An Aspect-Oriented Model Transformation to Weave Security using CVL

Jose-Miguel Horcas, Moénica Pinto and Lidia Fuentes

CAOSD Group, Departamento de Lenguajes y Ciencias de la Computacion, University of Mdlaga, Mdlaga, Spain
{horcas, pinto, lff} @lcc.uma.es

Keywords:

Abstract:

Aspect-Orientation, ATL, CVL, Model Transformations, Security, Variability, Weaving Pattern.

In this paper, we combine the Common Variability Language (CVL) and the ATL Transformation Language

to customize and incorporate a generic security model into any application that requires security. Security
spans a large set of concerns such as integrity, encryption or authentication, among others, and each concern
needs to be incorporated into the base application in a different way and at different points of the application.
We propose a set of weaving patterns using model transformations in ATL to automatically weave the security
concerns with the base application in an aspect-oriented way. Since different applications require different
security requirements, the security model needs to be customized before its incorporation into the application.
We resolve the variability of the security properties and implement the weaving process in CVL. We use an
e-voting case study to illustrate our proposal using the CVL approach.

1 INTRODUCTION

In Component-Based Software Engineering (CBSE),
there are properties of an application that can be dis-
persed and replicated in several modules. Security
is an example of these properties, which are usu-
ally defined in multiple different components cross-
cutting the base functionality of the application. For
instance, access control is defined in each compo-
nent that needs to control the user rights to use a re-
source. An Aspect-Oriented (AO) approach aims to
achieve separation of crosscutting concerns and ad-
dresses the limitation of the traditional software tech-
nologies (e.g. CBSE, Object-Oriented Programming)
to appropriately modularize crosscutting concerns at
the different development stages. From the perspec-
tive of AQ, security is a crosscutting concern the be-
havior of which is tangled and/or scattered with the
core behavior of the application being affected by it.
Modeling security separately from the affected ap-
plication has many advantages: high reusability, low
coupled components, high cohesive software archi-
tectures. To benefit from these advantages security re-
quirements need to be taken into account from early
stages in the development process — i.e. at the ar-
chitectural level. Moreover, the software architecture
modeling the security functionality should be defined
separately from the software architecture of the base
applications that need it. Separating security related
concerns from the application base code is also the

main motivation of the INTER-TRUST project’ that
is under development. With this project, the industrial
partners demand security solutions easily instantiable
as part of any application. The approach presented in
this paper pursues an answer to these demands. How-
ever, security spans a large set of concerns, including
encryption, authentication, access control, and autho-
rization, among others, and each of these concerns
affects the base application in a different way. For
instance, access control is performed before the exe-
cution of a restricted action by the user, while encryp-
tion is performed before sending a message through a
network in order to encrypt the information, but also
after receiving the message in the target in order to de-
crypt the information. Moreover, not all the applica-
tions require all the security concerns. A first applica-
tion may require the integrity and the non-repudiation
concerns, a second application may require only the
encryption concern, and a third application may also
require the encryption concern but using a different
encryption algorithm. The software architecture of
these applications should include only the necessary
security functionality and the concerns that are not
required should not be part of the final architecture
of the application.

In this paper, we follow an Aspect-Oriented Mod-
eling (AOM) approach? to incorporate (weave in the
AO terminology) a customized security model into a

Uhttp://www.inter-trust.eu//
http://www.aspect-modeling.org

base application that has been specified independently
— i.e. the application does not contain any secu-
rity concern and the security model has been defined
generically in order to reuse it in several applications.
This is done automatically without manually modify-
ing the existing elements in the model of the base ap-
plication. To do this, we use the Common Variability
Language (CVL) (Haugen et al., 2012) in combina-
tion with the ATL Transformation Language (Jouault
etal., 2008). CVL allows us to specify and resolve the
variability of the security model, and also allows us to
weave the customized security model with the base
application using model transformation rules, auto-
matically generating the complete model of the appli-
cation with the security functionality. CVL includes
the possibility of delegating its control during vari-
ability resolution to a Model-2-Model (M2M) trans-
formation engine such as ATL, QVT (Query/View/-
Transformation), etc. The main contribution of this
paper is that we define a set of reusable weaving pat-
terns in CVL to incorporate each security concern in
the most suitable place (join point) of the base appli-
cation model. We define the semantic of each weav-
ing pattern using reusable ATL transformation rules
that are different for each security concern since each
of them need to be woven with the base application in
a different way.

