflected in both changed value for

the parameters affecting the energy consumption and modify the se-

lected variants for the energy consuming concerns . 

6. Modeling the Energy Consuming Concerns

We based on the concepts of “runtime energy hotspot”,

“energy-consuming concerns” and “usage context” previously in-

troduced. We argue that energy-aware software engineering solu-

tions should focus more on reusable concerns, and less in specific

systems. So, in our approach we will consider the energy influence

of recurrent concerns such as compression, encryption or com-

munication. Additionally, for each of these recurrent energy con-

suming concerns, there are several alternative designs, and each of

them could have different ener gy consum ption, which mainly de-

pends on some input parameters, such as the size or data type. All

the alternative design solutions for every energy consuming con-

cern are modeled and their energy consumption is stored into a

Green repository, that contains a database with power consump-

tion measures [28] . In our approach, application developers can

use the Green Eco-Assistant at design time to perform a sustain-

ability analysis of the different variants. The Green Eco-Assistant

then generates the initial application configuration fulfilling the

developer needs. But, this sustainability analysis will also help to

identify those situations where the energy expenditure strongly

depends on some parameters of the usage context that can vary

at runtime. So, our solution aims to help designers to identify the

opportunities to save energy not only at design, but also at run-

time. This information will be used by the developer to specify the

self-greening rules that will trigger a reconfiguration at runtime of

the cyber-physical system. 

Figure 2 presents an schema of the process for modeling the en-

ergy consuming concerns, including the energy-efficiency context,

and for collecting the energy consumption measures. The result

of applying this process to our CPS is presented in Figure 3 and

Figure 4 . 

The first step to model the energy consuming concerns is the

identification of those functionalities that most influence the en-

ergy consumption (Step 1 in Figure 2 ). Our approach focuses on

those functionalities that are recurrent, which researchers iden-

tify as large energy consumers [8,9] . The functionalities imple-

mented by application independent frameworks, which are usually

required by many applications, are good candidates to be incorpo-

rated into our process. This is because the analysis of the energy

consumed by this kind of functionality can be conducted indepen-

dently of an application’s internal operation, for different imple-

mentation frameworks. Some examples of these functionalities are

storage, encryption, compression, and communication. 

There are plenty of studies showing that there is a high vari-

ability of alternative implementations and design solutions to

many energy consuming concerns [6,7,10] , and some of them per-

mit their replacement at runtime to achieve energy savings. For

this reason, we follow a DSPL approach [11] to explicitly model

the variability of the energy consuming concerns, using a vari-

ability model (e.g., feature models [29] , CVL [30] ), which de-

fines the configuration space — i.e., the possible allowed self-

adaptations triggered by different energy contexts. For instance,

top of Figure 3 shows an excerpt of the Green Eco-Assistant vari-

ability model (i.e., the feature model tree) in the Common Vari-

ability Language (CVL) [30] , with some energy consuming con-

cerns like monitoring, security, caching, compression, code migra-

tion, archiving, synchronization and communication. In this paper

we focus on monitoring, data compression and communication,

three concerns present in our CPS case study. It can be seen that

for the compression concern we include several algorithms that

consume more or less energy depending on the file size (bottom
f Figure 3 ), which usually varies at runtime. For the communica-

ion concern, transmission of the data can be done with multiple

rotocols (WiFi, Bluetooth, NFC), the energy consumption of which

lso depends on the file size. 

.1. Modeling the usage context and the configurable parameters 

Considering that the consumption of the energy consuming

oncerns depends on the usage context, what are the variables that

ffect the energy consumption, and so should be defined as part of

he usage context? [2] The complexity of identifying and modeling

he usage context is increased if we consider that the functional-

ty of each energy consuming concern provides many operations

nd each of them may impact differently on the energy consump-

ion (e.g., compress and decompress a file). Additionally, each op-

ration can support different data types (e.g., text file, parameters

le, audio and video files) that may vary in size and need to be

anaged differently. As can be seen in Figure 2 in our process the

sage Context of an application is defined as the set of contex-

ual variables, operations, and data types that may affect the en-

rgy consumption of an energy consuming concern. Then, Step 2

n Figure 2 identifies all the variables and the values that they can

ake, the operations, and the data types for each energy consuming

oncern. 

