
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/285548628

An Automatic Process for Weaving Functional Quality Attributes Using a

Software Product Line Approach

Article in Journal of Systems and Software · December 2015

DOI: 10.1016/j.jss.2015.11.005

CITATIONS

14
READS

220

3 authors:

Some of the authors of this publication are also working on these related projects:

ClinicAppChain View project

MAGIC: Software Product Lines and Multi-Agent Systems for the self-management of the IoT View project

Jose-Miguel Horcas

University of Malaga

31 PUBLICATIONS 135 CITATIONS

SEE PROFILE

Monica Pinto

University of Malaga

101 PUBLICATIONS 1,113 CITATIONS

SEE PROFILE

Lidia Fuentes

University of Malaga

232 PUBLICATIONS 2,680 CITATIONS

SEE PROFILE

All content following this page was uploaded by Lidia Fuentes on 16 October 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/285548628_An_Automatic_Process_for_Weaving_Functional_Quality_Attributes_Using_a_Software_Product_Line_Approach?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/285548628_An_Automatic_Process_for_Weaving_Functional_Quality_Attributes_Using_a_Software_Product_Line_Approach?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ClinicAppChain?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/MAGIC-Software-Product-Lines-and-Multi-Agent-Systems-for-the-self-management-of-the-IoT?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Miguel-Horcas?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Miguel-Horcas?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Malaga?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Miguel-Horcas?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monica-Pinto-7?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monica-Pinto-7?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Malaga?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monica-Pinto-7?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lidia-Fuentes-2?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lidia-Fuentes-2?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Malaga?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lidia-Fuentes-2?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lidia-Fuentes-2?enrichId=rgreq-c10a2d3106b70870b49fcb0fd0e3ade2-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU0ODYyODtBUzo1NTAwOTIzOTUzMDI5MTJAMTUwODE2MzY1NTM2MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Automatic Process for Weaving Functional Quality Attributes Using a
Software Product Line Approach

Jose-Miguel Horcas1,∗, Mónica Pinto1, Lidia Fuentes1

aCAOSD Group, Universidad de Málaga, Andalucía Tech, Spain

Abstract

Some quality attributes can be modelled using software components, and are normally known as Functional Quality
Attributes (FQAs). Applications may require different FQAs, and each FQA (e.g., security) can be composed of many
concerns (e.g., access control or authentication). They normally have dependencies between them and crosscut the
system architecture. The goal of the work presented here is to provide the means for software architects to focus
only on application functionality, without having to worryabout FQAs. The idea is to model FQAs separately from
application functionality following a Software Product Line (SPL) approach. By combining SPL and aspect-oriented
mechanisms, we will define a generic process to model and automatically inject FQAs into the application without
breaking the base architecture. We will provide and comparetwo implementations of our generic approach using
different variability and architecture description languages: i) feature models and an aspect-oriented architecture
description language; and ii) the Common Variability Language (CVL) and a MOF-compliant language (e.g., UML).
We also discuss the benefits and limitations of our approach.Modelling FQAs separately from the base application
has many advantages (e.g., reusability, less coupled components, high cohesive architectures).

Keywords: Quality Attributes, Software Product Lines, Aspect-Orientation, Weaving, Model Transformations

1. Introduction

The quality of a software system is measured by the
extent to which it possesses a desired combination of
quality attributes (QAs) [1] such as usability, confiden-
tiality, reliability, security or scalability. Some quality
attributes (QAs) can be modelled using software com-
ponents and are normally known as functional quality
attributes (FQAs) [2]. Examples of FQAs are security
(e.g., to allow access control), usability (e.g., to provide
contextual help) or error handling (e.g., to respond to the
occurrence of errors and exceptions). Note that other
QAs (i.e., those related to non-functional requirements)
such as cost, efficiency or portability cannot be directly
mapped to functional software components, but they
can be mapped to architectural or implementation de-
cisions, so they are beyond the scope of this paper.

In order to satisfy application requirements, apart
from core functional and non-functional requirements,

∗Corresponding author
Email addresses:horcas@lcc.uma.es (Jose-Miguel Horcas),

pinto@lcc.uma.es (Mónica Pinto),lff@lcc.uma.es (Lidia
Fuentes)

the software architect should pay special attention to
those that can be modelled as FQAs. FQAs are charac-
terised by the following aspects: (1) they are recurrent
— i.e., FQAs are normally required by several applica-
tions (e.g., security); (2) most FQAs crosscut the system
architecture; and (3) they require the incorporation of
specialised components inside the architecture (e.g., an
authorisation mechanism to satisfy the security FQA).
Normally, FQAs are modelled and tailored to a given
application, with functional components that are part of
the core architecture.But, modelling FQAs separately
from the base application has many advantages (e.g., re-
usability improvement, less coupled architectures, etc.).
For instance, an encryption algorithm used to encrypt
the information to ensure confidentiality does not de-
pend on the application that needs it.

Modelling FQAs is a complex task, firstly because
they are usually composed of many concerns.The se-
curity FQA, for example, is composed of confidential-
ity, integrity, access control and authentication, among
others. Secondly, different applications may require dif-
ferent levels of an FQA (e.g., different security levels).
For example, a specific application may require access

Preprint submitted to Journal of Systems and Software 15th September 2015

control, encryption, and anonymity while another may
require only encryption, or may require a different kind
of encryption algorithm. Thirdly, some of the concerns
of an FQA may have dependencies between them. For
example, the confidentiality concern depends on the en-
cryption concern to ensure that all the information is en-
crypted and cannot be obtained by third persons. Fur-
thermore, some FQAs affect each other, so dependency
relationships between different FQAs must also be con-
sidered. For instance, the contextual help concern of the
usability FQA depends on the authentication concern of
the security FQA to be able to offer customised help
based on the user’s previous experience with a given ap-
plication.

To summarise, there is much variability in FQAs and
different dependency levels. Therefore, specifying the
set of FQA components and connections that fulfil the
application requirements is not a trivial task for the soft-
ware architect. Our goal is to alleviate the software ar-
chitect’s tasks with respect to FQAs by: (i) defining a
family of FQAs with commonalities, variabilities and
dependencies; and (ii) implementing a process able to
automatically generate the final application architecture
that includes the customised FQAs.

The variability of FQAs can be modelled by us-
ing different techniques provided by traditional Soft-
ware Product Line (SPL) [3] approaches. Reviewing
the literature, the conclusion can be drawn that little
care is taken to model variability of the functional part
of QAs [4], and normally the focus is on modelling
the functional variability of the application. Some ap-
proaches propose techniques for analysing and/or reas-
oning about the impact of functional variants on the
quality of applications derived from an SPL, princip-
ally concentrating on non-functional QAs such as per-
formance, availability, cost, or latency [5, 6, 7]. Oth-
ers address FQAs variability (e.g., QADA [8], RiPLE-
DE [9]), but they model these FQAs intermingled with
the functional components, as part of the domain ana-
lysis of an SPL, and not separately as we propose. The
main drawback of these latter approaches is that they
do not provide means to easily reuse FQAs and their
dependencies across several applications, nor do they
facilitate the customisation of FQAs to each individual
application.

In order to define a family of FQAs following a
generic SPL approach, we need a language to specify
and model the variability of FQAs. According to [10]
Feature Models (FMs) are the most used variability
language, which model variability by means of high-
level features that are close to requirements specifica-
tion. More recently, the Common Variability Language

(CVL [11]) was proposed as a standard. Both alternat-
ives are currently well accepted by the SPL community,
and can be used in our approach.

Independently of the variability language used, once
an architectural configuration of the FQAs has been
generated, a process to incorporate it into the archi-
tecture of the base application non-intrusively, is re-
quired. For weaving FQAs with the base application we
will use some aspect-oriented mechanisms. By com-
bining SPL and aspect-oriented software development
(AOSD) technologies, we have defined a generic pro-
cess to: (i) specify and model the variability and de-
pendencies among FQAs, defining a reusable family of
FQAs; (ii) customise the FQAs to fulfil the applica-
tion requirements and automatically generate an archi-
tectural configuration of FQAs; and (iii) weave the cus-
tomised FQAs into the software architecture of the base
application without manually modifying it. We present
and compare two instantiations of our generic process
using different variability languages and architecture
description languages: 1) with feature models and AO-
ADL, an aspect-oriented architecture description lan-
guage [12, 13]; and 2) using the Common Variability
Language (CVL) and a MOF-compliant language such
as UML [14]. We illustrate our approach with an e-
voting case study and quantitatively evaluate both ap-
proaches by using suitable metrics (degree of depend-
ency, variability, automation, separation of concerns) to
assess the benefits of each approach. Also, we discuss
the benefits and disadvantages of both implementations
of our approach.

The remainder of the paper is organised as follows:
Section 2 presents the challenges addresed in this work
and motivates it with a case study. Section 3 over-
views our approach. In Section 4 we explain in detail
how we model FQAs with two different instantiations
of our approach. The customisation and incorporation
of the FQAs into the base application of our case study
is explained in Sections 5 and 6, respectively. In Sec-
tion 7 we evaluate our approach, while in Section 8 we
identify and discusses the benefits and limitations of our
approach. Section 9 discusses the related work. Finally,
Section 10 concludes the paper.

2. Motivation and Challenges

In this section we present the specific challenges ad-
dressed in this work and the motivating case study we
use to illustrate our approach.

2

2.1. Challenges

In this section we describe the specific challenges ad-
dressed in our work related to FQA modelling and the
weaving of a tailored FQA configuration into different
applications.

Challenge 1. Manage the variability of FQAs and
their customisation according to the application re-
quirements. The issue of the high degree of variability
in FQAs has been neglected or even ignored by most
software architects as attention has mainly focused on
functional variability [9]. The challenge is to model all
the possible FQA variation points independently of the
final application, which is not a trivial task.In this paper
we define a family of FQAs, following an SPL approach,
that supports the customisation of FQAs to satisfy the
specific requirements of each application. We provide
a process that configures FQA variation points in such
a way that variable concerns that are not required by
the base application are not incorporated into the final
application. In this paper we explore the use of both
FM and CVL languages to specify a family of reusable
FQAs.

Challenge 2. Manage dependencies between
FQAs. In FQA modelling, dependencies between con-
cerns that are part of the same FQA need to be taken into
account, — i.e.,intraFQA-dependencies. Furthermore,
dependency relationships between different FQAs must
also be considered, — i.e.,interFQA-dependencies.
These kinds of dependencies often go unnoticed by soft-
ware architects, who are not domain experts in mod-
elling all types of FQAs.Using the support provided
by the SPL approach these dependencies are automat-
ically traced and incorporated into the solution even if
they have not been explicitly selected by the software ar-
chitect. For example, if a concern X depends on other
concerns Y, W and Z, then these other concerns should
be automatically incorporated into the solution even if
they have not been explicitly selected by the software
architect.

Challenge 3. Define architectural patterns with re-
usable FQAs. Once the FQAs have been modelled as
independently as possible, the customised FQAs need
to be woven with the final application. The challenge
here is to define a process that systematically integrates
high-level quality solutions into the base architecture of
a given application, but without having to either un-
derstand the inner working of the quality solutions, or
break the application’s core architecture, — i.e., archi-
tecture components should be completely unaware of
the FQAs they are affected by. This is not a straight-
forward task since each FQA needs to be woven at dif-

ferent points of the base applications.Moreover, mul-
tiple views may be required to appropriately model the
FQAs (e.g., behavioural view, structural view), and this
makes the weaving process even more complex.As part
of our work we define different architectural weaving
patterns, following the non-invasive weaving mechan-
ism of aspect-orientation. For this we follow two differ-
ent approaches: (i) use connector templates defined by
the AO-ADL language; and (ii) use CVL and implement
the corresponding model transformations.

Challenge 4. Support the approach with tools.The
approach presented in this paper is not viable without
the required tool support.In our approach we combine
several tools for SPL and AOSD in order to completely
automate the process of: (1) generating customised soft-
ware architectures for the FQAs required by an applic-
ation, and (2) weaving these software architectures with
the software architecture of the core functionality of the
application.

