
 An approach for deploying and monitoring
 dynamic security policies

Jose-Miguel Horcas a,*, Mónica Pinto a, Lidia Fuentes a,
Wissam Mallouli a, Edgardo Montes de Oca b

a CAOSD Group, Universidad de Málaga, Andalucía Tech, Spain
 b Montimage, 39 rue Bobillot, Paris 75013, France

A B S T R A C T

Security policies are enforced through the deployment of certain security functionalities

within the applications. When the security policies dynamically change, the associated se-

curity functionalities currently deployed within the applications must be adapted at runtime

in order to enforce the new security policies. INTER-TRUST is a framework for the specifi-

cation, negotiation, deployment and dynamic adaptation of interoperable security policies,

in the context of pervasive systems where devices are constantly exchanging critical in-

formation through the network. The dynamic adaptation of the security policies at runtime

is addressed using Aspect-Oriented Programming (AOP) that allows enforcing security re-

quirements by dynamically weaving security aspects into the applications. However, a

mechanism to guarantee the correct adaptation of the functionality that enforces the chang-

ing security policies is needed. In this paper, we present an approach based on the combination

of monitoring and detection techniques in order to maintain the correlation between the

security policies and the associated functionality deployed using AOP, allowing the INTER-

TRUST framework to automatically react when needed.

Keywords:
Aspect-oriented programming
Dynamic deployment
Monitoring

Security framework

Security policies

1. Introduction

Future Internet (FI) systems encompass a set of pervasive com-
puting devices (e.g., smartphones, tablets, vehicles, wearables,
etc.) always connected to the Internet and continuously ex-
changing information with remote entities (Atzori et al., 2010).
There are FI applications in different domains, such as smart
cities, smart roads and smart homes, among others. Ex-
amples of these applications are monitoring the availability of
parking spaces in a city (Chinrungrueng et al., 2007), the track-
ing of vehicles and pedestrian levels to optimize driving and
walking routes (Dornbush and Joshi, 2007), or intelligent roads

with warning messages or dynamic speed limits according to
climate conditions (Varaiya, 1993; Wang et al., 2006).

In order to ensure that the exchange of information is per-
formed securely, the development of such systems requires a
set of security mechanisms to be conceived. These mecha-
nisms are able to protect the system against different threats
that may arise. For instance, in an Intelligent Transportation
System (ITS), the communication is required to be secure since
the transmitted information between the parties involved (ve-
hicles and road infrastructures) may be critical in maintaining
the safety of the vehicle’s drivers/occupants.

As an example, let us consider an ITS application that dy-
namically recommends the speed limits of a road according

* Corresponding author. Tel.: +34625257121.
E-mail addresses: horcas@lcc.uma.es, migueli_jordan@hotmail.com (J.-M. Horcas).

mailto:horcas@lcc.uma.es
mailto:migueli_jordan@hotmail.com
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.11.007&domain=pdf

to climate conditions and to unexpected events like acci-
dents or traffic jams. This is done by collecting the information
sent by both the vehicle’s sensors (e.g., geolocation, proxim-
ity to other vehicles, current speed) and the road side sensors
(e.g., weather conditions, traffic status). Then, using this in-
formation the new recommended speed limit is calculated and
notified to the driver on his On Board Unit (OBU). Some of the
security requirements that could be taken into account in the
development of this application are: (1) the user anonymity must
be ensured, otherwise, some users will not agree to send their
current speed and location; (2) only authorized users sub-
scribed to the service can send information to the ITS server
and receive recommendations. Otherwise, malicious users may
send fake information about the road status or about the
weather conditions that could cause accidents, and (3) in some
contexts (e.g., when a police car is pursuing an infractor) all
the information sent by the police car should be cyphered in
order to hide the information from the infractors.

The main problematic of enabling security in FI systems is
the heterogeneity and dynamicity of the security policies that
determine how the different parties need to interact with each
other. First, the security policies can be heterogeneous because
each user can customize his own security policies, which
answer their security constraints. Moreover, these users’ se-
curity policies can also be different from the security policies
expected by the applications. Besides, the security policies can
be dynamic and change over time to adapt to new require-
ments, new regulatory rules or new application contexts, for
instance, moving from one country to another. In this context,
existing approaches and techniques to design and develop
secure interoperable FI systems present several problems that
prevent their correct application in security applicative domains
(De Borger et al., 2010; Mouelhi et al., 2008). Firstly, there is a
lack of sufficiently rich techniques to tackle the integration of
all the tasks that cover security policy modelling, interoper-
ability, deployment, enforcement and supervision. Moreover,
focusing on dynamic security enforcement, there is also a lack
of solutions that allow the dynamic adaptation of security to
new application requirements and changes in the environment.