The energy consumption of an energy consuming concern di-

ectly depends on how efficient the functionality implementation

akes use of hardware resources. For example, different compres-

ion algorithms have different levels of energy consumption that

epend on the compression format and on the compression rate,

mong other configurable parameters. We propose to extract the

nformation about the configurable parameters that the different

rameworks offer (Step 3). In this paper, we specify all the possi-

le variants of the usage context and the implementations of the

unctionality (Step 4), as part of the same variability model [31] .

he relevance of modeling the variability of the energy consum-

ng concerns and their usage context is to be able to compare the

nergy consumption of different configurations of the same func-

ionality (design variations, different frameworks and parameters),

ndependently of the execution environment (hardware, operating

ystem). 

For each functionality (e.g., compression, encryption, commu-

ication,...) proposed in the variability model schema in Figure 2 ,

e differentiate the mandatory features of the usage con-

ext ( Contextual Variables , Contextual Operations ,
and Contextual Data Types ) from the mandatory features

f the implementations ( Configurable Parameters and

rameworks ). This schema is fixed and is the same for all func-

ionalities, while the specific features of the usage context and

he implementations depend on each functionality. Restrictions be-

ween features (cross-tree constraints) are specified as OCL con-

traints, for example when a particular framework does not sup-

ort a specific characteristic (e.g., a specific data type, operation or

onfigurable parameter). 

Identifying the energy consuming concerns with their config-

rable parameters and with their usage context (i.e., contextual

ariables, operations and data types) is not a trivial task for non

omain experts. For example, the encryption functionality has two

asic operations (encrypt and decrypt), and can operate over differ-

nt data types (string or objects in general). The logging function-

lity has only one operation (log a status message), and the type

s usually a string. However, identifying the contextual variables of

he usage context is even harder. In our experience contextual vari-

bles should fulfill the following properties: 



Fig. 2. Schema of the process for modeling the energy consumer concerns.
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• They can be attributes of the input parameters of the opera-

tions (e.g., size of the object to be compressed, length of the

string to be logged).

• They can represent states of the functionality (e.g., current ca-

pacity of a memory cache).

• Their values can change at runtime as a response to a user in-

teraction over different executions.

• Their values are unknown a priori, but could be monitored to

find the values during execution.

• A variation of their value may affect the quality attributes of

the application (e.g., energy consumption, performance).

These properties allow identifying and differentiating the vari-

bles or parameters that should be modeled under the usage con-

ext from the configurable parameters of a particular implementa-

ion [31] . For example, the maximum capacity of a cache memory

s something that we can configure in the framework, and will not

hange unless the developer or the application decides to change

t. The same is true for the encryption algorithm, or with the com-

ression format. 

Coming back to Figure 3 , for compression, the contextual vari-

bles of the usage context is the current size of the file to be com-

ressed (the FileSize feature). Compression offers the classical

perations for Compress and Decompress a file. The data types

upported by the compression algorithms, in this example, are bi-
ary files ( BIN ), text files ( TXT ), and files of parameters like float

umbers ( CSV ).
In addition, some implementation characteristics that usually

ave every implementations of the compression concern are the

ncoding algorithm and the level or ratio of compression (the

evel feature). We have included several algorithms ( LZ77 ,
urrows-Wheeler and LZMA2 ); and implementations ( gzip ,
zip2 , and xz ) that are usually available in the CPS devices

onsidered (e.g., in the RPi of our case study). Note that not all

ompression implementations support every algorithm along with

ts implementation characteristics. For instance, in this case, each

ompression tool supports one of the algorithm specified. This is

xpressed in our variability model in CVL as constrains between

eatures, which are usually specified as OCL restrictions and at-

ached to the affected features (e.g., gzip ⇔ LZ77 ).

.2. Generating different configurations 

Using an SPL approach and its tool support [32,33] , once we

ave modeled all the variability of the energy-efficiency context

nd the implementations, we can automatically generate different

onfigurations and define the experiments to estimate the energy

onsumption of each concern for each of the CPS devices (Steps 5

nd 6 in Figure 2 ). 

In particular, in our Green Eco-Assistant, we mapped the vari-

bility models to logical constraints in a Constraint Satisfaction



Fig. 3. Our approach applied to our cyber-physical system.
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Problem (CSP). This formalization allows us to resolve the CSP

problem using a CSP solver to guarantee that we generate valid

configurations. Here, we have used Clafer 3 , a general-purpose

lightweight modeling language, and CHOCO 

4 , a Java library for

constraints programming, to implement the variability models and

configurations as CSP problems, and resolve them. 