2.2. Motivating Case Study

We illustrate our approach with a case study of an on-
line electronic voting (e-voting) application. We have
choosen this application because it is easy to under-
stand, is complex enough to show the details of our
approach and is, moreover, an industrial case study.
In fact, it is one of the demonstrators of the INTER-
TRUST project1, the main motivation of which is separ-
ating security related concerns from the application base
code. With this project, the industrial partners demand
easily instantiable security solutions as part of any dis-
tributed application.

E-voting is one of the environments where FQAs re-
quirements are complex. Figure 1 shows a simplified
software architecture in UML with the main function-
ality of an e-voting application. TheVoter Client

component allows clients to cast their votes from dif-
ferent devices (e.g., smart phones, tablets) to the di-
gital ballot box (Voting Ballot component). The
Voting Server component receives the votes and the
Votes Storage component stores them. Adminis-
trators can manage the election data and get the elec-
tion results through theAdmin Client component that
provides access to the managing functionality of the
system (Voting System component).

Apart from the base functionality shown in Figure 1,
the e-voting application requires strict security restric-
tions. Concretely, it is of paramount importance to guar-
antee that: (1) the privacy of the voter must be preserved

1http://www.inter-trust.eu/

3

����� ��	�
� ���	
� �
����

���	
� ������
����� ����
��

���	
� ������ ���	
 ��	�
�

Figure 1: E-voting software architecture.

as well as the confidentiality of the votes; (2) at the
same time none of the votes in the digital ballot box
can be altered or lost during transmission (i.e., integrity
of the votes); (3)the voter must be authenticated us-
ing a personal digital certificate, such as an electronic
ID card; and (4) administrators must be authorised to
perform actions over the election data and to obtain a
list of the users authenticated in the system. Further to
these security requirements, the e-voting process needs
to know the location of the voter for statistical reasons.
Moreover, the application must provide contextual help
to the user according to their needs and also provide
feedback information (e.g., alerts when the battery level
of the device is too low). Summarising, from the tex-
tual requirements the software architect can deduce that
the e-voting application requires, at least, the following
FQA concerns:

Security: privacy, confidentiality, integrity, and au-
thentication.

Context awareness:location aware (e.g., GPS, WIFI
location) and device aware (battery status).

Usability: contextual help and feedback (alerts and his-
tory log).

3. A generic process for managing FQAs

In this section we present a general overview of our
approach (Figure 2) that extends the classic framework
for SPL engineering [3] as follows:

• Domain Engineering(top of Figure 2). The goals
of our domain engineering process are: (i) to define
the commonality and the variability of the FQAs,
and (ii) to construct a reusable FQA software archi-
tecture that accomplishes the desired variability.

The requirements from the FQA domain are taken
as input for this process.From this input, do-
main experts identify the commonality and variab-
ility of the FQAs as well as the existing depend-
ency relationships. These include the intraFQAs-
dependencies and the interFQAs-dependencies.
The FQAs analysis allows a variability model to
be specified and defined for the FQAs and a soft-
ware architecture to be constructed that supports
the variability. Reusable architectural patterns for
weaving the FQAs are also specified by the do-
main experts in order to define how the different
FQA concerns should be composed with the core
architecture of the base application. The output
of the process is a product roadmap that determ-
ines the major common and variable features of fu-
ture FQAs architectures. An important thing that is
worth highlighting is that this process is performed
only once. This means that the FQAs software ar-
chitecture and the FQAs variability model will be
completely reused by any application that wants to
configure and incorporate these FQAs into its soft-
ware architecture.

Variability can be expressed through multiple tech-
niques such as FMs [15], annotations [16, 17] or by
using a variability language such as CVL [18]. In
this paper we use FMs and CVL.

• Application Engineering (middle of Figure 2).
The goal of the application engineering process is
to bind the FQAs variability according to the ap-
plication requirements. To do this, the applica-
tion architect identifies the FQAs required by the
application and creates a product configuration of
the FQAs that fulfils those requirements. Then, an
FQAs architecture configuration is automatically
generated as the realisation of the product configur-
ation. The output of this process is an architecture
configuration of the FQAs that only contains those
artefacts of the FQAs software architecture that are
needed according to the application requirements.

• Weaving (bottom of Figure 2). The goal of the
weaving process is to incorporate the FQAs archi-
tecture configuration generated in the previous pro-
cess into the core architecture of the application be-
ing built. The core architecture only contains the
base functionality of the application without any
elements related to the FQAs requirements.

The weaving process is not a straightforward task
since each FQA has to be woven at different points
of the base applications (join points). Further-

4

Application Engineering

Domain Engineering

FQAs Domain
Requirements

Application
Core Architecture

����

�������������

 ����!

"##��������

$�%��&�'����

(�'���

)�&��*�����

$����������

FQAs Analysis

+�''���������)�&��*�������

(�#��,������

- .��&��/"�-,�#��,������

- .���&�/"�-,�#��,������

(�'���

)�&��*�����

0#���1�������

 ����!

(�'���

$�%��&�'����

Application
Requirements

2&�,���

$����������FQAs
Application

Requirements

2&�,���

+��1�!�&�����
FQAs

Product
Configuration

Weaving

FQAs Weaving Patterns
Configuration

Final Application
Architecture

FQAs
Architecture
Configuration

3��� 2�����

.,����1 �������

�/"� 2����&��

"����������

Application
Join Points

'������� ,��� 1�& ���4 �##��������

'������� ,��� ���� ����

����'�������� !���&���,
"##��������

"&��1����

(�'���

"&��1����

5�!��,6

�/"�

2����&��

(�1�������FQAs
Variability
Model

FQAs
Software

Architecture

FQAs
Weaving Patterns

Weaving
Process

Figure 2: Generic process for weaving FQAs customised for anapplication.

more, each FQA concern will be woven accord-
ing to a different weaving pattern, depending on
the semantics of the concern. For instance, the au-
thentication concern is usually woven before the
application join points in order to authenticate the
user (or check whether or not they are authentic-
ated) before executing the target join point. So,
the application architect must identify the points in
the application where the FQA concerns will be in-
corporated, and associate the set of FQAs weaving
patterns provided as part of the FQAs domain en-
gineering process with the customised components
of the FQAs architecture. Also, the weaving pro-
cess should be done automatically, without manu-
ally modifying the core architecture of the applic-
ation. The output of this weaving process is a soft-
ware architecture of the application that also incor-
porates the required FQAs.

4. FQAs Domain Engineering

This section describes the first phase of our generic
process, in which the FQAs, their commonalities and
variabilities, the dependencies between them, and the
weaving patterns of the FQA concerns are identified and
modelled. As we have already said, we present two in-
stantiations of our generic process: (1)using FMs, AO-
ADL and an external Variability Modelling Language
(VML) (see Figure 3);(2) using CVL and any MOF-
based language (see Figure 4).

4.1. FQAs Analysis

The FQAs Analysis sub-process encompasses all
activities for eliciting and documenting the common and
variable requirements of the FQAs [19]. The list of doc-
umented FQAs is very long [20, 1, 2]. For instance,
Juristo et al. [2] identify a list of functional usability
concerns such as feedback, contextual help, undo and
cancel operations, shortcuts, etc. By analysing this in-
formation, domain experts can classify the FQAs (e.g.,
usability) and their concerns (e.g., feedback, contextual
help) and identify their common and variable paramet-
ers. Domain experts must also take into account the dif-
ferent kinds of dependencies between the FQAs, like
for example, contextual help implies authentication. All
this information must be formally specified using a vari-
ability model.

4.2. FQAs Variability Model

With the domain information captured during the
analysis of the FQAs, domain experts define a variab-
ility model of the FQAs. We start with feature mod-
els. The top of Figure 3 shows a partial view of the fea-
ture model representing FQAs, depicting only some of
the FQAs (i.e., security, persistence, context awareness
and usability). For reasons of space we do not include
either all FQAs or all possible features, but the idea is
that this variability model covers all FQAs independ-
ently of the applications, so it should be extended for
new FQAs or concerns when neccesary. For instance,

5

note that we have also considered the persistence FQA
despite the fact that it is not required by the e-voting
case study. We use our FM tool Hydra2 for editing and
instantiating FMs. We group all FQAs in the same tree,
and define one child feature per FQA. The concerns re-
lated with a FQA (e.g.,Feedback) are specified as a
subtree of the FQA feature (e.g.,Usability). Features
can be mandatory (asTraceFileof Usability) or op-
tional (as every FQA such asPersistence). Hydra
also defines groups of features (as temporal, database or
file storage alternatives for persistence. Dependencies
between FQAs are specified as dependencies between
features, which are calledcross-tree constraints. In Hy-
dra cross-tree constraints are expressed in a textual way
using a combination of regular expressions over fea-
tures (e.g., negative features, all features, etc.). Fig-
ure 3 shows some examples such asBatteryStatus

implies TimeAware and Alerts, which must be
read as “the selection of theBatteryStatus feature
implies the automatic selection of theTimeAware and
Alerts features”.

An alternative to FMs is to use the VSpecs tree of
CVL3. FMs and VSpec trees have similar expressiv-
ity. Figure 5 shows an excerpt of the security FQA
that states that, if the security feature (called VSpec
in the CVL language) is selected, then at least one
of the child features or security variation points (e.g.,
Confidentiality, Authentication, etc.) must also
be selected. Moreover, security concerns or vari-
ation points are composed of other sub-concerns. For
instance, there are different kinds of authentication:
user + password (UserPassAuth), intelligent card
(CardAuth), and biometric (BioAuth). The cross-tree
constraints in a VSpec tree are specified by proposi-
tional constraints in OCL (represented as a parallelo-
gram).

Now let us see how to connect the variability model
with the FQAs software architecture (i.e., domain vari-
ability realisation). Feature Models benefit from having
a formal basis [15] and they are well-supported by tools
that make it possible to formally reason about variabil-
ity and to manage the product generation phase easily.
But features represented in an FM are close to require-
ments specification so an additional process is required
in order to generate an architectural configuration that
meets an FM configuration. We need something extra
to establish this correlation and link the features to the
architectural elements. In [12, 13] we proposed using

2The Hydra tool,http://caosd.lcc.uma.es/spl/hydra/
3The CVL tool, http://modelbased.net/tools/

cvl-2-tool/

a separate variability language (e.g., VML [18]4). Fol-
lowing a negative variability approach we start from a
software architecture with the complete functionality of
the FQAs and using VML we specify the actions to (see
middle of Figure 3): (1) modify this complete architec-
ture by removing the elements that do not need to be
there when a feature is not selected in a particular con-
figuration of the feature model (e.g., ifPersistence
is not selected, then we have to remove the persist-
ence component and its connections withUsability

andSecurity related components), and (2) to instanti-
ate or assign values to the parameters of the architecture
when a particular alternative is selected from the feature
model (e.g., the parameters of theHistoryLog com-
ponent when theLogs feature is selected from the fea-
ture model). Note that arrows linking the FM, the VML
program code and the architecture are there to help ex-
plain the relationships between them, and are not part of
any language or model.

To the contrary if we use CVL, the use of VML is no
longer needed since the variation points of the VSpecs
tree have explicit links to elements of the FQA soft-
ware architecture.For example, in Figure 4 the Secur-
ity concern modelled asSecurity_CvVspec is defined
as theSecurity_CU variation point that is linked to
the Security architectural component.Another ad-
vantage of CVL is that the complete variability model
of the FQAs can be divided and modularised in dif-
ferent levels of detail and thus, it is possible to model
each FQA separately in different variability models (like
Security in Figure 5) and then relate those models de-
fining a complete variability model, that includes all
the FQAs, with their dependency relationships (i.e.,
the interFQAs-dependencies) (see Figure 4). The CVL
variability models of other FQAs are detailed in [14].