The advantage of using CVL is that it allows us
to define the models in any language based on Meta-
Object Facility (MOF) meta-models. In this paper we
use the Unified Modeling Language (UML) to define
the models (software architectures as component dia-
grams) and the weaving patterns, but our proposal is
suitable for use with any MOF compliant language,
and the weaving patterns are reusable by defining a
previous model transformation between UML and the
language used to define the application and the se-
curity software architectures. In addition, the secu-
rity software architecture can also be reused with any
other application of the same domain by reusing the
model transformations.

In contrast to other variability techniques used by
traditional Software Product Lines (SPLs), such as
feature models that require an additional process to
generate the customized software architecture from
the feature model configuration, CVL is intended to
be used in conjunction with architectural models, re-
solving the variability and generating the architec-
tural configuration in the same process. Furthermore,
CVL was submitted to the Object Management Group
(OMQG) as standard to model variability.

The rest of this paper is structured as follows. In
Section 2 we present the case study used throughout
the paper. Section 3 introduces our proposal using

CVL and briefly describes the CVL terminology. Sec-
tion 4 explains how we perform the configuration of
the security model and the weaving process. In Sec-
tion 5 we provide the weaving patterns for the security
concerns through model transformations. Section 6
surveys related work and in Section 7 we conclude
the paper and consider future directions.

2 CASE STUDY

Our case study is an electronic voting (e-voting) ap-
plication which is one of the demonstrators of the
INTER-TRUST project. E-Voting is one of the en-
vironments where security requirements are complex.
Figure 1 shows a simplified software architecture in
UML with the main functionality of an e-voting ap-
plication. This architecture does not include any com-
ponent related to the security requirements. The Voter
Application component allows clients to cast their
votes from smart phones, tablets, e-mails, etc. by us-
ing the EVotingInt interface. The Vote Server com-
ponent receives the votes and the Election Data stores
them in a digital ballot box through the VoteStoragelnt
interface. Administrators can manage the election
data and get the election results through the VotingM-
nglint interface that provides access to the functional-
ity of the Election Data and the Vote Counting compo-
nents.

Apart from the base functionality shown in Fig-
ure 1, the e-voting application requires a list of se-
curity extra-functional properties. Concretely, it is of
paramount importance to guarantee that: (1) all the
votes in the digital ballot box belong to an eligible
voter (i.e. integrity of the votes); (2) at the same time
the privacy of the voter must be preserved, even in
the counting process (i.e. votes must be protected by
means of cryptography); (3) the voter must be au-
thenticated using a personal digital certificate, such
an electronic ID card, and (4) administrators must be
authorized to perform actions over the election data.

With the goal of defining the security functionali-
ties once, and reusing them for several applications,
Figure 2 shows a UML software architecture with
the complete functionality of all the possible security
concerns. This includes the Integrity, Authentication,
Encryption, Authorization, and Digital Signature com-
ponents with all kinds of authentication mechanisms,
encryption algorithms, and the integrity, authoriza-
tion, and digital signature functionality.> However,

3To simplify the case study we do not show all the ex-
isting security properties nor all the existing algorithms for
each concern.

«Components =]
Vote Central System
) zcomponents =] .
«cumpunf;-ntn. =] I’: _(:}___ «components &= | F_ Vote Counting COI.II"i'lI Int
Voter Application E\I’Siinglnt EVotingln Vote Server Voﬁngg}'o)mgemt \ \
«components = —
Election Data —\ N LJ
s Votinglatalnt VotingMngint
-
L W L}
wdevices wdevices adevices
Candidates Voters Votes
Figure 1: e-Voting software architecture.
£COMponents =] zComponents =]
Integrity Authentication
«components =] wcomponents =] xcomponents = r:-)
Password Identifier Session Manager h] .
verification] verification — =t J
. ——— L& Authenticationint
O @ |
Integritylnt \ xkcomponents =] xcomponents 5| zcomponents =
Hash UserPassword BioAuth

zcomponents =]
Hash Manager
1

«xcomponents = ||| «components =)
SHA-1 MD5

xcomponents = |
SmartCard

wcomponents .
Authorization)
Al

uthor-izationlnt

zcomponents =]
Digital Signature ,_)
D

®Compenents

igitalSignaturelnt
=]

»
zcomponents = |[” [zcomponents

L AES—T] TDEA

Encryption
= — xcomponents =]

= :7\0_ Repository
Heys

Ok I\
Encryptionint «ComponETtF =L zcomponents

R3A DSA

Figure 2: Security software architecture.

the e-voting application only needs a particular con-
figuration of these security functionalities based on
the previous security requirements.