6.3. Estimating the energy consumption 

What the developer needs to know at design time are the op-

tions that exist to address a specific runtime energy consuming

concern, and the expected energy consumption of each of them

at runtime. Energy consumption mainly depends on the resources

that each application component is expected to consume (e.g., cpu

cycles, and disk access) and on the hardware characteristics (e.g.,

cpu cycles/s, and MB/s.). With this information, it is possible to

estimate the expected energy consumption by conducting exper-

imental studies, or by simulating energy models. Note that the
3 http://www.clafer.org/
4 http://www.choco-solver.org/

e  

c  

l  
xact number of Joules consumed by different energy consuming

oncerns considering specific hardware is not so important to iden-

ify energy consumption trends, although the relative energy is.

o, the intention is to store the energy consumption obtained fol-

owing different approaches, and provide this information to the

eveloper. Certainly, we could gather results from many already

ublished experimental studies [10,34] , store them in the HADAS

reen Repository and provide advice based on these results. 

The energy consumption shown in this paper was experimen-

ally calculated from real products, but can also be predicted,

hrough simulation, by an architecture design [35] , or bench-

arks [9] . Experiments to estimate the energy consumption of a

iven functionality must cover the whole range of variations for

he possible values of the usage context variables and configurable

arameters (Step 7 in Figure 2 ). Otherwise the experimental pro-

le will be incomplete. A row in the table shown in Figure 2 rep-

esents one configuration of the variability model. The last column

nergy Consumption contains the experimentation results for

ach configuration. Each contextual variable of the usage context

an be seen as a energy function F that depends on that variable,

ike, F ( FileSize ) for the file size of the compression functionality.

http://www.clafer.org/
http://www.choco-solver.org/


Fig. 4. Energy-efficiency configurations for compression and communication.
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his function will be different for each contextual operation and

ata type of the functionality. By varying the dependent variable

e.g., file size) for each configuration of the implementation char-

cteristics (e.g., different compression algorithms), we can analyze

ow each configuration influences energy consumption ( Config1 ,
onfig2 ,..., ConfigN in the graph in Figure 2 ). When the en-

rgy efficiency context is composed by more than one variable, as

s the case of the monitoring or communication functionality, the

nergy experiments are carried out by varying one variable while

aintaining the others fixed. Whatever the approach used to cal-

ulate the expected energy consumption, the effort of measuring,

stimating and/or simulating the energy expenditure of each of

he possible energy consuming concerns would be an intractable

ask for developers. So, the goal is to save time for application de-

elopers by automating as much as possible this manual and te-

ious job and storing the results in the HADAS Green Repository.

he Green Eco-Assistant then helps developers make informed de-

isions about the energy consumption of the selected concerns,

hrough a sustainability analysis, as next section explains. 
a  
. Analyzing and selecting energy-efficient configurations

The Green Eco-Assistant helps developers carry out a compara-

ive analysis of the power consumption of different solutions for a

iven runtime energy hotspot. The developer is aware that the de-

ision of choosing a energy consuming concern (e.g., compression)

an only be made considering the expected use of the application

i.e., the usage context). It becomes necessary to codify reconfigu-

ation rules ( Figure 1 , label 2.3) to replace a solution when the cur-

ent one is no longer the most energy-efficient, under the current

sage context. Reconfiguration rules may be described using Event

ondition Action (ECA) rules [36] , a simple but efficient reconfig-

ration mechanism that consumes less than other computation-

lly more complex approaches like, for example, optimization al-

orithms. The event will be a variation in the parameter value that

ffects the ener gy expenditure of a given concern (e.g., file size for

he compression concern); the condition will be the specific value

hat makes the current energy consuming concern implementation

o longer optimal (e.g., file size greater than a particular value);

nd, the action will be to replace the current component config-
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uration with a more eco-efficient solution (e.g., changing an algo-

rithm by a greener one). 

However, the previous reasoning cannot be performed in iso-

lation for each energy-consuming concern, because reducing the

energy of one concern can have a collateral effect of increment-

ing the energy expenditure of others. This means that energy con-

suming concerns have interactions between them. Normally, inter-

actions occurs when an energy consuming concern (e.g., compres-

sion) affects the value of a usage context variable (e.g., file size) of

another energy consuming concern (e.g., communication). Our ap-

proach will help developers jointly reason over different concerns,

by showing the graphics with the energy consumption for the en-

tire configuration, as shown in the graph of Figure 4 . 

To illustrate all these analysis and the reconfiguration rules that

can be extracted of the analysis, let us consider the following

energy-saving scenarios in the context of the CPS case study: 

• Scenario 1. Different energy-efficient implementations of an

energy consuming concern. In Figure 3 we can see that for a

file size less than 2 MB all compression algorithms consume

similar energy, so the developer can initially deploy, for ex-

ample, the Burrows-Wheeler algorithm. But, when this size in-

creases more than 16 MB, then the LZ77 algorithm is greener.