4.3. FQAs Software Architecture
The FQAs software architecture models the com-

plete functionality of the different FQA concerns. This
means that all the architectural elements (components,
interfaces, connectors, ports, etc.) that cover all the
FQA concerns must be defined. This architecture
can be specified in any Architectural Description Lan-
guage (ADL). For instance, the bottom part of Figure 3
presents the FQAs software architecture modelled in
AO-ADL (see a complete definition in [21]). AO-ADL
is an Aspect-Oriented Architecture Description Lan-
guage that provides support for separating and inject-
ing crosscutting concerns in a non-intrusive way at the

4Visit the web page of our grouphttp://caosd.lcc.uma.es/
aoadl/

6

|Persistence

|ContextAwareness

ContextualHelp Feedback

Alerts

HistoryLog

Logs

ErrorLog

TraceFile

LocationAware

GPS WifiLocation

TimeAware DeviceAware

BatteryStatus IRSensor

TemporalStorage

TemporalSchema

DatabaseStorage

SecureDBStorageDatabaseSchema

FilesSchema

FilesStorage

Security UsabilityContextAwarenessPersistence

FQAs

...

...

Others FQAs...

|Security

789:;
<=>>9?@=:

ABCDEDFBGHB

|Usability

I99JKL?M
<=>>9?@=:

N??9OO<@:P
<=>>9?@=:

QRFSTUVBHWRBCX

YZDS
[\GFB]FRZ^YB^_

`BBabZHc

dGHCX_FE\G

eGFBfCEFX

QHHBDD[\GFC\^

ghigjk
klmlnop

qlrstuvl
wuxurlvlx yzrsznlnv

{B|RECBa {\^B AC\}EaBa {\^B QD_BHFRZ^ {\^B

~��9
<=>>9?@=:

�E�BQ�ZCB TB}EHBQ�ZCB�\HZFE\GQ�ZCB

|Authentication DatabaseAdapter

Access
Control

Integrity |Hash|EncryptionConfidentiality

��N
<=>>

VBDDE\G

`BBabZHc

YZDS

�9OO
<=>>

�>?:
<=>>

VF\CZfBWRBCX

WRBCX

[\G�EaBGFEZ^EFXQHHBDD[\GFC\^ eGFBfC EFXdGHCX_FE\G

SecurityTemplate

�E�BQ�ZCB

PersistenceManager

DataBaseAdapter

SchemaEvo

FilesStorageTemporalStorage

��
<=>>

ABCDEDFBGHB

VHS�d}\

~9�
<=>>

I�P9O
<=>>

TUVBHWRBCX

`E^BDVFTUVF�B�_VF

PersistenceTemplate

ContextualHelp

|Feedback

Usability Template
[\GFB]FRZ^
YB^_

`BBabZHc
VF\CZfBWRBCX

QHHBDD[\GFC\^

�\HZFE\G
Q�ZCB

TimeAware

|DeviceAware

ContextAwareness Template

dG}EC\G�BGF
Q�ZCB

`BBabZHc

|EnvironmentAware

|LocationAware ~��9
<=>>

�E�BQ�ZCB

TB}EHBQ�ZCB

VF\CZfBWRBCX

ContextualHelp implies Authentication;
TraceFile implies FilesStorage;
BatteryStatus implies TimeAware and Alerts;
SecureDBStorage implies Authentication;
...

��oxu �luv�xl �zolt klmlnop

Mandatory Optional XOR-Group OR-Group

Cross-tree constraints:

Concern FQAs {
 variant for not Persistence {
 removeComponent(Persistence);
 removeConnector(QueryConnector);
 removeInterface(Usability@StorageQuery);
 removeInterface(Security@StorageQuery);
 }

 variant for HistoryLog {
 instantiateComponent(Usability@Feedback@LogsManager, HistoryLogManager);
 instantiateComponent(Usability@Feedback@LogsView, HistoryLogView);
 }
 ...
}

H
yd
ra
 F
e
at
u
re
 M

o
de

l
Ex

te
rn
al

V
ar
ia
bi
lit
y
M
o
de

lli
ng

 L
an

g
u
ag

e
(V
M
L
F
ile

)
A
O
-A
D
L
A
rc
h
ite

ct
u
ra
l T

em
pl
a
te
s

Complete FQAs template

dG}EC\G�BGFQ�ZCB

�LO�
<=>>

Figure 3: Domain Engineering of the FQA family using FMs, AO-ADL and VML languages.

architectural level. The main entities of AO-ADL are
components, connectors, required and provided roles
(i.e., roles are special connector interfaces in AO-ADL),
and an aspectual role to connect components modelling
crosscutting concerns (i.e., advice in AO terminology).
Components modelling crosscutting concerns that are
injected at different architectural join points, are at-

tached to an aspectual role. AO-ADL also provides sup-
port for modelling parameterised architectural patterns
by defining an AO-ADL architectural template [22].
AO-ADL is completely supported by the AO-ADL Tool
Suite5. We define the software architectures with two

5http://caosd.lcc.uma.es/aoadl/index.htm

7

«component»
Context-Awareness

«component»
Persistence

EnvironmentAware

«component»
Usability

«component»
Security

ExecutionControl

Non-Repudiation

DigitalSignature

Authentication
Contextual Help

LocationAware

Confidentiality

Device Aware

Authorization
Persistence

TimeAware

Encryption

Feedback

Integrity

Hash

FQAs_Int

FQAs_CU

Security_CU ContextAwareness_CU Usability_CU

FQAs

1..*

Security_Cv ContextAwareness_Cv Usability_Cv

FQAs_Cv

������������������������� ����¡¢������

��£���¤���¥��¦�����������§�¡��£���¥¡���£�̈ ���������� �̈�����¥��¦�

©¥¡��ª����«�������������§�¡��£���¥¡

Persistence_Cv ...

...
...

Persistence_CU

V
S
p
ec
s
tr
ee

V
ar
ia
ti
o
n
P
oi
n
ts

U
M
L
S
o
ft
w
ar
e
A
rc
h
it
e
ct
ur
e

C
V
L
 V
ar
ia
b
ili
ty
 M

o
de

l

...

¬­®¯°± ²¯³¯´µ¶

·���¥¡��

¸�¡¢��¥��

©§¥�£�

·©¹ ©¥¡�����¡�

��¡ºº��ª
¸�������£���

¬»¼½»¾½¿½ÀÁ ÂÃµ¯¿ ²¯³¯´µ¶

��¡¢�¡¦

���� �¥¢�� ��Ä���¡£�

©¥��¥���� Å���£

Å����Æ����� Ç¡���Ä�£�

©¥¡Ä�¦���Æ�� È¡��

Figure 4: Complete variability model of the FQAs in CVL.

levels of granularity. In the first level, shown on the
bottom left of Figure 3, there is a composite compon-
ent representing each FQA. For example,Security

andUsability are composite parameterised compon-
ents (i.e., sub-templates in AO-ADL terminology) that
will be bound at the application engineering phase to
concrete components. Circles represent connectors,
that in this case, are used to represent the interFQA-
dependencies at the architectural level. For instance,
“usability requires persistence” and this dependency is
represented by theQueryConnector connector and the
StorageQuery required interface (i.e., role in AO-ADL
terminology). The bottom right of Figure 3 shows
the AO-ADL templates (i.e., parameterisable compos-
ite components) modelling each FQA in detail. Ele-
ments defined as parameters are related to OR fea-
tures in the feature model (e.g.,|Authentication in
theSecurityTemplate), which have to be instantiated
later, for a specific application (e.g., with a concrete au-
thentication mechanism).

Regarding the CVL case, one of the most important
benefits of this language is that the product line architec-
ture can be specified in any MOF-compliant language.
In our approach we decided to use the widely known
standard UML. In the UML full version of the archi-
tecture, each FQA is modelled with a composite com-
ponent and the inter-FQA dependencies are modelled
using provided-required interfaces. This architecture
for the security FQA is defined at the bottom of Fig-
ure 5, where each concern (e.g.,DigitalIdentity) is
modelled with a UML component and dependencies are
modelled using classical provided-required interfaces.
For example, we define a cross-tree constraint which
says that “confidentiality requires encryption” and this
is represented in UML with a provided-required inter-
face between both components. The main difference
between UML and AO-ADL is that with AO-ADL this
dependency is modelled by theEncrConn connector
that provides the encryption functionality through a spe-
cial AO-ADL interface calledaspectual role(in black).

8

«component»
Security

«component»
Authentication

«component»
Pseudonymous

 Certificate

«component»
Biometric

Recognition

«component»
User

Password

«component»
Session
Manager

«component»
Digital

Identity

TimeAware

Logs

«component»
Hash

«component»
HashManager

«component»
MD5

«component»
SHA-1

«component»
SHA-2

«component»
Encryption

«component»
Key

Repository

«component»
Encryption
Manager

«component»
RSA

«component»
ECDSA

«component»
AES

«component»
TDEA

«component»
DSA

«component»
Non-Repudiation

«component»
Digital Signature

«component»
Confidentiality

«component»
Authorization

«component»
Integrity

Authorization
Encryption

Hash

Non-Repudiation

DigitalSignature
Authentication

Confidentiality

Authorization

TimeAware

Encryption

Feedback

Integrity
Hash

Security_Int

Security_CU

Confidentiality Authentication

UserPassAuth

CardAuth

AuthLogging

BioAuth SymmetricAsymmetric

1..1

1..1

1..*

Encryption

PrivacyAuthentication

Integrity

SHA-2
MD5

HashEncryption

Security

1..1
Hash

:ObjectExistence

DSA

RSA

ECDSA

AES DES

1..* 1..*

SHA-1

...

LimitedSession
Security_Cv

KeyStorage

PseudonymousCertificate

:LinkExistence

:ObjectExistence :ObjectExistence

:LinkExistence :ObjectExistence

:ObjectExistence

V
S
p
ec
s
tr
e
e

V
a
ri
a
ti
o
n
 P
o
in
ts

U
M
L
S
o
ft
w
ar
e
A
rc
h
it
ec

tu
re

C
V
L
V
ar
ia
b
ili
ty
 M

od
el

VSpecs Legend :

Optional

Mandatory

Choice

OCL Constraint

min..max
Multiplicity

Variability Model Legend :

Binding

Base model reference

Composite VSpec

Variability Interface

Configurable Unit

...

Figure 5: Domain Engineering of the Security FQA using CVL and UML.

In practice, this aspectual role means that we can modify
the encryption interface (e.g., adding new encryption
algorithms) without modifying the connection (i.e., in-
terfaces) betweenEncryption andConfidentiality
components. To do this in UML, we would need to
manually modify the relationships between the encryp-
tion interfaces.

4.4. FQAs Weaving Patterns

The approximation of first separating the crosscut-
ting functionality (i.e., the crosscutting FQAs in our
approach) as an independent model and then weaving
it with the base components affected by these cross-
cutting behaviours (i.e., the software architecture of
the base application without FQAs in our approach) is
typically followed by Aspect-Oriented Modelling ap-
proaches (AOM)6. In fact, AOM approaches have as

6http://www.aspect-modeling.org/

their goal to allow a modeller to separate crosscutting
behaviours in the detailed design development stage,
and then themodel weavingis carried out between base
and crosscutting models (i.e.,aspectual modelsin AO
terminology). We follow the same model weaving ap-
proach in order to weave the FQAs architecture config-
uration and the application architecture in the applica-
tion engineering phase (see Section 5). But, this is not a
trivial task for two main reasons: (1) each concern in the
FQAs architecture has to be woven at different points of
the base applications (join points) and, (2) each FQA
concern will be woven according to a different weaving
pattern, depending on the semantics of the concern. For
example, authentication is required to be woven before
the user vote, but it is also required in other join points,
for instance around the contextual help. In AO termino-
logy this is defined as FQAs (i.e., crosscutting models)
are composed before, after or around the base model
(i.e., different kinds ofadvicein AO terminology).

9

Table 1: Weaving Patterns.

Weaving Pattern Description Example

WP1 Only one advice of a concern is woven
into a join point.

Authentication: theauthenticate() advice is performedaroundthe join point.

WP2 The same advice is woven multiple times
into a join point.

Time aware: currentTime() is applied twice (beforeandafter) to measure the time session of the
user.

WP3 The same advice is woven into different
join points.