3 OUR PROPOSAL USING CVL

CVL is a domain-independent language for specify-
ing and resolving variability. It makes the specifica-
tion and resolution of variability over any instance of
models defined using a MOF-based meta-model eas-
ier.

Figure 3 shows our proposal using the CVL ap-
proach. The core software architecture of our base ap-
plication and the security software architecture with

all the security functionalities are the Base Models
and can be defined in any MOF-defined language.
The specification of the variability for the security
concerns is expressed in an abstract level in the Vari-
ability Model. The specification of concrete variability
in the security model and the security weaving pat-
terns for each security concern are also defined in the
variability model. Different configurations of the se-
curity model are provided in the Resolution Models.
These configurations are selections of a set of choices
in the variability model.

CVL provides an executable engine to automati-
cally produce the Resolved Models taking as inputs
the variability model, the resolution models and the
base models. In our proposal, the resolved models
are the software architecture of the base application

Application and
security software
architectures.

(in any MOF

Security variability o \
and weaving patterns Variability Base
Model Models compliant
\ 1 language)

‘(Resolution > cVL Variability materialization
Models execution and M2M transformations
Security configurations rj WOV‘?" models)
R Ived b {application + security
esolve software architecture)

Models

Figure 3: Our proposal using the CVL approach.

woven with the requested security configuration. The
process of deriving a resolved model from a base
model given a resolution model is called materializa-
tion. Apart from resolving variability, the CVL en-
gine also has the capability to delegate its control to a
M2M transformation engine. This is especially useful
for defining domain specific actions the semantics of
which are not defined by CVL, and it is used in our
proposal to implement the weaving process between
the application architecture and the security configu-
ration architecture by performing models transforma-
tions during the execution of CVL.

In order to implement our proposal we use the fol-
lowing concepts of CVL*:

Variability Specifications (VSpecs). They are part
of the variability model. They are tree-based
structures representing choices,” and can have
variation points bound to them. To materialize a
base model with a variability model over it, reso-
lutions for the VSpecs must be provided. Choices
are resolved by deciding them negatively or posi-
tively.

Variation Points. They are part of the variability
model and define specific modifications to be ap-
plied to the base model during materialization.
They refer to base model elements via base mod-
els handles and are bound to VSpecs. The appli-
cation of the variation points depends on the reso-
lution for the VSpecs.

Existence Variation Point. It is a kind of variation
point that indicates the existence of a particular
object, link, or value in the base model. Its neg-
ative application involves deleting elements from
the base model.

Opaque Variation Point (OVP). It is a kind of vari-
ation point the impact of which on the base model
is user-defined through a model transformation
language. OVPs allow extending and customizing
the semantic of the existing CVL variation points.

4The complete description of CVL can be found in
http://www.omgwiki.org/variability/.
S“Features” in most SPL approaches.

The AO main concepts that we use are:

Join Point. It is a point in the model (e.g. a method
call in an interface) which can be affected by the
crosscutting behavior.

Adyvice. It is the additional behavior that affects the
base program at the selected join points. There
are usually three kinds of advices based on ‘when’
the behavior takes place in reference to the join
points: before, after, and around. Around ad-
vices allow bypassing the execution of the cap-
tured join points.

Pointcut. It is an expression that describes a set of
join points.

4 SECURITY WEAVING

In order to incorporate a particular configuration of
the security functionality into the base application of
our case study, we implement the weaving process us-
ing CVL and, concretely, using the OVPs of CVL. Be-
fore that, we need to customize the security software
architecture from the security requirements of our e-
voting application. Both processes, the selection of a
security configuration and the weaving are performed
in the same step using CVL.

Figure 4 shows an instance of our proposal us-
ing the CVL approach with our case study and the
security specifications. The variability model for se-
curity is specified in an abstract level using VSpecs
(top of Figure 4). Security properties are decomposed
into choices in the VSpecs, indicating which secu-
rity concerns are optional and which are mandatory.
In our case study, for simplicity, security is decom-
posed only into the choices of Integrity, Access Con-
trol which in turn contains the Authentication and Au-
thorization concerns, and Cryptography that contains
the Encryption and Digital Signature concerns. Each
of them is also composed by the available methods
and algorithms. For instance, there are three kinds of
methods to verify the integrity of the data: Password
verification, Data identifier, and Hash verification. The
last one can be performed by using the MD5 or the
SHA-1 algorithm. The resolution of all these choices
require a yes/no decision, and the security configura-
tion (the resolution model) is a selection of this set of
choices in the VSpecs — i.e. the security concerns
that are decided positively (darkened choices in Fig-
ure 4).