Since both the file size and compression ratio depend on what

the user needs at each moment, it is not enough to just gener-

ate an initial configuration of an energy-efficient application. It

becomes necessary to reconfigure the current deployed config-

uration by another one more energy-efficient (e.g., replace the

Burrows-Wheeler algorithm by LZ77). This reasoning can be de-

scribed with the following ECA rule:

ECA1: compression ∧ filesize > 16 MB ⇒ LZ 77 algorithm

• Scenario 2. Dependencies between energy-consuming con-

cerns due to the concerns’ usage context. When the commu-

nication frequency of the road unit is greater than a day, the

generated files need to be archived (i.e., the files are saved to-

gether into a single archive) to facilitate their management and

perform a unique sending when communication occurs. In this

case, the archiving concern needs to be deployed. On the other

hand, when the file is sent every day, the archiving concern is

not necessary and can be removed/deactivated from the appli-

cation. The following two ECA rules describe this situation:

ECA2: frequency > 1 ⇒ archiving concern

ECA3: f requency = 1 ⇒ ¬ archi v ing concern

Although the energy consumption of the archiving concern is

insignificant, its inclusion affect the energy consumption of

others concerns because of the modification of the file size

archived with every new file that is archived.

• Scenario 3. Dependencies between energy-consuming con-

cerns due to their functionality. Let us suppose that the de-

veloper has initially deployed the road unit to compress the

files, thinking that compressing the files reduces the energy

consumption of sending them to the server. In this case, we

need to know the total energy consumption of compressing the

file and sending it to the server. Note that different compres-

sion algorithms produce compressed files of different sizes, and

therefore the energy consumed by the communication concern

will be different, depending on the compression algorithm pre-

viously used. In this particular scenario (as shown in the bot-

tom graphic of Figure 4 ), the compression process always con-

sumes more energy than sending the file without compression.

This fact depends on the compression ratio of the file that in

turns depends on the file type. This means that for parameters

files (.csv files) as the considered in our case study, the com-

pressed file size is still too big and the energy wasted in the

compression concern cancels out the benefits of sending the

file compressed. Note that this situation depends on the type
of the file to be compressed, and that for text files instead of

parameters files, compression will often be worth it. Thus, the

compression concern seems to be dispensable in all configura-

tions when the content file is not text from the point of view

of the energy consumption: 

ECA4: f iletype = CSV ∨ f iletype = BIN ⇒ ¬ compression concern

ECA5: f iltetype = T XT ⇒ compression concern 

The difference between Scenario 2 and 3 is that in the latter

the interacting concerns are high energy consumers and, con-

sequently, the global energy consumption of the configuration

has to take into account the energy consumption of both con-

cerns together. 

• Scenario 4. Mandatory energy consuming concerns. Under

some usage contexts, the presence of an energy consuming

concerns can be required despite the fact that its inclusion

increases the energy expenditure of the global system, other-

wise the behavior of the application will be inconsistent or not

working as expected. For instance, the road unit cannot store

more than 512 MB — i.e., this is the capacity of the RPi, so

compression is still needed when the files are archived during

several days before sending them to the server:

ECA6: frequency > 1 ∧ frequency · filesize > MAXSTORAGE ⇒
compression concern

• Scenario 5. Order of energy consuming concerns. The order

in which the concerns are applied can affect the energy con-

sumption of the global system. For example, archiving the files

during several days and then compressing a bigger archive is

not always possible because of the storage limitation of the

device, apart from the energy consumption of compressing a

huge file. In this kind of situations, compressing the files before

archiving them is the only and greener solution:

ECA7: frequency · filesize ≥ MAXSTORAGE ⇒ precedence : compression

archiving

In the following section, we show a possible implementation of

 self-greening application for the CPS and how the specified ECA

ules are integrated and use in the reconfiguration mechanism. 

. Energy-aware reconfiguration

How can we implement a self-greening application without over-

oading the system with heavy-energy monitoring and reconfiguration

echanisms? What elements should be monitored at runtime? How

an we analyze the context to enforce a self-greening behavior with-

ut complicating the resulting code? 

As described in Section 5.1 , the greatest challenge is to define a

elf-greening mechanism that wastes the least amount of energy,

o applying burdensome, self-adaptation approaches (e.g., manip-

lating models@runtime [35] ) are not recommended. In addition,

ince eco-efficient concerns crosscut several application compo-

ents it makes sense to follow an approach based on Separation

f Concerns [15] to implement energy-related concerns separately

rom the application’s functional components, facilitating their re-

lacement at runtime. 