Location aware: theacquirePosition() advice needs to be applied on the client and on the server
side to establish locations.

WP4 Multiple advice methods of the same con-
cern are woven into a join point.

Feedback: log() advice is invokedbeforeand thenafter the join point.

WP5 Multiple advice methods of the same con-
cern are woven into different join points.

Encryption : encrypt the information (encrypt(Object)) before sending it and decrypt it
(decrypt(Object)) after receiving it.

WP6 Advice methods of different concerns are
woven into a join point.

Contextual help: first check whether the user is authenticated (isAuthenticated()) and then
show information (showHelp()) based on the preferences of the user.

WP7 Advice methods of different concerns are
woven into different join points.

Integrity : hash(Object) is applied before sending information to the server and
checkIntegrity(Object) is appliedbeforeusing the information in the server.

In our approach, the crosscutting functionality of
each FQA concern is encapsulated in a software com-
ponent. Let us consider that we want to inject one or
several behaviours (i.e., concerns of each FQA) or “as-
pectual components” (following the AO terminology)
between two components that are connected through a
certain connector (e.g., a provided-required interface).
To simplify, we consider that aspectual components im-
plementing each FQA concern only provide one inter-
face, and the possible join points are the methods of
the interface. This simplification is reasonable since
aspectual components are supposed to implement only
one concern to avoid having entangled functionality
(see Figure 5).In addition, each aspectual component
interface can implement one or several methods (or ad-
vice in AO terminology). For instance, the digital sig-
nature concern has only one advice: thesign(Object)

method; while the encryption concern has two: the
encrypt(Object)method and thedecrypt(Object)
method. Additionally, each advice incorporated into a
join point can be executed at a different time:before,
after, or aroundthe join point.

Table 1 summarises the weaving patterns (WPs)
defined. The first three WPs refer to the application of
one advice at one join point, once or several times or
applied in several join points. WP4 and WP5 specify
the application of multiple advice of the same concern
in one or in several join points. And the last two WPs
define the advice weaving of different concerns into one
or several join points. Combining two or more of these
weaving patterns we cover all the weaving possibilities.
In Section 6 we show how we have implemented these
generic weaving patterns in AO-ADL and in UML ar-
chitectures.The specification of the kind of the advice
(before, after, and around) makes sense in the structural
view because our intention is to model that the crosscut-
ting behaviour modelled by the FQAs is affecting spe-
cific methods of the component’s interface, and not the

component’s interface as a whole. So the advice will
be injected before, after or around that specific method.
In the case of AO-ADL, the target method where the ad-
vice is applied and the kind of the advice are specified in
XML inside the aspectual binding of the associated con-
nector (see Section 6.1). In the case of CVL, a «cross-
cutts» relationship is specified between the advice of the
FQA and the target method of the application’s inter-
face in the structural view, and additionally, a sequence
diagram is automatically generated to specify when the
advice is applied (see Section 6.2).

5. FQAs Application Engineering

This section describes the second phase of our gen-
eric process (Figure 2), in which a valid configuration
(customisation) of the FQAs variability model is gen-
erated, taking as input the specific requirements of the
application under development (in our case, the e-voting
case study of Section 2.2).

5.1. Creating a Product Configuration

A product configuration in SPL approaches is defined
as the set of features that satisfy the application require-
ments. In this task of the process, the software archi-
tect should map the high-level application requirements
and the features (or VSpecs) present in the variability
model (i.e., feature model or VSpec tree). For example,
in Section 2.2 it is stated that the e-voting process needs
to provide real-time information about the users that are
voting. This requirement helps in the usability of the
application for the administrator, by providing him/her
with a rapid graphical visualisation of the users that are
voting at all times. To include this specific FQA in the
application, the software architect simply has to select
the HistoryLog concern of the usability FQA in the
variability model.

10

«component»
Security

«component»
Authentication

«component»
Session
Manager

«component»
Digital

Identity

TimeAware

Logs

«component»
Encryption

«component»
Key

Repository
«component»
Encryption
Manager

«component»
ECDSA

«component»
Hash

«component»
HashManager

«component»
SHA-2

«component»
Confidentiality

«component»
Integrity

Confidentiality

Encryption Storage

Hash

«component»
Context-Awareness

«component»
Location Aware

«component»
Location
Manager «component»

Wifi Location

«component»
GPS

«component»
Device Aware

«component»
Device Aware

Manager

«component»
Battery
Status

TimeAware

«component»
TimeAware

«component»
Persistence

«component»
Persistence Manager

«component»
Schema Evolution

«component»
FilesStorage

«component»
Data Base
Adapter

«component»
Usability

«component»
Feedback

«component»
Alerts

«component»
LogsFiles

«component»
Contextual

HelpAuthentication Contextual Help

LocationAware

Authentication

Confidentiality

Device Aware

Persistence

TimeAware

Encryption

Feedback

Integrity
Hash

Figure 6: FQAs architecture configuration (resolved model of the FQAs).

Formally, a configuration of a feature model (called a
feature model configuration) is a new tree resulting from
the selection of a set of features that satisfy the applica-
tion requirements. A configuration is valid if all features
contained in the configuration and none of the features
excluded by cross-tree constraints are present. In order
to check whether or not a configuration is valid, Hydra
uses a Java library for Constraint Satisfaction Problems
(CSP) called Choco7. Hydra generates the minimal con-
figuration, with the least number of features that satisfy
the initial constraints. In the CVL approach, a product
configuration is known as theresolution model, which
is created by deciding which choices of the VSpec tree
are positively decided and which ones are negatively de-
cided (see selected features in grey at Figure 3 and Fig-
ure 5 for the e-voting case study).

In both approaches, the generation of a configuration
is automatically done by a tool. In our approach this
tool will automatically check parent-child dependencies
between concerns and sub-concerns expressed as tree
constraints; and interFQA- and intraFQA- dependencies
expressed as cross-tree constraints. This will alleviate
the software architect’s task in selecting each of the con-
cerns needed by the application. Coming back to our ex-
ample, the requirement “the privacy of the voter must be
preserved as well as the integrity of the votes” determ-
ines the selection of privacy and integrity features. But,
privacy requires authentication (intraFQA-dependency)
and it is a child of confidentiality that depends on en-
cryption (other intraFQA-dependency), while integrity

7http://choco-solver.org/

requires hashing, so although the requirements would
not have explicitly stated that the e-voting application
requires encryption and hashing, they will be selected
automatically by the FM or CVL tool.

Moreover, there are other dependencies that are
not so evident to the software architect, especially
the interFQA-dependencies. In our case study, note
that, because of the definition of the cross-tree con-
straint TraceFile implies FilesStorage which
defines a dependency between a usability concern
(i.e.,Logs/TraceFile) and a persistence concern (i.e.,
FileStorage), the FilesStorage concern is auto-
matically selected as part of the configuration. Note also
that persistence was not initially a requirement of the e-
voting application, but it needs to be selected in order
to obtain a valid configuration. The FQA product con-
figuration not only has the features selected by the soft-
ware architect, but also those that depend on the selec-
ted ones. This guarantees that only the minimal but ne-
cessary set of concerns considering both the interFQA-
and intraFQA- dependencies are present in the result-
ing configuration. Also, regarding those concerns that
have to be selected due to the parent-child relationship,
the tool will not generate a valid configuration until
the software architect selects a specific value for each
branch. For example, if the software architect selects
the encryption FQA (or even if it is selected automat-
ically due to a dependency relationship), the tool will
not generate a valid configuration until the software
architect selects a specific encryption algorithm (e.g.,
Encryption/Asymmetric/ECDSA, see dark features in
Figure 3).

11

5.2. Product Realisation

Once the FQA product configuration has been ob-
tained, the automatic process must generate an archi-
tecture configuration. A FQAs architecture configura-
tion consists of the set of components and connections
that realise or implement the features that are part of
a feature configuration (or resolution model in CVL).
In the case of FMs, the tool reads the feature config-
uration obtained with Hydra and for each feature ap-
plies the corresponding VML rule to automatically gen-
erate an AO-ADL architecture of the FQAs required
by the application. For example, for theHistoryLog
feature the second VML rule of Figure 3 is applied so
the HistoryLogManager and HistoyLogView com-
ponents are added to the final architecture.

In the case of CVL, the same variability model in-
cludes the variation points that indicate how the vari-
ability expressed in the VSpec tree is materialised in-
side the FQAs architecture. The variation points need
to be bound to elements of the VSpec tree and need to
refer to elements of the FQAs architecture. For instance,
the variation point (:ObjectExistence) bound to
theConfidentiality concern in theSecurity_Int
VSpec indicates that ifConfidentiality is selec-
ted in a resolution model, the related elements (the
Confidentiality component and the associated in-
terfaces and ports with their attachments) in the archi-
tecture will exist in the final architecture configuration.
If Confidentiality is not selected those related ele-
ments will be removed from the FQAs resolved model.
Similarly, the variation point (:LinkExistence)bound
to the Privacy feature represents the dependency
between the privacy (part of theConfidentiality
component) and the authentication concerns. The vari-
ation point indicates the existence of that particular link.
If Privacy is selected in the resolution model the link
will exist in the resolved model, and ifPrivacy is
not selected, the link will be removed. The CVL tool
will generate the resolved model of the FQAs, which
is shown in Figure 6, and only includes the necessary
functional components. This customised FQA architec-
ture is now ready to be woven with the software archi-
tecture of the core application, as described in next sec-
tion.

6. Weaving the FQAs and the application architec-
ture

At this point, an architectural model with the required
FQAs and concerns has been generated.Now, in the
third process of our approach (lowest part in Figure 2)

|Conn

|source |target

Authentication

1. <aspectual_binding name=”Authentication_AB”>
2. <pointcut_specification>
3. <pointcut>

(//provided_role[@name=’++=tp.getXPathElement
(doc, $$$//instance/provided_role[@name=’source’]
/instance_name$$$)--‘]) and (//operation[@name=’*’])

4. </pointcut>
5. </pointcut_specification>
6. <binding order=”last” operator=”around”>
7. <aspectual_component aspectual_role_name=”Aut hentication”>
8. <advice label=”authenticate” />
9. <attachment>
10. <argument_binding target=”user [OBJECT]” />
11. <argument_binding target=”BOOLEAN [returnTy pe]” />
12. </attachment>
13. </aspectual_component>
14. </binding>

...
15. </aspectual_binding>

Figure 7: Connector template for Authentication.

this FQAs architecture configuration has to be incorpor-
ated into the software architecture of the core applica-
tion (Figure 1).

6.1. AO-ADL: Weaving an FQA configuration using
AO-ADL connector templates

As AO-ADL is an aspect-oriented architecture lan-
guage, the aim of this language is to perform an aspect-
oriented weaving, which means, without modifying ex-
isting components of the base software architecture. In
order to do that, AO-ADL extends traditional connect-
ors with aspectual roles(roles filled in black color in
Figure 7). An aspectual role is a special role where com-
ponents that encapsulate crosscutting concerns are at-
tached by defining an aspectual binding section. These
components that play the role of “aspects” (in aspect-
oriented terminology) are called in AO-ADLaspectual
components. In current work, FQAs (i.e., persistence,
usability, etc.) are considered to be aspectual compon-
ents. In order to incorporate these aspectual compon-
ents into the base application, we need to define how to
connect them to the application’s existing connectors.
Instead of having to manually modify the base applic-
ation’s connectors, the addition of the aspectual com-
ponent is automated via the definition of an AO-ADL
connector template(see XML code in Figure 7). A con-
nector template is a connector that has one or more as-
pectual bindings defining the interactions between the
aspectual component attached to the aspectual role and
the components of the core applications — i.e., the
source and target parameters (see top of Figure 7). The

12

Voting
Ballot

Conn3

Voting
Server

Conn5

Voting
System

Conn6

Conn4
Votes
Storage

Voter Client Conn1

Conn2

Persistence

Security

Query

Connector

Persistence

Usability

Feedback

Connector

AccessCtrl
Connector

AuthDBSecQuery

Hash

ContextualHelp

Feedback

Encryption

Integrity

AccessControl

Time

Connector

ContextAwareness

TimeAware

DeviceAware

StorageQuery

Encryption

Integrity

Authentication

Authentication

ContextualHelp

Feedback

DeviceAware

Admin Client
LocationAware

LocationAware

Figure 8: Complete application architecture with the FQAs woven using AO-ADL connector templates.

connector template instantiation consists of binding the
source and target parameters to source and target com-
ponents of the core application affected by aspectual
components. Afterwards, the AO-ADL Tool Suite auto-
matically adds a new connector (or modifies an exist-
ing one) with the aspectual role and the aspectual bind-
ings defined in the connector template. We exploit
this powerful characteristic of AO-ADL connector tem-
plates to define the weaving between the application
configuration and the instantiated FQA architecture.