The concrete variability of security and the weav-
ing patterns are specified using variation points (mid-
dle of Figure 4): “object existence” variation points
to realize the variability and OVPs to do the weav-

f(/_Specs

Integrity
A 1.1

\

Optional

H”W A

Multiplicity
A N min..max

@W@ﬂﬁwﬂo) ((Data dentier) @Jmtﬂ"@ @Jmm@ (Emwﬁm) OGSy

Hash verfficaion) A A1

() G

A4

AT +Pawmrd) (Bdmm) (smﬁm)(mmgm)

o

@ Resolution
Model

/

7 L1

Wariability Model

aftion poirjts \

| :ObjectExistence | | Ot)‘ec Existence ‘
I

I|| :ObjectExistence ‘ | ONectExlstenc—e |

| :ObjectExistence | |

source |ob|%,-cts \

A
OVP1 VAECI@SUbStItUhOHAUthen }—GDSD—)I SemanticSpec |

| oVP2

| Ob]ectEmstence | OVP3 l—wa—)| SpeclaISubstltutmnD\gS\g |-Gpe°->[SemantncSpecSl

De%SpecxaISubstltuhonEncryp |—apec—>{ SemanticSpec2 |

target objects

N,

compunents

Integiityint

sm.mc)m

wmor zation
-

" acomponents
Degital Signaturs "

Base Models

scomgonests =
===\ Repository
= 1 Keys

0 /F pp\hgatlon Boﬂwarearch'rlecture ™

ecomponents |
v D, o [N e Q.
Voter Apghcation _[[¢ Lot wm-;wm\‘wk'w Vﬂ‘w![am\\r | ——
wcempenents)] ™
Election Dats

vereglamint Wetingiingint

devices | | [adevices

[etices
Candidates| | | Voters | || Votes

Binding

Base model reference

Figure 4: Security configuring and weaving using CVL.

ing. The object existence variation points are bound to
choices of the VSpecs and refer to components of the
security software architecture (bottom of Figure 4).
This kind of variation point indicates the existence of
a particular object (component) that will be included
or removed from the security software architecture
based on the resolution provided for the associated
VSpec. For instance, the variation point bound to
the Integrity concern in the VSpecs (:ObjectExistence)
indicates that if the Integrity choice is decided posi-
tively (i.e. is selected in the resolution model) in a
configuration, the related elements (the Integrity com-
ponent and its interfaces with their attachments) in
the security software architecture will exist in the re-
solved model and if integrity is decided negatively
(i.e. 1is not selected in the resolution model) those
related elements will be removed from the resolved
model.

The OVPs are also bound to the VSpecs but have
two or more references in the base models: (1) one

reference (source objects) to the interface in the secu-
rity software architecture the behavior of which we
want to incorporate in our base application — i.e.
the advice, and (2) one or more references (target
objects) to the interfaces in the application software
architecture where we want to incorporate the secu-
rity concern — i.e. the join points. For instance,
OVP2 has a reference (sourceObject) to the Encryp-
tionint interface in the security model and two targets
(targetObjects): one for encrypting (that references
to the Evotinglnt interface in the application model)
and one for decrypting (that references to the Voting-
Datalnt interface).

OVPs are also bound to an OVPType, where this
type explicitly defines the semantic of the special sub-
stitution — i.e. the transformation rules to weave the
security concerns into the base application. Each se-
curity concern needs to be woven with the base ap-
plication following a different transformation pattern
based on the aspectual information of the concern: the

kind of the advice that the concern implements: be-
fore, after, or around; the method (advice) that must
be executed by the concern; and the intercepted meth-
ods (join points) in the base application. So, using
CVL we need to use several variation points, with
different semantics, to indicate how the elements of
the models are adapted in order to generate the re-
solved model. During variability materialization, the
CVL engine will delegate its control to a M2M trans-
formation engine (ATL in our proposal) whenever it
encounters an OVP. The M2M transformation engine
executes the semantic specification associated with
the OVP and resolves the variability accordingly.