Since we need to observe the runtime variation of some pa-

ameters, the subject-observer design pattern could be a good op-

ion, and the use of events. We have found one solution, which

s not intrusive and also eco-efficient, which is Aspect-Oriented

rogramming (AOP) [15] . With AOP, it is possible to define inter-

eption points in the application base code where we want to in-

ect an extra-functional property, like the energy consuming con-

erns in our case. Before, around or after executing these intercep-

ion points we can inject code related to self-greening functionality

eparately from the core application code. Moreover, the injected

ode can be easily changed at runtime using the weaving and un-

eaving mechanisms provided by AOP. 



Fig. 5. Reconfiguration using the Green Eco-Assistant.
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Figure 5 shows an example of an aspect-oriented design

olution for implementing self-greening applications in Java

nd AspectJ [15] (an Aspect-Oriented extension of Java). Three

ackages can be observed, one representing the application

 Application ) that contains the base code, one repre-

enting the reconfiguration mechanism ( Reconfiguration
ystem ) and the last one representing the energy con-

uming concerns ( Energy Consuming Concerns ). In

he context of our CPS, the application code collects the

ensor data ( RPiService.collectData() method), 

rchives the file ( RPiService.archive() ), compresses it

 RPiService.compress() ) and finally sends the file through

he network ( RPiService.send() ).
The event monitoring is implemented as part of the

econfiguration System and as separated code, which

s then injected into the base code of the application. At runtime,

e only need to observe those parameters whose variation im-

lies that the current configuration is no longer the most energy

fficient — i.e., these parameters are the events that appeared in

he ECA rules defined in the previous step (the file size in our
ase). So, we propose implementing a ContextUsageMonitor
spect for each of the parameters to be observed. The value

aptured by each monitoring class is sent to the Analysis
omponent that contains the ECA rules to decide whether or not

 reconfiguration is needed. If the rules determine that a new

onfiguration is greener, the Analysis component will send the

ew configuration to the Reconfiguration component.

The Reconfiguration component directly interacts with the

nergy consuming concerns by enabling/disabling them and re-

onfiguring their internal behavior. The runtime energy consum-

ng concerns (i.e., components with stereotype << ecc >> in pack-

ge Energy Consuming Concerns ) are also implemented as

spects and are non-intrusively injected into the application code.

his provides a light solution in terms of energy consumption (see

ection 9 ) and allows an easier reconfiguration of the energy con-

uming concerns. As shown in the code of Figure 5 , the AspectJ

nnotations ( @Aspect ) are interpreted at compile time by the as-

ect compiler that weaves the energy consuming concerns (imple-

ented as “aspects”) with the application classes at the bytecode

evel, so there is no overhead at runtime. 
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Returning to our CPS, in Figure 5 we have defined the

MonitorFileSize aspect that monitors the size of the data files

collected by the RPiService.collectData() method (line 4

in the MonitorFileSize aspect). Each new parameter value is

sent (line 10) to the Analysis component, so the Analysis
component has information about the most recent activity of the

device and thereby makes more accurate decisions. In our example,

the Analysis considers the file size and the frequency of sending

the file to the server (line 2 and 3 in the Analysis component).

The rest of the code of this component shows the implementation

of the ECA rules defined in the previous section. Lines 7-11 corre-

spond to the ECA rule for archiving the files locally when the send-

ing frequency is higher than one day ( ECA2 and ECA3 ). Lines 12-

15 implement ECA4 that activates the compression concern when

files to be archived exceed the maximum storage of the device. Fi-

nally, lines 16-21 implements ECA1 that sets the encryption algo-

rithm to the most eco-efficient alternative (line 17) and ECA7 that

changes the order of application (precedence) of the energy con-

suming concerns — i.e., first compressing and then archiving (line

20). ECA4 and ECA5 are omitted in the example for space limita-

tion but they are implemented similarly. 

The Reconfiguration component will activate and/or deac-

tivate the appropriate concerns, and will change the precedence

of the different concerns (lines 1 to 4 in the Reconfiguration
component). In addition, the Reconfiguration component is

responsible for changing the current configuration of the activated

concern, for example, changing the compression algorithm (line 2).

The energy consuming concerns crosscut the base application to

inject the appropriate functionality in the correct place. For in-

stance, the Compression aspect crosscuts the base application

to compress the data file after collecting it (lines 16-18 in the

Compression component).

9. Evaluation and Threats to Validity

In this section we evaluate our proposal, and discuss the threats

to validity and lessons learnt. 

9.1. Experimentation 

In this section we first discuss the reliability of the experi-

ments conducted to estimate the energy consumption of the dif-

ferent configurations of the energy consuming concerns ( Figure 4 ).