In our process, the variability designer must manually
define a connector template for each interaction type
where FQAs could be applied, according to the weaving
patterns defined in Table 1. For example, authentica-
tion is incorporated using WP1 (only one advice woven
around a join point), so the aspectual binding defined
for the authentication connector template (see XML
code in Figure 7) says that the authentication aspectual
component will be attached to the“Authentication”
aspectual_role_name (line 7) and the join point cap-
tured is defined by the pointcut section of this connector.
Concretely, the pointcut says that any incoming mes-

sage (//operation[@name='*'at line 3) will be inter-
cepted by the aspectual component attached to the “Au-
thentication” aspectual role, and theauthenticatead-
vice (line 8) will be injectedaround (line 6) the incom-
ing message. At this stage of the process, the software
architect has: (i) to identify those points of the base
architecture where some FQAs are required; and, (ii)
instantiate the appropriate connector templates defined
for the required FQAs, by binding the source and target
parameters to the provided and required interfaces of
the affected components. One advantage of AO-ADL
templates is that once they have been defined, they can
be automatically instantiated and fully reused by the
software architect.Moreover, if the software architect
wants to make any modifications, for instance, change
the advice type, this can be easily done and a new con-
nector template will be added to the AO-ADL template
repository.For example, if the software architect prefers
to apply authentication “before” and not “around” a join
point, he/she only has to modify the XML file of the
template and substitute the termaround with before

(line 6).

13

Figure 9: FQA weaving schema with CVL and model-to-model transformations.

Figure 8 shows the result of instantiating all
the connector templates for the e-voting applica-
tion. The connectors that have been instanti-
ated (automatically modified by the AO-ADL tool)
are those that have an aspectual role (in bold):
Conn1 (Authentication was automatically added);
Conn2 (idem for LocationAware, ContextualHelp,
Feedback and DeviceAware); Conn3 (idem for
Integrity and Encryption), Conn5 (idem for En-
cryption) andConn6 (idem forAuthentication).

6.2. CVL: Weaving an FQA configuration with model
transformations

In the case of CVL, we have MOF-compliant dia-
grams (UML in this paper) for representing the applic-
ation architecture and also the FQAs architecture con-
figuration. The challenge here is to extend the UML
(or MOF-compliant metamodel) application architec-
ture by injecting new UML artifacts in specific points,
without manually modifying the base architecture. In
Section 5 we have already defined a set of weaving pat-
terns that specify the different types of model injection
that must be implemented to support this part of the pro-
cess. In this section we will show how we have im-
plemented the weaving patterns presented in Table 1 as
model transformations following an AOM approach.

6.2.1. CVL materialisation of the application resolved
model with FQAs

Figure 9 shows a general schema of our weaving ap-
proach.From the last phase of the process we have the
FQA resolved model (FQA architecture customised for
the application) that we want to inject into the applica-
tion architecture model following the weaving patterns

already defined.In order to accomplish this automat-
ically, and without modifying the base architecture, we
take advantage of theOpaque Variation Points(OVPs)
defined by CVL. The way that we use the OVPs to im-
plement the FQA weaving is the main contribution of
the CVL part of our approach. OVPs allow us to define
a new semantics variation point using model transform-
ation rules. During variability resolution, the CVL en-
gine (see Figure 9) will delegate its control to a M2M
transformation engine (e.g., ATL) whenever it encoun-
ters an OVP. The M2M transformation engine executes
the semantics specification associated with the underly-
ing OVP and resolves the variability accordingly.

Thus, in our approach (see Figure 10), we: (1)
bind an OVP to each of the FQAs in the resol-
ution model (e.g.,Privacy concern of the VSpec
tree is bound toOpaqueVariationPoint1); (2)
refer to the specific architectural element that mod-
els that concern in the resolved model of the
FQAs (e.g.,OpaqueVariationPoint1 refers to the
Confidentialityprovided interface of the FQAs res-
olution model marking it as thesourceObject); and
(3) indicate how the concern will be woven with the
application architecture model.In order to do this,
each OVP is also bound to an OVPtype, that expli-
citly defines the semantics of a special substitution (e.g.,
SpecialSubstitutionAuth, the semantics of which
is specified inSemanticSpec1). Based on this special
substitution the software architect needs to create a ref-
erence to one or more join points in the base applica-
tion model where the behaviour of the selected concern
will be incorporated (e.g., the interface that connects the
Voter Clientwith theVoting Ballot component is
marked as thetargetObject). In Figure 10 we only

14

«component»
Votes Storage

«component»
Voting Server

«component»
Voter Client

«component»
Voting
System

«component»
Voting Ballot

«component»
Admin Client

Application Architecture Model

«component»
Context-Awareness

«component»
Persistence

«component»
Security

«component»
Usability

Authentication

Contextual Help

LocationAware

Confidentiality

Device Aware

Persistence

TimeAware

Encryption

Feedback

Integrity

Hash

FQAs Resolved Model

OVPs

OpaqueVariationPoint1

OpaqueVariationPoint2

OpaqueVariationPoint3

SpecialSubstitutionAuth

ÉÊËÌ

ÍÎÊË

SpecialSubstitutionEncryp

ÉÊËÌ

ÍÎÊË

...

...

ÉÏÐÑÌËÒÓÔËÌÍÍÕÑÖËÍÒÓÔËÌÍ

Resolution model

Confidentiality Authentication

CardAuthAuthLogging AsymmetricPrivacy

Integrity

SHA-2

HashEncryption

Security

ECDSALimitedSession

KeyStorage

...

Persistence Usability

FQAs

...

...

Context Awareness

...

R
es
o
lv
ed

 V
S
p
ec

s
tr
ee

V
ar
ia
ti
o
n
P
oi
n
ts

B
as
e
M
od

el
s

A
p
pl
ic
at
io
n
W
ea

vi
n
g
 M

o
de

l

SemanticSpec1

SemanticSpec2

Figure 10: CVL model for the incorporation of the FQAs insidethe application architecture.

show three OVPs bound to three concerns: privacy, en-
cryption, and authentication, for reasons of simplicity.

How our transformations implementing the weaving
are invoked by the CVL engine is shown in Algorithm
1 of Figure 9. It takes the set of OVPs defined (SOVP)
and for each OVP the semantics of the special substi-
tution associated (vp.type) is executed by the M2M
transformation engine (line 4).S joinpoints is the set of
join points referenced by the OVP. The output of this
algorithm is an automatically generated model repres-
enting the complete application software architecture
with the custom FQAs (see Figure 11). The difference
between this and the base application architecture is that
those component interactions that are affected by FQAs
are stereotyped as«crosscuts». However, the stereo-

type is insufficient because is not possible to express
how aspectual interactions behave. In order to solve this
limitation, similarly to the AOM approach we defined
in another paper [23], aspectual interactions are also
represented by a set of sequence diagrams. Note that
these sequence diagrams are also automatically gener-
ated by the transformation rules of the special substitu-
tions. For example, Figure 11(b) shows the sequence
diagram that specifies how the authentication concern is
woven when theVoter Client andVoting Ballot

components interact. This sequence diagram comple-
ments the«crosscuts» C1 of Figure 11(a). We also
show a similar example that encrypts and decrypts the
information interchanged between theVoting Ballot

and theVoting Server components (Figure 11(c)).

15

Alt

[if is authenticated]

[else]

:Voter Client :Authentication :Voting Ballot

1. vote()

2. authentication ()

method
interception

3. verifyAuth()

4. proceed ()

:Voting Ballot :Encryption :Voting Server

1. send(vote)

3. encrypt(vote)

method
interception

4. proceed (vote)

:Encryption :Voting Server

5.count(vote)

6. decrypt(vote)

method
interception

4. proceed(vote)

«component»
Context-Awareness

«component»
Persistence

«component»
Security

«component»
Usability

«component»
Votes Storage

«component»
Voting Server

«component»
Voting
System

«component»
Voting Ballot

«component»
Voter Client

«component»
Admin Client

Contextual Help

Authentication

LocationAware

Confidentiality

Device Aware

Persistence

TimeAware

Encryption

Feedback

Integrity

Hash

«crosscuts»
C7

«crosscuts»
C2

«crosscuts»
C1

«crosscuts»
C6

«crosscuts»
C9

«crosscuts»
C8

«crosscuts»
C5

«crosscuts»
C3

«crosscuts»
C4

(a)

(b)

(c)

Figure 11: Complete application architecture with the FQAswoven using CVL.

6.2.2. Implementation of the special substitutions as
M2M transformations

Now we have to define the semantics of the special
substitutions for each weaving pattern defined in Table 1
by means of M2M transformations.Basically, each spe-
cial substitution, implemented as a parameterised M2M
transformation, consists of three main functions (Al-
gorithm 2 in Figure 9):(1) to copy selected concerns
and all related elements in the resolved model —copy
(line 2); (2) to create the«crosscuts» relationships
between the advice and the join points following the
weaving patterns of Table 1 —weavingPatterntype
(line 3); and (3) to represent the interactions between
the components defined by the weaving pattern (see Fig-
ure 11(b)(c)) —interactiontype (line 4). Each spe-
cial substitution can be represented as a sequence of
the operations shown in Algorithm 2 (Figure 9). We
have defined these operations using the elementary op-
erations inspired by the MOF reflective API8. For ex-
ample, one MOF operation issetReference(me, r,

References) that corresponds to the assignment of
References to the referencer of the model element
me. We use it to add«crosscut» references to the ap-
plication architecture model.

In order to illustrate the implementation of weav-
ing patterns, we show how it works for WP5 (see Fig-
ure 12), where multiple advice functions of the same
concern are woven into different join points. The selec-
ted methods representing the join points can belong to
the same or to different interfaces defined by the MOF
application metamodel. The FQA that typically uses
this weaving pattern is the encryption concern of secur-
ity that needs to encrypt the user votes before sending

8http://www.omg.org/spec/MOF/2.0/

+encrypt(Object) : Object
+decrypt(Object) : Object

Encryption

«component»
Voting
System

«component»
Voting
Ballot

«component»
Voting
Server

«component»
Encryption

+count(Vote)

Int2

+send(Vote)

Int1

«crosscuts»

«crosscuts»

«use»

«use»

Figure 12: Result of applying Weaving Pattern 5 for Encryption.

(encrypt(Object) advice) and decrypt them after re-
ceiving (decrypt(Object) advice). To model it, the
pattern specifies a«crosscuts» link between each pair
of join point — advice. For example, WP5 specifies a
«crosscuts» link between thesend(vote) join point
(at Int1 interface) and theencrypt() advice, and an-
other one between thecount(vote) join point (atInt2
interface) and thedecrypt(Object)advice in order to
decrypt the votes in the counting process. Jointly with
this class diagram we define a sequence diagram repres-
enting this interaction (see Figure 11(c)).