The resolved model is automatically generated
(Figure 5) and the security configuration is woven
with our application software architecture: the com-
ponents related to the security concerns are clearly
visible in the static part of the architecture, and the
relationships between the security elements and the
elements of the base application (“crosscuts” depen-
dency relationship) explicitly indicate that the sources
of the relationships crosscut the architectural level,
and the targets are the point of the application where
they take place. However, the aspectual information
with the interactions between the components is not
represented in the software architecture of Figure 5.
To complete the design we complement the software
architecture with a set of sequence diagrams that rep-
resent the aspectual information and that are also au-
tomatically generated by the weaving patterns (Pinto
et al., 2009). The following section shows the weav-
ing patterns, in detail, for each security concern.

S SECURITY WEAVING
PATTERNS

The nature of each security concern avoids having to
have a unique and homogeneous weaving pattern. As
we explained in the previous section each concern
needs different aspectual information and the weav-
ing patterns (i.e. the transformation rules) needed to
perform the weaving are different.

The semantic specification associated with each
OVP must include transformation rules to: (1) in-
corporate the security components into the software
architecture of the base application; (2) create the
“crosscuts” relationships between the interface of the
concern (the advice) and the interface of the applica-
tion where the crosscuts take places (the join point);
and (3) generate the sequence diagram that represents
the behavior of the crosscutting relationship.

We define a set of ATL transformations for each
of the security concerns: authentication, encryption,

authorization, integrity, and digital signature. Weav-
ing patterns for other security or crosscutting con-
cerns may be defined in a similar way. To perform
the weaving between the models, each ATL transfor-
mation takes as input the two models (the application
model and the security model) and generates as output
the same application model with the appropriate secu-
rity concern merged. The elements of the application
model remain unchanged in the output model. So, we
can focus on the generation of the security elements
in the ATL transformations.

The transformation rules (weaving patterns) are
defined only once and can be reused in each appli-
cation. However, there is specific information of the
base application that the software architect must pro-
vide because it is different for each application. For
instance, the software architect must define the con-
crete pointcuts (e.g. the method signature) for the
join points in the base application. To simplify the
case study, we only use method call/execution point-
cut designators. In order to make the transformation
rules more reusable, we define the aspectual informa-
tion as attributes (helpers) in ATL that must be filled
in for each application with the signature of the inter-
cepted method by the crosscut relationship.

5.1 Authentication

The semantic of the special substitution for the au-
thentication concern is shown in the Listing 1. The
transformation rule: (1) copies the authentication se-
curity elements: the component (sourceComp) and
interface (sourcelnt) from the SecurityModel to the
application model (AppModel in the rule); (2) cre-
ates the “crosscut” relationship between the source
(sourcelnt) and the target (targetint) interfaces; and
(3) generates the sequence diagram with the interac-
tions between the authentication and the base applica-
tion elements.

The aspectual information is coded in the trans-
formation pattern and is used to generate the inter-
actions. For instance, to generate the authentication
sequence diagram we use a called rule of ATL with
the aspectual information: the intercepted method
vote(Object) (provided with the helper operation), the
advice (‘authenticate()’), and the kind of the advice
(‘around’), apart from the interfaces and components
related.

The sequence diagram generated is shown in
Figure 6. Authentication is usually performed before
a method call, however we use an around advice in
order to abort the call to the method vote(Object) if
the authentication fails.

Aspectual information: Aspectual information:

«ccomponents = . - e
POINTCUT: call(VotingStorelnt.storeVote(Cbject)) Integrity igﬁégurau:;;lrx:z}fzf?c fen
ADVICE: verify(Cbject) \ﬁ—‘ E OF ADVICE: before
TYPE OF ADVICE: arcund O TYES OF RBVICE: bafese

[A ~
~ \ntesntylnt o El] N
scomponents =] ~ - Authorization N
Authentication ~ ! p .
Aspectual information: ~ / Og---——--—"- -
p ~ Authorizationint |
[~
BOINTCUT: {EVotingInt . vote (Object)) Aume"(rgla.iomm “~ | acrosscutss xCrosscutss |
ADVICE: authenticatel()] / |
TYPE OF ADVICE: arcund
~ = L yorosscuts / «components =] \
! » . Vote Central System
| ~
- wcomponents = . |
{
Voter Application _ﬁ\@ﬂ{ng—[EVotingint Vote Server agelnt Counti g\\nt |