All resources are available, so experiments can be replicated with

the same results 5 . Then we discuss the internal and external valid-

ity of the experimentation. The internal validity examines whether

the experiment results are influenced or not by other factors apart

from those considered in the experiments. The external validity an-

alyzes whether the results obtained in the experimentation can be

generalized or not. 

9.1.1. Experimentation Set-Up 

The energy consumption results presented in this paper were

calculated through experimentation, by using a wattmeter, in par-

ticular the WattsUp? Pro meter. WattsUp? Pro monitors the electric

power in Watts of any given circuit. The experiments were per-

formed on a Raspberry Pi 3 Model B 

6 , with the Raspbian 8 (Jessie)

system ( Figure 6 ). For the compression functionality, we have used

the tools gzip, bzip2 , and xz , while for the communication concern

we have used the scp tool. Although the profiling is done at the

device level, we isolate the process functionality we are interested

in and build a controlled experiment. The RPi device continuously
5 http://www.caosd.lcc.uma.es/research/rsc/Horcas2018- AHN- exp.zip
6 https://www.raspberrypi.org/products/raspberry- pi- 3- model- b/ u
onsumes 0.9 W in the idle state, and 1.9 W with the sensors con-

ected. As result, WattsUp? Pro generates a CSV file with the esti-

ated power (in Watts) for each timestamps (1 s) of the execution

f the process, which is repeated 15 times. We have implemented

 Python script to automate the use of WattsUp? Pro and of our

xperiments, which extracts the information from the CSV file and

alculates the energy consumption in Joules. 7 

.1.2. Accuracy of the results 

On the one hand, we choose the WattsUp? Pro because it al-

ows measuring the power consuming of different kinds of de-

ices at the hardware level, so we think it is a good choice to

easure the energy consumption of CPS. Taking the measurements

ith hardware-based tools is more precise than estimating the en-

rgy consumption with software tools at the code level. Although

attsUp? Pro provides measurement with one second of preci-

ion, it is enough for our approach. Note that energy consuming

oncerns (e.g., compression, encryption) are usually expensive op-

rations, while simple operations that last less than one second

ave an insignificant energy consumption. On the other hand, we

ave performed 15 runs for each experiment taking the median of

he measurements as representative energy value [37] . Although

ncreasing the number of runs will improve the accuracy of the re-

ults, we consider that 15 runs is enough in our approach because

ur goal is not to calculate the exact values obtained for each dif-

erent configuration, but we are interested in identifying energy

onsumption variations and tendencies when the usage context

aries. In any case, we consider to increase the number of exper-

ments and runs, including the study of more energy consuming

oncerns as our ongoing work. 

.1.3. Generalization of results 

Results from experimentation may vary due to many factors,

rincipally due to the hardware of the device, but also due to the

urrent usage context, the particular implementation of the energy

onsuming concerns (e.g., programming language, frameworks), or

he connected sensors and peripherals. To mitigate the external

hreats to validity we have performed a subset of the experiments

n a different device (Raspberry Pi with Raspian 9 - Stretch), and

ave obtained similar results for the energy consumption of the

nergy consuming concerns. In any case, our approach is indepen-

ent from the experimental values and can be applied using dif-

erent sources of data with energy information. 

.1.4. Applicability 

For each consuming concerns considered in this paper, Table 2

hows the number of contextual features, implementation (config-

rable) features, configurations and thus, number of experiments

erformed, and the average of the execution time required to per-

orm each experiment. Generating all the possible configurations

f the energy consuming concerns and performing all the required

xperiments may sound an intractable task. However, it is demon-

trated [34] that the number of contextual features and config-

rable parameters of the energy consuming concerns that affect

he energy consumption is usually low and the total number of

onfigurations and experiments is manageable. For instance, as

hown in Table 2 , for compression that is the more complicated

oncern, there are only 6 contextual features and 7 implementa-

ion features that can affect the energy consumption. So, the max-

mum number of configurations, and therefore experiments to be

erformed is 1620. Moreover, it is important to clarify that the ex-

erimentation is done only once, and the results can be reused by
7 The script and the experimental results are available in http://www.caosd.lcc.

ma.es/research/rsc/Horcas2018- AHN- exp.zip .

http://www.caosd.lcc.uma.es/research/rsc/Horcas2018-AHN-exp.zip
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.caosd.lcc.uma.es/research/rsc/Horcas2018-AHN-exp.zip


Fig. 6. Experimentation set-up simulating the road unit of the CPS.

Fig. 7. Energy consumption of the GPS sensor with different configurations.

Table 2

Experimentations over the energy consuming concerns.