Each M2M transformation can be implemented in
any transformation language, but we have used ATL.
Like the AO-ADL connector templates, these trans-
formations are written once and can be reused in any ap-
plication by instantiating them with the specific applica-

16

tion’s parameters such as the name of the target method
and the components involved in the relationships.We
consider that the effort required in using the two ap-
proaches (i.e., AO-ADL and CVL) is quite similar, since
in both cases the software architect only has to specify
the join points of the application where the FQAs have
to be woven and then he/she just has to execute the sup-
porting tool (AO-ADL tool or CVL and M2M engines).
Also, in both cases the connector templates or the M2M
transformations can be reused and are easily modifiable
by the application engineer.In case of CVL, our ap-
proach enables the weaving process to be performed
over multiple views (e.g., state diagrams, sequence dia-
grams, etc.) by using the CVL extension mechanism
to integrate different model-to-model transformations as
part of the weaving step — i.e., using the Opaque Vari-
ation Points (OVPs). The FQA weaving schema with
CVL (shown in Figure 9) and our weaving patterns (de-
scribed in Table 1) have been defined generically for
the different views, and only the weaving rules (M2M
transformations) need to be defined differently for each
view. In this paper, the same weaving process and the
same weaving patterns have been applied both to do the
weaving with the structural view and to automatically
generate the sequence diagram. This means that the
M2M transformations that automatically generates the
sequence diagram can be reused, slightly modified to
perform the aspect weaving in an already existing se-
quence diagram.

7. Evaluation

In this section we evaluate our work quantitatively by
using metrics to quantify the benefits provided by our
approach, and qualitatively, where the use of a metric is
unsuitable.

7.1. Degree of Modularity and Reusability
The initial hypothesis of this approach was that separ-

ating FQAs has many advantages: automatic generation
of highly cohesive architectures with low coupled com-
ponents and reusability increment of both FQAs and ap-
plication components. In [24] it is demonstrated that
coupling and cohesion metrics are the main predictors
of reusability. Therefore, in order to provide evidence
of this hypothesis we use several coupling and cohesion
metrics (see Table 2). We evaluate these metrics only
considering the FQAs concerns, and not other func-
tional concerns specific to the application. We need to
calculate these metrics on two levels: (1) at the FQA
product line architecture level, and, (2) at the applic-
ation architecture level with the FQAs woven. Also,

since these metrics depend on the elements used to
model the architecture, the results are different for AO-
ADL and MOF-based architectures. In [21] we demon-
strated with several metrics that non-AO architectures
are more coupled and less cohesive than AO-ADL ar-
chitectures. So, in this section we focus on the case
of MOF-based architectures, showing that coupling and
cohesion levels are acceptable.

Coupling is measured by Fan-in and Fan-out and
cohesion by LCC metrics (Table 2) [25]. Regarding
the FQA product line architecture (1), we can calcu-
late these metrics considering: (i) connections between
composite components modelling entire FQAs; and,
(ii) also inside each composite component. The Fan-
in is calculated by counting the number of compon-
ents, which require services from the assessed com-
ponent. The higher the Fan-in for a given compon-
ent, the more reusable it is. Therefore, it makes no
sense to use this metric at the FQA product line ar-
chitecture level since the reusability degree inside the
FQA product line architecture is not significant. The
Fan-out counts the number of components required by
the assessed component, or in other words, the num-
ber of dependency relationships between the compon-
ent assessed and the rest of the components. Inside
FQA composite components, this result is exactly the
number of intraFQA-dependencies modelled by the do-
main experts as provided-required interfaces. Looking
at Figure 5 it is easy to see that there are some con-
cerns with a Fan-out greater than 1, which requires
many other concerns (e.g.,Encryption Manager or
Session Manager at theSecurity composite com-
ponent) but this normally happens when there are many
implementations for the same concern (i.e., modelled as
optional features, such asDSA, ECDSA, . . . , and other
encryption algorithms). But, note that in the resolved
model, if only one of the possible implementations is
permitted, then this number plummets to one. Likewise,
calculating the Fan-out of the FQA composite compon-
ents is the same as calculating the number of interFQA-
dependencies modelled by the domain experts. With re-
spect to the cohesion LCC metric, it counts the num-
ber of concerns addressed by both the functionality and
the required interfaces of the assessed component. The
higher this number is, the lower the cohesion. In this
case, the LCC metric is greater than one for those com-
ponents which require other components, so it is also
related with the dependency number defined. We cal-
culate the dependency degree in Subsection 7.3. How
well we have decomposed the FQA in components is
measured by the CDAC metric [25], which measures
the diffusion of a concern between several components

17

Table 2: Metric Suite.

Modularity and Reusability
Metrics

Fan-in coupling metric: It measures the number of components that require one service.
Fan-out coupling metric: It measures the number of services required by a component.
Lack of concern-based cohesion (LCC):It measures the number of concerns tangled in a particular component.
Concern diffusion over architectural components (CDAC):It measures the number of components in which a concern is scattered.

Variability Metrics

#choices:It measures the total number of choices in a VSpec.
#resolutions: It measures the total number of valid resolutions that can begenerated from a VSpec.
Variability level: Expressed as the ratio#choices:#valid resolutions.

Dependency Metrics
#intraFQA-dependencies:It measures the number of dependencies between the concernsof a FQA.
#interFQA-dependencies:It measures the number of dependencies between different FQAs.

in the software architecture. In our case, we deliber-
ately encapsulate only one concern in each component,
so CDAC is always one for both concern components
and FQA composite components.

At the application architecture woven with FQAs
level (2), these metrics depend on the number of con-
cerns required by the application and on the number of
join points where the FQA components are woven (i.e.,
the Fan-in of FQA components from the point of view of
the application). Table 3 shows the number of concerns
required by several industrial case studies. Consider-
ing an average of 7.83 concerns and the Fan-in metric
of each FQA, it is possible to calculate the reuse rate.
Comparing all the case studies, the highest reusabil-
ity degree is for the encryption and integrity concerns
(83%), which are reused several times in five case stud-
ies. Regarding the Fan-out and LCC metrics, since de-
pendency relationships between application architecture
and FQA configuration are specified outside the com-
ponent interfaces; injecting FQAs, therefore neither in-
crement the coupling, nor the cohesion of base applica-
tion. Therefore, we consider our initial hypothesis to be
proven.

7.2. Degree of Variability

The first challenge posed by this approach was to
manage FQA variability (Challenge 1). In order to eval-
uate how well we address this challenge we calculate
the degree of variability of the FQAs considered in the
EV case study. Table 4 shows the number of choices
the software architect has to select, initially, in the ap-
plication engineering phase and the number of com-
ponents that could be injected per selected FQA. The
highest number corresponds to the Security FQA with
23 choices and 25 components. We have tried to model
all possible variation points for each FQA, in order to
cover a wide range of concerns. This table also shows
the number of different “valid” resolutions (configura-
tions) that can be generated using our approach.

What we wish to highlight with this metric is that as
the number of choices increases, the number of archi-
tecture configurations also increases exponentially. For

example, the number of security configurations (or res-
olutions) is 16589, which means that the software ar-
chitect could obtain any of these architecture configur-
ations. But note, that the software architect does not
need to be aware of this high variability, they only have
to focus on choosing those concerns that fit application
requirements. The variability level is lower for con-
text awareness (12 choices: 191 resolutions), usability (10

choices: 79 resolutions), and persistence (7 choices: 19 res-

olutions) than for security. These results show the be-
nefits of defining a variability model of FQAs in our
generic process: (i) it is applicable to real case studies
(as those in Table 3) since it covers a wide variability
spectrum of FQAs and their concerns; (ii) the number
of components that can be automatically injected into
the application architecture is high (around 55 compon-
ents as Table 4 shows); (iii) the software architect can
reason about possible valid architecture configurations
that match application requirements, one by one, by se-
lecting/deselecting different variation points.

7.3. Degree of Dependency

Regarding Challenge 2, we evaluate the degree of
dependency calculated for the FQAs considered in the
EV case study (Table 5). We can observe the num-
ber of intraFQA-dependencies, interFQA-dependencies
and the total number of dependencies of each FQA.
Despite the fact that modelling the dependency relation-
ships implies more complexity in the definition of the
FQAs, this complexity is transparent to the software ar-
chitect since it is tackled by the domain experts, at the
beginning of our process.

Our hypothesis here is that the interFQA-
dependencies are not usually considered by the
software architect; and, in order to consider the
intraFQA-dependencies for each FQA the software
architect should be an expert in a wide range of FQAs,
which is not always the case. Let us imagine that the
software architect does not use our approach. In this
case, he/she would have to explicitly identify and model
15 dependencies, where 33% of these dependencies

18

Table 3: Case studies.

Case study FQAs #concerns Required concerns

E-Voting (EV)1
Security 6 privacy, confidentiality, encryption, integrity, hashing, and authentication
Context awareness 3 location aware, time aware, and device aware
Usability 2 contextual help and feedback
Persistence 2 database storage and files storage

Intelligent Transportation (IT)1
Security 7 privacy, confidentiality, integrity, encryption, authentication, hashing, and digital signature
Context awareness 2 location aware and environment aware
Usability 1 contextual help

File Sharing (FS) [26]
Security 2 authorisation and encryption
Context awareness 2 location aware and device aware
Persistence 1 files storage

Health Watcher (HW) [27]
Security 5 integrity, hashing, encryption, authentication, and authorisation
Usability 1 contextual help

Toll (TS)2
Security 3 integrity, hashing, and encryption
Usability 1 feedback

Crisis Management (CM) [28]

Security 5 integrity, hashing, recovery, authentication,and authorisation
Usability 1 feedback
Persistence 1 files storage
Error Handling 2 error checking and exception handling

1 http://www.inter-trust.eu//
2 http://www.infolab21.lancs.ac.uk/docs/aosd.pdf

Table 4: Degree of variability.

Security Context awareness Usability Persistence Total

#choices 23 12 10 7 52
#components 25 15 10 5 55
#resolutions 16589 191 79 16 5628368

Table 5: Degree of dependency.

Dependencies Security Context awareness Usability Persistence Total

#intraFQA 7 2 1 0 10
#interFQA 2 1 1 1 5
#total 9 3 2 1 15

are interFQA-dependencies, and 67% are intraFQA-
dependencies9. This could be an error-prone task, since
some of these dependencies are not so evident or can
be forgotten, as we have already shown in Section 4.3.
Since these dependencies are formally modelled as
tree relationships (e.g., cross-tree constraints), we can
ensure that if the domain experts have done their job
correctly, the resulting architecture contains all the
components required to implement all application
requirements with regard to FQAs; and furthermore the
components are correctly connected.

7.4. Degree of Automation

Challenge 3 is addressed by defining reusable archi-
tecture weaving patterns that allow customised FQAs to
be injected in an AO modelling way. We have defined
seven weaving patterns that are used in several FQAs

9We count parent-child relationships and tree constraints also as
intraFQAs-dependencies.

(Table 1). We have shown that these patterns have been
implemented in AO-ADL and for MOF-compliant ar-
chitectures. But, the contribution here is the automatic
process that instantiates the WPs, by connecting FQAs
architecture configurations in certain points of the ap-
plication architecture. We assess how well our approach
addresses this challenge by showing the saving in effort
that this automatic weaving represents compared with
doing the same thing manually, using the degree of auto-
mation metric.

The degree of automation is a measure that allows
the comparison between the software elements (e.g.,
number of requirements at the specification level, ar-
chitectural elements at the architectural level or lines of
code at the implementation level) that need to be defined
manually and the software elements that are generated
automatically using a specific approach. The degree of
automation of an approach also lends itself to assess-
ing the development effort that is needed in order to use
a particular approach, and the degree of reuse and the
gain in productivity that can be achieved.

For the software architect, the main effort is in mod-
elling the main functionality of the application. Thus,
in order to specify the degree of automation of our ap-
proach, we compare the number of architectural ele-
ments that are manually created in the specification of
the software architecture (this includes components, in-
terfaces, ports, interfaces realisations, interfaces usages,
and other relationships such as dependencies) with the
number of architectural elements that are automatic-
ally generated by our process, as we show in Equa-
tion 1 [29]. We only include the results of the CVL
approach, since the results of the AO-ADL approach are

19

Table 6: Degree of automation.

Case study
Specified elements

Degree of automation
manually automatically

EV 26 118 81.94%
IT 25 102 80.31%
FS 24 23 48.94%
HW 62 47 43.12%
TS 126 30 19.23%
CM 39 56 58.95%

very similar as shown in [12].