ucrusscu_ty/’ | «components 5 - p

D Nl S

_. ‘DigitalSignaturelnt v Votingbatalnt VotingMngint

| i v |
|

~
/ «components Y
.f” e edevicer adevicer adevices | |
Candidates Voters Votes | |l
Aspectual information: / 1 !
I
DOINTCUT: executicn(EVotingInt.vete (Object)) f
ADVICE: sigmiCbject) | zcrosscutss |
TYPE OF ADVICE: afte: |
| ecrosscutss
I |
) e e e e ==} — - — — - - _——
Aspectual information: Encryptionint Aspectual information: '
POINTCUT: execution(EVotingInt.vote(Object)) | |€COmponents | |- - exscution (Object VotingDataInt.getVotel..))
ADVICE: encrypt(Cbject) Encryption ADVICE: decryptiObject)
TYEE OF ADVICE: around TYPE OF ADVICE: sround
Figure 5: Application with security functionality woven.
Listing 1: SemanticSpec] (SpecialSubstitutionAuthen) [Voter Application =) | [[:EVotinglnt (| [z Authentication 7| | [= Vote Server 3|
T T T T
i i i i
module authentication; | 1 vote(Object) | 1 |
ol authenticate(}, 3. ifyAuth() |
create OUT:UML from AppModel:UML, | &= wverifyAuth(} |
I
SecurityModel :UML; «Crosscuts» 1
i
I
i
i

rule Authentication {

from sourceInt : UML!Interface in SecurityModel,
. . [if is authenticated]
sourceComp : UML!Component in SecurityModel,
targetInt : UML!Interface in AppModel,

(sourcelInt.name = ‘AuthenticationInt’ and T — = = — 4 T - ———— L
sourceComp.name = ‘Authentication’ and T i (eisel i |
targetInt.name = thisModule.targetObject) 3 E E 3
to securityComp : UML!Component (...), | i i |
securityInt : UML!Interface (...),
crosscutAssoc : UML!Dependency (Figure 6: Authentication sequence diagram.

client <- sourcelnt,

supplier <- targetInt, ...) . .
vided by the operDecrypt helper). The transformation

do {crosscutAssoc.applyStereotype (

thisModule. getStereotype (‘crosscuts’)) rule automatically generates two different sequence
thisModule.CreateAuthInteraction (targetInt, diagrams with that information: one for encrypting
sourcelnt, sourceComp, ‘around’, (Figure 7) and one for decrypting (Figure 8).
thisModule.operation, ‘authenticate()’);}
} Listing 2: SemanticSpec2 (SpecialSubstitutionEncrypt)

module encryption;
create OUT:UML from AppModel:UML,
SecurityModel : UML;

5.2 Encryption

The semantic of the special substitution for the en- rule Encryption {
cryption concern (Listing 2) is different since it from sourceInt : UML!Interface in SecurityModel,
uses two different advices (‘encrypt(Object)’ and ‘de- sourceComp : UML!Component in SecurityModel,

targetEncrypInt : UML!Interface in AppModel,

crypt(Object)’) in two different points of the appli-
cation. The votes are encrypted in the vote(Object)
method of the EVotingint interface (provided by sourceComp.name - ‘Encryption’ and
the operEncrypt helper)7 and are decrypted in the targetDecrypInt.name = thisModule.
getVote() method of the VotingDatalnt interface (pro- targetObjectl and

targetDecrypInt : UML!Interface in AppModel,

(sourceInt.name = ‘EncryptionInt’ and

targetEncryptInt.name = thisModule.
targetObject2)

to securityComp UML! Component (...),

UML!Interface (...),

UML ! Dependency (

securityInt
crosscutAssocl
client <- sourcelnt,
supplier <- targetEncryptInt, ...),
crosscutAssoc2 UML ! Dependency (
client <- sourcelnt,
supplier <- targetDecryptInt, ...)
do {crosscutAssocl.applyStereotype (
thisModule.getStereotype (‘crosscuts’));
crosscutAssoc2.applyStereotype (
thisModule.getStereotype (‘crosscuts’));
thisModule.CreateEncryptInteraction (
targetEncryptInt, sourcelInt, sourceComp,
‘around’, thisModule.operEncrypt,
‘encrypt (Object)’);
thisModule.CreateEncryptInteraction (
targetDecryptInt, sourcelnt,
sourceComp, ‘around’,
thisModule.operDecrypt,
‘decrypt (Object)’);}

: Voter Applicati g]| |:._
T
| | |

ing O| |:Encrypliong]| |:Vole5ervarg]|
T T

! 1: vote(Object) ! g encrypt(Object) :
Y |

.=
«Cr0SSCuts s

T
|
i
|
|
i
|
|
3: vote(Object) :

|
- |
| |
| |
| |

Figure 7: Encryption sequence diagram for encrypting.