ECC Contextual features Impl. features Configurations/Experiments Avg. Time (s)

Monitoring 2 3 24 11.50

Archiving 2 1 70 5.16

Compression 6 7 1620 158.00

Communication 3 5 420 98.55
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he Green Eco-Assistant in multiple applications that require those

nergy consuming concerns. 

.2. Energy efficiency of the reconfiguration mechanism 

As explained in Section 8 , we tested our implementation of the

econfiguration mechanism with AspectJ, and the results showed

hat the energy consumption of the proposed implementation is

nsignificant compared to the total amount of energy wasted by

he energy consuming concerns. In fact, since aspects are woven

ith the application code at compile time there is not overhead at

untime. In addition, changing the status of an aspect from acti-
ated to deactivated or the other way around is an negligible op-

ration the execution time of which is less than one second, and

herefore, its energy consumption is practically insignificant. Even

hough, we plan to perform a practical study, comparing different

econfiguration mechanisms in terms of energy efficiency, as part

f our future work. 

.3. Self-adaptation in the context of CPS 

Any software system can benefit from applying our approach,

ncluding the software part of CPSs as demonstrated in the next
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subsection. There are however two issues that need to be consid-

ered in the context of CPSs: 

• The processing capability of the CPS nodes. The physical part of a

CPS is normally heterogeneous, with different types of physical

components that communicate among them. Not all of them

will have enough processing capability for a complex software

reconfiguration to make sense. For instance, in a sensor mote

that is only gathering sensory information the software part is

so simple that the reconfiguration suggested by the Green Eco-

Assistant could be only to change parameters’ values, e.g., the

sampling frequency. However, in nodes with higher processing

capability, such as a Raspberry Pi or a mobile phone, our ap-

proach can help the CPS to considerably reduce its energy con-

sumption by performing more complex adaptations.

• The reconfiguration capability of the CPS nodes. Another thing

to be considered is where the reconfiguration mechanism can

be allocated at runtime. Firstly, the impossibility of deploying

any reconfiguration mechanism in a concrete node needs to be

taken into account. For instance, let us suppose a sensor mote

with some processing capability, although very limited. This

means that it will be possible, for instance, to choose between

different data compression algorithms, but without adapting

them at runtime. In these cases, our approach is still useful

because the design-time sustainability analysis can be done to

decide the algorithm with the lowest energy consumption. Ad-

ditionally, there will be nodes with enough processing capa-

bility as to receive a reconfiguration order (e.g. to change its

sampling frequency) but without enough resources to allocate

the reconfiguration mechanism. In this case the reconfiguration

mechanism needs to be running in another node of the CPS

(e.g. a Raspberry Pi) in charge of sending the reconfiguration

orders to nodes with lower resources. Finally, for those nodes

where the deployment of a runtime adaptation mechanism can

be afforded, for instance, a Raspberry Pi or a smartphone, there

is still the issue of the reconfiguration mechanism to be used

depending on the possibilities offered by the operating sys-

tem and the programming language used in each node. In this

sense, the use of AspectJ [15] in Section 8 is for illustrative pro-

cess and the same approach can be implemented using other

separation of concerns approaches such as AspectC [38] (for the

C programming language), or an implementation of the injec-

tion design pattern [39,40] (for other programming languages).

9.4. Benefits of using the Green Eco-Assistant 

To evaluate the benefits to energy efficiency that a software de-

veloper can obtain we have applied our approach in two scenar-

ios. In the first one the device is a Raspberry Pi with enough pro-

cessing and reconfiguration capabilities and we evaluate the ben-

efits that can be obtained when different configurations are con-

sidered. In the second scenario we demonstrate how our approach

can be sucessfully applied also to improve the battery lifetime in

sensor motes without enough capability to deploy our reconfigura-

tion mechanism. 

9.4.1. Benefits in CPS nodes with large processing capability 

We have chosen a subset of all configurations for the energy

consuming concerns in our running example and have compared

them in order to check if it makes sense to use our approach to

advice developers in finding greener configurations. 

Top of Figure 4 shows a set of configurations of the monitor-

ing, archiving, compression, and communication concerns of our

CPS case study. For the initial configuration described in Section 4 ,

the road unit is initially deployed with a configuration to moni-

tor 16 parameters, generating a file of 20 MB each day. The file is
rchived every day, and it is sent to the server every seven days

fter compressing it, by using the LZ77 compression algorithm —

i.e., the greenest according to Figure 3 (config. 13).