Degree of Automation=
#elements_FQAs

#elements_core+ #elements_FQAs
(1)

We observe that, in the case study of this pa-
per, the core application is composed of 26 architec-
tural elements as shown in the UMLApplication
Architecture Model in Figure 10: 6 external com-
ponents+ 6 interfaces realisations+ 6 interfaces usa-
ges+ 8 additional internal elements (e.g., subcompon-
ents,. . .) that we have omitted in the figure for simpli-
city. When the FQAs are incorporated, 118 new ele-
ments are added to the architecture (see Figure 6): 32
components and subcomponents+ 18 ports+ 26 inter-
faces realisations+ 33 interfaces usages+ 9 additional
«crosscuts» relationships as shown in Figure 11; obtain-
ing a degree of automation of 81.94%.This value is
higher than in the other case studies because the EV
application requires many FQAs concerns, with many
dependencies between them. The higher the number of
FQAs required, and the higher the number of depend-
encies between them, the greater the benefit obtained
with our process. For instance, the IT case study also
has a high degree of automation (80.31%). The degree
of automation in the other case studies is lower because
they require fewer FQAs.

7.5. Tool support

Both instantiations of the generic process are suppor-
ted by tools. For the first instantiation, FM specification
is supported by our own feature modelling tool (Hydra),
but any other FM tool could be used instead. The rest
of the process is supported and totally implemented as
part of the AO-ADL Tool Suite. We have already shown
the correct functioning of this tool in [21]. The CVL in-
stantiation is covered by the industrial CVL tool10. In

10We are developing a CVL tool to completely support our ap-
proach. A prototype is available inhttp://150.214.108.91/
code/cvl andhttp://150.214.108.91/code/cvltool.

this case, we also implemented the seven weaving pat-
terns as M2M transformations. Since, we are not re-
sponsible for the correct functioning of the CVL tool,
we limit ourselves to discussing the correctness of the
M2M transformations. The M2M transformations are
not so complex since they consist basically in instanti-
ating the parameters defined by the pattern. Concretely,
the M2M transformations bind the join points with the
FQA components that define the advice to be applied in
these join points. This means that our M2M transform-
ations do not modify any components and connections
of the MOF-compliant architecture. These transform-
ations only add«crosscuts» relationships where the
software architect has said to add them. We can ensure
that the generated architecture works well, since is very
easy to visually compare the previous and generated ar-
chitectures by simply taking a look at the«crosscuts»
relationships defined at the desired join points. Regard-
ing the sequence charts, they are automatically gener-
ated once the software architect has specified the OVPs.
These message sequence charts are pre-defined in the
M2M transformations and simply have to be instanti-
ated with the required parameters: source and target
components, selected concern and advice, and the ad-
vice type (i.e., before, after or around) if needed.

8. Discussion

The evaluation results obtained here show that the ef-
fort of separately defining FQAs forming an SPL family
has many advantages: (i) helps the software architect to
identify the interFQA- and intraFQA-dependencies; (ii)
helps the software architect to identify the variability
degree of the solution domain; (iii) the resulting applic-
ation resolved model is less coupled and very cohesive.
But, these benefits are almost the same regardless of the
SPL approach used, so in this section we discuss the
specific advantages of using either AO-ADL or CVL in
our approach.

There are many differences between the two ap-
proaches: (1) the first difference is the variability lan-
guage, FM or VSpec tree. The advantage of VSpec
trees is that they can be modularised, while FMs re-
quire all features in a single tree to be included; (2)
regarding the modelling of software architectures, the
CVL approach is more generic than the AO-ADL ap-
proach. The reason is that CVL allows the use of any
MOF-compliant model, and not an ADL defined by the
academia as is the AO-ADL language; (3) with regard
to the modelling of the variability of the FQAs, CVL
separates the specification of the software architecture
from the specification of its variation points. However,

20

using AO-ADL, the variability information and the ar-
chitecture information is tangled in the VML file. The
VML file stores the links between variation points and
architecture components textually, being difficult to see
the specified connections or check the correctness of
them; (4) with respect to the weaving stage, in AO-ADL
the software architecture of the base application and the
software architecture of the FQAs was not automatically
woven.Only the pointcuts for selecting the points of the
base architecture where the FQAs need to be woven are
defined.The advantage of this is that FQAs and base ar-
chitecture remain separate, but the disadvantage is that
it is difficult for the software architect to reason about
the final architecture. In the CVL case, the CVL execu-
tion engine automatically performs the weaving and we
are able to automatically generate the complete software
architecture of the application, including the FQAs;(5)
with CVL our approach enables the weaving process to
be performed over multiple views (e.g., state diagrams,
sequence diagrams, etc.) by using the CVL extension
mechanism to integrate different model-to-model trans-
formations as part of the weaving step (i.e., the OVPs);
finally (6) the main advantage of CVL compared with
AO-ADL is that CVL is a proposed standard, being
widely known and accepted by both industry and aca-
demia.

Although CVL seems to be the most adequate option
of our generic process, it also has some counterparts.
On the one hand, with MOF a software architect can
define custom meta-models, but our CVL approach as-
sumes that the MOF meta-models used to describe the
application architecture and the FQA architecture are
compatible. Compatible here means that the applica-
tion’s architectural meta-model expresses, at least, the
same constructs as the meta-model of the initial FQAs
model. But, this is not always possible, as a potential
user could use a non-compatible Domain-Specific Lan-
guage. This shortcoming could be easily solved through
an additional model transformation step before perform-
ing the weaving process. On the other hand, when sev-
eral FQAs are applied at the same join point of the ap-
plication, the order of the advice is the same as how
the software architect defined the OVPs in the Applica-
tion Weaving Model and cannot be explicitly specified.
However, in AO-ADL the software architect can specify
the order of the advice functions in the AO-ADL con-
nector template — e.g., binding order (line 6) in Fig-
ure 7. Finally, the CVL tool11 is not mature enough
and does not completely support the CVL specification.

11CVL Tool from SINTEF: http://www.omgwiki.org/

variability/doku.php?id=cvl_tool_from_sintef

Currently, it can be considered an out-of-date proto-
type implementation of the CVL specification that is no
longer under active development.

9. Related Work

In this section, we provide an overview of some of
the work in the field of SPLs, variability of quality at-
tributes, and weaving models.

Most of the approaches that model QAs variability
focus on the analysis of the QAs as non-functional re-
quirements (e.g., cost, maintenance, performance, avail-
ability) in the final product of an SPL, and how the
variations in the functional components of the applic-
ation affect those QAs. For example, the approaches
presented in [5, 6, 30, 31, 7, 32] model variations of
QAs by extending feature models in different ways: in
[5], Benavides et al. deal with extra functional features
using attributes, characteristics of a feature that can be
measured (e.g., latency) and relationships between at-
tributes. In [6] González-Baixauli et al. focus on the
variant analysis of non-functional requirements by in-
troducing a goal/softgoal paradigm and relating it with
feature modelling and use case modelling. Jarzabek et
al. [30] propose an integrated modelling framework (F-
SIG, Feature-Softgoal Interdependency Graph) that ex-
tends feature modelling with concepts of goal-oriented
analysis in two ways: (1) records design rationale in
the form of inter-dependencies among variant features
and QAs during the design of an SPL architecture, and
(2) evaluates the impact of variant features selected for
a target system during its construction. Zhang et al.
[31] use feature models to capture functional require-
ments of an application while using Bayesian belief
models to capture the impact of functional variants on
the QAs. Sinnema et al. [7] propose COVAMOF, which
is a framework to model variability on all layers of ab-
straction of an SPL. COVAMOF captures the variabil-
ity of FQAs in terms of variation points and dependen-
cies by using associations. Dependencies specify prop-
erties that define values of the QAs such as perform-
ance or memory usage. Finally, in [32], George et al.
analyse the impact of security properties on other func-
tional concerns of the base application using an AO ap-
proach. In contrast to our proposal, none of these ap-
proaches address the variation of the functional part of
the QAs themselves. Moreover, QA variability is mod-
elled jointly with the variability of the application.

Another technique to model variability in SPLs in-
stead of feature models is annotating the base model by
means of extensions to the base modelling language.
In [33, 34], Tawhid and Petriu propose a technique

21

to model the commonality and variability in structural
and behavioral SPL views using Model-Driven Devel-
opment (MDD). They add generic annotations related to
a QA (e.g., performance) to a UML model that repres-
ents the set of core reusable SPL assets. Then, through
model transformations, the UML model of a specific
product with concrete annotations (e.g., UML profiles
with stereotypes) of the QA is derived, and a model
for the given product is generated. Annotating the base
model makes this closely related with variability spe-
cifications and prevents the reuse of both the base model
of the application and the variability model of the QAs.
In contrast, using a separate variability language such
as CVL allows the independence of the variability lan-
guage and the modelling language to be maintained. In
addition, this proposal also models non-functional QAs
such as performance instead of FQAs, and introduces
the variability at the design level (e.g., within sequences
diagrams) while we model the variability of the FQAs
earlier on in the development process, at the architec-
tural level.

Existing work that addresses FQAs variability con-
siders that they are part of an SPL. For instance,
QADA [8] (Quality-driven Architecture Design and
quality Analysis) is a specific method to design SPL
architectures by transforming systematic functionality
and QAs into software architectures, but this proposal
does not take into account the quality requirements ex-
plicitly. The RiPLE-DE [9] (RiSE Product Line Engin-
eering - Design Engineering) process is a domain design
process for SPL that can be extended to model the FQAs
variability as part of a family of products. The QAs vari-
ability is represented in feature model diagrams and in
order to achieve desired quality levels, the QAs are com-
plemented with information about the base application
(e.g., the system’s response measure). The variation of
the attributes is given by that information which is usu-
ally represented in numerical values and the architecture
is evaluated in order to achieve the necessary variation
of the QAs. Thus, the variability of the FQAs directly
depends on the base application, avoiding the reuse of
the FQAs.

Another approach that deals with similar challenges
as our approach is the concern-oriented reuse (CORE)
process [35].The main differences between the CORE
approach and our approach are that (1) they model the
variability of the interfaces of the concerns (e.g., inter-
faces of frameworks or components) instead of model-
ling the variability of the internal functionality of the
components as we do; (2) they also focus on the im-
pacts of the concerns on non-functional qualities (e.g.,
access time, efficiency, etc.) by specifying goals us-

ing goal models; while we focus on the functional part
of the quality attributes (e.g., the implementation of a
particular encryption algorithm and its variants). (3)
Their approach depends on the Reusable Aspect Models
(RAM) weaver. RAM is an AO multi-view modelling
approach [36] for software design modelling that con-
sists of a UML package specifying the structure and the
behaviour of a software design using class, sequence,
and state diagrams.So, the RAM weaver is specific for
UML models and makes difficult to apply the approach
to others ADLs. Our approach, instead, is independ-
ent of the language to model the architectures and in the
case of CVL, our approach is suitable for using with any
MOF-compliant language. Additionally, CVL provides
the advantages of MDD by allowing us to define custom
model transformations to apply any kind of modifica-
tion to the architecture.

Recently, CVL has been applied in multiple ap-
proaches. For instance, CVL is used to manage the vari-
ability in the context of software processes [37], busi-
ness processes [38], or even for synthesising an SPL us-
ing model comparison [39]. In [40] the CVL approach
is adopted to specify and resolve the variability of soft-
ware design, such as in workflows. The authors com-
pose the detailed structural and behavioural design mod-
els of the chosen variants by using, as in [35], the RAM
weaver. However, contrary to our proposal, this external
weaver is responsible for composing the reusable as-
pects instead of implementing the weaving process by
using CVL and the transformation engine as we do. Ad-
ditionally, they apply the CVL approach at the design
level while we focus at the architectural level (e.g., com-
ponent diagrams).