:Vote Counting E] | | : VotingDatalnt o | | : Encryption E] | | : Election Data E] |
T T T T

i i i

! 1: getVote() ! 2: decrypt(Object) |
P

=
«Crossculss

|55 3 getVote()

-

Figure 8: Encryption sequence diagram for decrypting.

5.3 Digital Signature

The weaving pattern for the digital signature concern
is very similar to the encryption pattern, but we only
need the ‘sign(Object)’ advice. We use an after advice
to sign the votes in the server side after sending them
in order to prevent device clients with lower resources
from casting their votes. The sequence diagram of

Figure 9 shows that the advice ‘sign(Object)’ is per-
formed after the execution of the method vote(Object).

| :VolerApph[‘.ﬂ(lonE” | :E\mungmto| ‘ : Vote SEwarE” | : Digital 5|gna|ureg]|
T T

T
| | |
| 1 vote(Object) ! !

2. vote(Object)

3: sign(Object)

i

i

i

i
«Cr0SSCUtSs _ d —
<ErOS5CUls: |

|

|

I

i

i

Figure 9: Digital signature sequence diagram.

5.4 Integrity

The integrity concern guarantees the votes belong to
an eligible voter. The weaving pattern is also similar
to the encryption pattern. We use an around advice
over the method storeVote(Object) of the VotingStor-
elnt interface with the purpose of verifying the au-
thenticity of the vote and rejecting it if the vote be-
longs to an invalid voter (see the sequence diagram of
Figure 10).

| :Vote Server E] | | :VotingStorageint O | | : Integrity g] | | : Election Data E] ‘
T T T T

] | |
| 1: storeVote(Object) | 2: verify(Object) |
*

|
|

|

[|
~— |
|

«Crosscutss |
|

., -
s storeVote(UblectL |

Figure 10: Integrity sequence diagram.

5.5 Authorization

The authorization weaving pattern is similar to the au-
thentication case, and in most security approaches the
authorization concern is based on different authenti-
cation mechanisms. In our e-voting application we
use a before advice in order to grant or deny permis-
sions to access privileged data of the election process.
The sequence diagram (Figure 11) shows that the au-
thorization logic verifies the permissions of the ad-
ministrator before calling any method of the VotingM-
nglnt interface.

6 RELATED WORK

Security is usually achieved in several ways, but most
of the approaches present the security as a set of non-

‘ : Authorization 5] ‘ | 1 VotingMngint O| ‘ i Vote Central System o] ‘
: Administrator i i i
| | |
l \ z aumPerm\slsmn(} : :
ions() | |
asscutes 3: verifyPermissions() : :
i i
1:%.) | |
| |

)

H alt .

! oy
1| its alowed] I o)
|
1
i
|
L | T

N i

Figure 11: Authorization sequence diagram.

functional properties, instead of focusing on the func-
tional part of the security concerns as we do. For in-
stance, in (Georg et al., 2002), the authors analyze the
impact of security properties on other functional con-
cerns of the base application using an AO approach.

Model Driven Engineering (MDE) has also been
used in the field of SPLs (Sijtema, 2010). Sijtema
proposes a strategy to let ATL handle the variability
by extending the concrete syntax of ATL with the con-
cept of variability rules. Variability rules are used in
the context of a transformation sequence which suc-
cessively refines models. However, they first model
the variability separately in a feature diagram and
have to make the correspondence between the feature
selections and the realization of the artefacts. In com-
parison with our proposal, using CVL we model the
variability and bind the features directly to the ele-
ments in the software architecture. We use the basic
ATL without the need to extend it, but our proposal
can also be used with other transformation languages
such as QVT or ETL (Epsilon Transformation Lan-
guage) (Kolovos et al., 2008).

Recently, CVL has been applied in multiple ap-
proaches. For instance, CVL is used to manage
the variability in the context of software processes
(Rouillé et al., 2012), business process (Ayora et al.,
2012), or even for synthesizing an SPL using model
comparison (Zhang et al., 2011). In (Combemale
et al., 2012) CVL is used to specify and resolve the
variability of a software design, and the Reusable
Aspect Model (RAM) technique is used to specify
and compose the detailed structural and behavioral
design models corresponding to the chosen variants.
Our approach, in contrast, focuses on the architectural
level in the development process, and we perform the
weaving process with the CVL engine, instead of us-
ing an external RAM weaver.