At some point the context will change (e.g., when an accident

ccurs or on summer months) and the road unit will be reconfig-

red to monitor 128 parameters. This generates a file of 160 MB

ach day, so archiving the files during seven days after compress-

ng them is not possible because of the storage limitation of the

evice (see config. 14). This requires to reconfigure the road unit

o compress the files before archiving them (see config. 16).

However, according to the results showed in Figure 4 , the en-

rgy consumption of the new configuration (config. 16) is too high

933.12 J), and thus, a greener solution should be deployed. The

ustainability analysis of the eco-assistant helps to realize that a

ossibility is to change the frequency to send the file every three

ays instead of seven days (config. 10 with a consumption of

29.29 J). Moreover, there are different greener solutions because

he file size affects compression to a greater extent than it does

n communication. So, sending the uncompressed file to the server

rastically decreases the energy consumption of the global solution

see config. 6 with a consumption of 277.16 J). This means that we

eed an additional reconfiguration rule that specifies that the com-

ression concern will apply only when the files are archived for

everal days, to avoid surpassing the storage capacity of the de-

ice. Otherwise, sending a parameter file every day without com-

ression is the greenest solution (configs. 1 and 2). 

As conclusions, in our CPS example, if the initial configuration

f the road unit is maintained when the context changes we miss

he opportunity to save around 54% of the energy consumption,

ince more parameters are monitored and bigger files are pro-

uced. Just by reducing the sending frequency of the files from 7

o 3 days to considerably improve the energy-efficiency of the CPS.

n addition, deactivating the compression concerns when the ca-

acity storage of the device is enough for the generated files saves

round 70% of the energy consumed by the CPS device. 

.4.2. Benefits in CPS nodes with limited procesing capability 

To demonstrate the benefits of our approach in those cases

hen the Green Eco-Assistant makes no sense to be deployed in a

PS node with limited capabilities, we show how our approach can

educe the energy consumption of such kind of devices by recon-

guring them, despite that they do not have enough power to ex-

cute the whole reconfiguration system by themselves. In particu-

ar, we reconfigure and evaluate the energy consumption of a geo-

ocation sensor (i.e., a GPS sensor) that continuously samples for

he location of a vehicle with a configurable sampling frequency. 

Figure 7 shows the energy consumption of the GPS sensor be-

ore and after the Green Eco-Assistant reconfigures it. The Green

co-Assistant (running in other CPS node with enough capabilities,

uch as the road unit of our case study) determines the most ap-

ropriate configuration for the GPS sensor. In this case, the GPS

ensor is checking for the location every second, consuming 1441

/h. At some point, the context will change (e.g., the traffic flow

ecreases) and the road unit decides to reconfigure the GPS sen-

or by changing its sampling frequency every 30 seconds. The new

onfiguration consumes 1415 J/h (1.76% less). When the traffic flow

ontinues decreasing, the GPS sensor will be reconfigured to sam-

le every 60 seconds, reducing its energy consumption to 1364 J/h

3.59% less). 

0. Conclusions and Future Work

We have presented a self-greening approach that aims to opti-

ize the energy consumption of applications at runtime. We have

ocused on those concerns whose consumption depends on pa-

ameters that can vary at runtime, according to the usage context
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nd other contextual information (e.g., available memory, battery

evel, file size). In order to specify the self-greening rules, we have

eveloped a runtime energy consuming concerns repository with

nformation about relative energy consumption of some recurrent

unctionalities. The graphics generated by the HADAS Green Repos-

tory are used to analyze the possibilities of optimizing energy con-

umption at runtime. Indeed, we have shown that there are valu-

ble opportunities to optimize the energy consumption at runtime

hat should not be neglected by developers. 

The approach presented in this paper puts the basis to build

 dynamic reconfiguration approach for self-greening applications.

he approach has been instantiated with 3 different functionalities

monitoring, compression, and communication) and different real

mplementations with multiple contextual variables. Taking into

ccount the variability of the usage context in cyber-physical sys-

ems allows obtaining improvements greeter than 50% in energy

onsumption. In particular, we have demonstrated that for our CPS

ystem the energy consumption can be reduced up to 70%, de-

ending on the current usage context. 

As future work, we plan to complete the evaluation of the

reen Eco-Assistant to demonstrate its usage and benefits in real

PS systems, with hundreds of sensors and different kinds of de-

ices. To do so, we will provide a proof of concept with different

cenarios of an Intelligent Transportation System (ITS) with mul-

iple sensors whose parameters can be reconfigured with our ap-

roach. We also plan to evaluate the energy consumption of differ-

nt reconfiguration mechanisms for mobile phones, such as differ-

nt proxy patterns and the Xposed 8 framework for modifying code

f Android applications at runtime. 
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