Model Driven Engineering (MDE) has also been used
in the field of SPLs [41]. Sijtema proposes a strategy
to let ATL handle the variability by extending the con-
crete syntax of ATL with the concept of variability rules.
Variability rules are used in the context of a transforma-
tion sequence which successively refines models. How-
ever, they first model the variability separately in a fea-
ture diagram and they have to make the feature selec-
tions and the realisation of the artifacts correspond. In
comparison with our proposal, using CVL we model
the variability and bind the features directly to the ele-
ments in the software architecture. We use the basic
ATL without the need to extend it, but our proposal can
also be used with other transformation languages such
as QVT or ETL.

22

10. Conclusions

We have proposed a generic process for modelling the
variability of the FQAs independently of the application
affected by them. Separating the modelling of the FQAs
and the software architecture of the application we im-
prove the separation of concerns and the modularisation
of the FQAs from the early stages of the development
process. We manage the dependencies and interactions
between the concerns of the FQAs. The subsequent in-
corporation of the FQAs into the software architecture
of the application is performed automatically. For that,
we have proposed a set of weaving patterns covering
all the possible types of weaving and we have mapped
the FQA concerns to those weaving patterns. We have
demonstrated the feasibility and advantages of using our
approach by two instantiation of this generic process
with different technologies, academic ones (i.e., FM,
AO-ADL and VML) and industrial ones (i.e., CVL and
MOF-compliant architectures). We have also validated
the different challenges posed by our approach by using
different metrics with very good results.

Acknowledgements

Research funded by the Spanish projects TIN2012-
34840 (co-funded by EU with FEDER funds) and MA-
GIC P12-TIC1814.

References

[1] M. Barbacci, M. Klein, T. Longstaff, C. Weinstock, Quality At-
tributes, Technical Report CMU/SEI-95-TR-021 ESC-TR-95-
021, Carnegie Mellon University, Software Engineering Insti-
tute (1995).

[2] N. Juristo, A. Moreno, M.-I. Sanchez-Segura, Guidelines
for eliciting usability functionalities, IEEE Transac-
tions on Software Engineering 33 (11) (2007) 744–758.
doi:10.1109/TSE.2007.70741.

[3] K. Pohl, G. Böckle, F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques, Springer-
Verlag New York, Inc., 2005.

[4] L. Etxeberria, G. Sagardui, L. Belategi, Quality aware software
product line engineering, Journal of the Brazilian Computer So-
ciety 14 (1) (2008) 57–69. doi:10.1007/BF03192552.

[5] D. Benavides, P. Trinidad, A. Ruiz-Cortés, Automated reas-
oning on feature models, in: Advanced Information Systems
Engineering, Vol. 3520 of LNCS, Springer Berlin Heidelberg,
2005, pp. 491–503. doi:10.1007/11431855_34.

[6] B. González-Baixauli, J. Prado Leite, J. Mylopoulos, Visual
variability analysis for goal models, in: 12th IEEE Interna-
tional Requirements Engineering Conference, 2004, pp. 198–
207. doi:10.1109/ICRE.2004.1335677.

[7] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, Modeling de-
pendencies in product families with COVAMOF, in: 13th An-
nual IEEE International Symposium and Workshop on Engin-
eering of Computer Based Systems, ECBS, 2006, pp. 9 pp.–307.
doi:10.1109/ECBS.2006.49.

[8] M. Matinlassi, E. Niemelä, L. Dobrica, Quality-driven Archi-
tecture Design and Quality Analysis Method: A Revolutionary
Initiation Approach to a Product Line Architecture, VTT pub-
lications, Technical Research Centre of Finland, 2002.

[9] R. d. O. Cavalcanti, E. S. de Almeida, S. R. Meira, Extending
the RiPLE-DE process with quality attribute variability realiza-
tion, in: Proceedings of the Joint ACM SIGSOFT Conference
– QoSA and ACM SIGSOFT Symposium – ISARCS on Qual-
ity of Software Architectures – QoSA and Architecting Critical
Systems – ISARCS, QoSA-ISARCS, ACM, 2011, pp. 159–164.
doi:10.1145/2000259.2000286.

[10] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid,
A. Wąsowski, Cool features and tough decisions: A compar-
ison of variability modeling approaches, in: Proceedings of
the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems, VaMoS, ACM, 2012, pp. 173–182.
doi:10.1145/2110147.2110167.

[11] Ø. Haugen, A. Wasowski, K. Czarnecki, CVL: Common Vari-
ability Language, in: 16th International Software Product
Line Conference, Vol. 2 of SPLC, 2012, pp. 266–267.
doi:10.1145/2364412.2364462.

[12] R. Lence, L. Fuentes, M. Pinto, Quality attributes and
variability in AO-ADL software architectures, in: Proceed-
ings of the 5th European Conference on Software Architec-
ture: Companion Volume, ECSA, ACM, 2011, pp. 7:1–7:10.
doi:10.1145/2031759.2031768.

[13] J. M. Horcas, M. Pinto, L. Fuentes, Variability and dependency
modeling of quality attributes, in: 39th EUROMICRO Con-
ference on Software Engineering and Advanced Applications,
SEAA, 2013, pp. 185–188. doi:10.1109/SEAA.2013.20.

[14] J. M. Horcas, M. Pinto, L. Fuentes, Injecting quality attrib-
utes into software architectures with the common variability
language, in: Proceedings of the 17th International ACM Sig-
soft Symposium on Component-based Software Engineering,
CBSE, ACM, 2014, pp. 35–44. doi:10.1145/2602458.2602460.

[15] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-
oriented domain analysis (foda) feasibility study, Tech. Rep.
CMU/SEI-90-TR-021, Software Engineering Institute, Carne-
gie Mellon University (1990).

[16] M. Fontoura, W. Pree, B. Rumpe, The UML Profile for Frame-
work Architectures, Addison-Wesley Longman Publishing Co.,
Inc., 2000.

[17] H. Gomaa, Designing software product lines with UML
2.0: From use cases to pattern-based software architec-
tures, in: Reuse of Off-the-Shelf Components, Vol. 4039
of LNCS, Springer Berlin Heidelberg, 2006, pp. 440–440.
doi:10.1007/11763864_45.

[18] N. Loughran, P. Sánchez, A. Garcia, L. Fuentes, Language sup-
port for managing variability in architectural models, in:Soft-
ware Composition, Vol. 4954 of LNCS, Springer Berlin Heidel-
berg, 2008, pp. 36–51. doi:10.1007/978-3-540-78789-1_3.

[19] IEEE standard for a software quality metrics methodology,
IEEE Std 1061-1998.

[20] B. Boehm, Characteristics of software quality, TRW series of
software technology, North-Holland Pub. Co., 1978.

[21] M. Pinto, L. Fuentes, J. M. Troya, Specifying aspect-
oriented architectures in AO-ADL , Information and
Software Technology 53 (11) (2011) 1165–1182.
doi:http://dx.doi.org/10.1016/j.infsof.2011.04.003.

[22] M. Pinto, L. Fuentes, Modeling quality attributes withaspect-
oriented architectural templates, J. UCS 17 (5) (2011) 639–669.

[23] M. Pinto, L. Fuentes, L. Fernández, J. Valenzuela, Using AOSD
and MDD to enhance the architectural design phase, in: On the
Move to Meaningful Internet Systems: OTM 2009 Workshops,
Vol. 5872 of LNCS, Springer Berlin Heidelberg, 2009, pp. 360–

23

369. doi:10.1007/978-3-642-05290-3_48.
[24] G. Gui, P. D. Scott, Measuring software component reusability

by coupling and cohesion metrics, Journal of Computers 4 (9)
(2009) 797–805. doi:10.4304/jcp.4.9.797-805.

[25] C. Sant’Anna, E. Figueiredo, A. Garcia, C. Lucena, On the
modularity of software architectures: A concern-driven meas-
urement framework, in: Software Architecture, Vol. 4758
of LNCS, Springer Berlin Heidelberg, 2007, pp. 207–224.
doi:10.1007/978-3-540-75132-8_17.

[26] G. G. Pascual, M. Pinto, L. Fuentes, Component and aspect-
based service product line for pervasive systems, in: Proceed-
ings of the 15th ACM SIGSOFT Symposium on Component
Based Software Engineering, CBSE, ACM, 2012, pp. 115–124.
doi:10.1145/2304736.2304757.

[27] S. Soares, E. Laureano, P. Borba, Implementing distribution and
persistence aspects with AspectJ, SIGPLAN Not. 37 (11) (2002)
174–190. doi:10.1145/583854.582437.

[28] J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management sys-
tems: A case study for aspect-oriented modeling, in: Trans-
actions on Aspect-Oriented Software Development VII, Vol.
6210 of LNCS, Springer Berlin Heidelberg, 2010, pp. 1–22.
doi:10.1007/978-3-642-16086-8_1.

[29] A. Harrington, V. Cahill, Model-driven engineering ofplan-
ning and optimisation algorithms for pervasive computing en-
vironments, in: IEEE International Conference on Pervasive
Computing and Communications, PerCom, 2011, pp. 172–180.
doi:10.1109/PERCOM.2011.5767582.

[30] S. Jarzabek, B. Yang, S. Yoeun, Addressing quality attributes in
domain analysis for product lines, Software, IEE Proceedings -
153 (2) (2006) 61–73.

[31] H. Zhang, S. Jarzabek, B. Yang, Quality prediction and as-
sessment for product lines, in: Advanced Information Systems
Engineering, Vol. 2681 of LNCS, Springer Berlin Heidelberg,
2003, pp. 681–695. doi:10.1007/3-540-45017-3_45.

[32] G. Georg, R. France, I. Ray, An aspect-based approach tomod-
eling security concerns, in: Proceedings of the Workshop on
Critical Systems Development with UML, 2002, pp. 107–120.

[33] R. Tawhid, D. Petriu, Integrating performance analysis in the
model driven development of software product lines, in: Pro-
ceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems, MoDELS, Springer-
Verlag, 2008, pp. 490–504. doi:10.1007/978-3-540-87875-
9_35.

[34] R. Tawhid, D. Petriu, Automatic derivation of a productper-
formance model from a software product line model, in: 15th
International Software Product Line Conference, SPLC, 2011,
pp. 80–89. doi:10.1109/SPLC.2011.27.

[35] O. Alam, J. Kienzle, G. Mussbacher, Concern-oriented software
design, in: Model-Driven Engineering Languages and Systems,
Vol. 8107 of LNCS, Springer Berlin Heidelberg, 2013, pp. 604–
621. doi:10.1007/978-3-642-41533-3_37.

[36] J. Kienzle, W. Al Abed, J. Klein, Aspect-oriented multi-view
modeling, in: Proceedings of the 8th ACM International Confer-
ence on Aspect-oriented Software Development, AOSD, ACM,
2009, pp. 87–98. doi:10.1145/1509239.1509252.

[37] E. Rouille, B. Combemale, O. Barais, D. Touzet, J.-M. Jezequel,
Leveraging CVL to manage variability in software process lines,
in: 19th Asia-Pacific Software Engineering Conference, Vol. 1
of APSEC, 2012, pp. 148–157. doi:10.1109/APSEC.2012.82.

[38] C. Ayora, V. Torres, V. Pelechano, G. H. Alférez, Applying
CVL to business process variability management, in: Proceed-
ings of the VARiability for You Workshop: Variability Model-
ing Made Useful for Everyone, VARY, ACM, 2012, pp. 26–31.
doi:10.1145/2425415.2425421.

[39] X. Zhang, O. Haugen, B. Moller-Pedersen, Model comparison

to synthesize a model-driven software product line, in: 15th In-
ternational Software Product Line Conference, SPLC, 2011,pp.
90–99. doi:10.1109/SPLC.2011.24.

[40] B. Combemale, O. Barais, O. Alam, J. Kienzle, Using CVL
to operationalize product line development with reusable aspect
models, in: Proceedings of the VARiability for You Workshop:
Variability Modeling Made Useful for Everyone, VARY, ACM,
2012, pp. 9–14. doi:10.1145/2425415.2425418.

[41] M. Sijtema, Introducing variability rules in ATL for managing
variability in MDE-based product lines, Proc. of MtATL 10
(2010) 39–49.

24

View publication statsView publication stats

https://www.researchgate.net/publication/285548628