7 CONCLUSIONS AND FUTURE
WORK

We have defined a set of security weaving patterns
through model transformations in ATL that allows
the automatic incorporation of a customized security
model into the base application model by using CVL
and AOSD. CVL makes our proposal suitable for use
with any MOF based model. We have implemented
our proposal and used it with several case studies such
as the e-voting application presented in this paper or
in a vehicle-to-vehicle and vehicle-to-infrastructure
application that is another of the demonstrators of the
INTER-TRUST project. In all cases, we have used
UML as the modeling language for the software archi-
tectures and we conclude that our proposal improves
the modularity and reusability of both software archi-
tectures, the core architecture of the application and
the security software architecture.

As part of our future work, we plan to make the
transformation rules more reusable by using a third
binding model in the weaving patterns (Duran et al.,
2013). The binding model allows defining the aspec-
tual information (e.g. pointcut definitions, advices)
as external parameters to use them in the transforma-
tion rules independently from the input models. We
also plan to take into account the existing dependen-
cies between the security concerns (e.g. authentica-
tion is usually needed by the authorization concern),
and how these dependencies affect the weaving pat-
terns and the sequence diagrams when two or more
concerns are applied in the same point of the appli-
cation. Moreover, we plan to define weaving patterns
for other crosscutting concerns such as usability, per-
sistence, context-awareness, etc.

ACKNOWLEDGEMENTS

Work supported by the European Project INTER-
TRUST 317731 and the Spanish Projects TIN2012-
34840 and FamiWare P09-TIC-5231.

REFERENCES

Ayora, C., Torres, V., Pelechano, V., and Alférez, G. H.
(2012). Applying CVL to business process variabil-
ity management. In Proceedings of the VARiability
for You Workshop: Variability Modeling Made Use-
ful for Everyone, VARY ’12, pages 26-31, New York,
NY, USA. ACM.

Combemale, B., Barais, O., Alam, O., and Kienzle, J.
(2012). Using CVL to Operationalize Product Line

Development with Reusable Aspect Models. In
VARY@MoDELS’12: VARiability for You, Innsbruck,
Autriche. ACM. VaryMDE (bilateral collaboration
between Inria and Thales).

Durn, E,, Zschaler, S., and Troya, J. (2013). On the reusable
specification of non-functional properties in DSLs. In
Czarnecki, K. and Hedin, G., editors, Software Lan-
guage Engineering, volume 7745 of Lecture Notes in
Computer Science, pages 332-351. Springer Berlin
Heidelberg.

Georg, G., France, R., and Ray, 1. (2002). An aspect-based
approach to modeling security concerns. In Proceed-
ings of the Workshop on Critical Systems Develop-
ment with UML, pages 107-120.

Haugen, O., Wasowski, A., and Czarnecki, K. (2012).
CVL: common variability language. In Proceedings
of the 16th International Software Product Line Con-
ference - Volume 2, SPLC ’12, pages 266267, New
York, NY, USA. ACM.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, 1. (2008).
ATL: A model transformation tool. Sci. Comput. Pro-
gram., 72(1-2):31-39.

Kolovos, D., Paige, R., and Polack, F. (2008). The ep-
silon transformation language. In Vallecillo, A., Gray,
J., and Pierantonio, A., editors, Theory and Practice
of Model Transformations, volume 5063 of Lecture
Notes in Computer Science, pages 46—60. Springer
Berlin Heidelberg.

Pinto, M., Fuentes, L., Fernndez, L., and Valenzuela, J.
(2009). Using AOSD and MDD to enhance the ar-
chitectural design phase. In Meersman, R., Herrero,
P., and Dillon, T., editors, On the Move to Meaning-
ful Internet Systems: OTM 2009 Workshops, volume
5872 of Lecture Notes in Computer Science, pages
360-369. Springer Berlin Heidelberg.

Rouillé, E., Combemale, B., Barais, O., Touzet, D.,
and Jézéquel, J.-M. (2012). Leveraging CVL to
Manage Variability in Software Process Lines. In
Asia-Pacific Software Engineering Conference, Hong
Kong, Chine.

Sijtema, M. (2010). Introducing variability rules in atl
for managing variability in MDE-based product lines.
Proc of MtATL, 10:39-49.

Zhang, X., Haugen, O., and Moller-Pedersen, B. (2011).
Model comparison to synthesize a model-driven soft-
ware product line. In Software Product Line Confer-
ence (SPLC), 2011 15th International, pages 90-99.