In order to solve these problems, the Inter-operable Trust
Assurance Infrastructure (INTER-TRUST) framework (FP7
European Project INTER-TRUST) aims to deal with the problem
of enabling security in heterogeneous and pervasive systems,
modelling secure interoperability policies with different con-
straints, and enabling the dynamic and secure establishment
of trusted relationships between systems (Ayed et al., 2013).
The main contributions of the INTER-TRUST framework are the
dynamic specification of security policies, the dynamic deployment
of security policies, the dynamic monitoring of security policies and
the fuzz and active testing of security policies. In this paper we
focus on the second and third contributions. The dynamic de-
ployment of security policies is performed by using one of the
most used enhanced deployment mechanisms to inject
dynamic behaviour: Aspect Oriented Programming (AOP)
(Kiczales et al., 1997). AOP allows enforcing security
requirements by dynamically weaving security aspects into ap-
plications, changing their configuration and behaviour so that
they respect the evolving requirements. AOP is used to add/
implement security concerns (i.e., anonymity, availability,
authentication, access control, integrity, encryption, enrol-

ment, etc.) to application components at runtime so that
applications can dynamically adapt their behaviour for required/
negotiated security policies. However, dynamic adaptation
techniques can introduce new vulnerabilities and security risks
(De Borger et al., 2010; De Win et al., 2002, 2006). Among other
reasons (Steimann, 2006), the industry is reluctant to adopt any
of these dynamic adaptation mechanisms since hackers can
exploit security gaps which are inherent to dynamic solu-
tions. The most common technique for ensuring that a system
under execution is not being altered is to monitor and test the
behaviour exhibited by the system. Concretely, INTER-TRUST
incorporates dynamic monitoring and testing techniques to
obtain enriched information of the system’s execution, which
is used to verify the conformity with the implementations, en-
suring a secure interoperability between systems.

In this paper, we present a dynamic aspect-oriented ap-
proach for the deployment and monitoring of security policies.
The approach maintains the correlation between the secu-
rity policies negotiated between the communicating parties,
the security aspects dynamically deployed into the applica-
tions in order to enforce those security policies, and the security
properties that are monitored by the system. This is done by
detecting contextual changes in the environment and by
reacting to those changes once it is identified that the com-
municating parties are not respecting the negotiated security
policies. The approach is independent from the security lan-
guage used to define the security policies, and also from the
AOP language used to implement the security functionalities
as aspects, and thus, can be adapted to use with others secu-
rity models and AOP languages/frameworks. The dynamic
monitoring of the security policies allows FI applications to have
a global understanding of the changes performed at runtime
and can automatically react to new risk or threats that may
arise. This approach represents a generic solution that can be
applied to many types of pervasive applications. In this paper,
our approach has been integrated as part of the INTER-
TRUST framework. The INTER-TRUST framework is intended
to be generic and to target different fields and domains. In this
context, the framework has been successfully integrated in two
real case studies with different security requirements: the ITS
case study that we use throughout this paper and an online
electronic voting (e-voting) case study.

The rest of the paper is organized as follows. Section 2 dis-
cusses the limitation of the related work. Section 3 briefly
describes the software architecture of the INTER-TRUST frame-
work. Section 4 explains the correlation between the security
policies, the aspects, and the security properties. In Section 5
we present our approach to deploy the security policies and
monitor that correlation. Section 6 evaluates and discusses our
approach. Finally, Section 7 concludes the paper and pres-
ents our future work.

2. Related work

This section overviews existing work related to the dynamic
adaptation and monitoring of security policies. First, we focus
on security frameworks that deal with the dynamic deploy-
ment of security policies. Then, we discuss the advantages and
limitations of the dynamic adaptation techniques, and in

particular, AOP. Finally, we outline different techniques for the
dynamic detection of vulnerabilities.

2.1. Security frameworks

The analysis of existing research work and standards in the
domain of FI and pervasive systems reveals a common problem:
the inexistence of a proper security framework to secure the
communications flexibly and efficiently (De Borger et al., 2010;
Mouelhi et al., 2008). In Mouelhi et al. (2008), the authors propose
a framework for specifying, deploying and testing access control
policies independently of the security model. For the specifi-
cation phase, they define a generic meta-model for rule-
based security formalisms. Then, following a model-driven
approach, the generic meta-model is transformed into secu-
rity policies for the eXtensible Access Control Markup Language
(XACML) platform (Sun Microsystems, Inc.) by using the ap-
propriate profile of the security model (e.g., OrBAC).The security
test is done by applying mutation testing (DeMillo et al., 1978),
i.e., the security tests are qualified if they are able to detect
any elementary modification in the security policy of the ap-
plication (mutants).The main drawback to this approach is that
the generic meta-model only supports access control poli-
cies, and thus, it is not possible to specify and deploy other
security concerns such as integrity, encryption, or non-
repudiation, as we propose in this paper with the INTER-
TRUST framework. Moreover, although they can use any security
model language, it requires the policy formalism (e.g., OrBAC)
to be defined as an instance of the generic meta-model, re-
stricting the expressiveness and versatility of the original model;
in addition, the mutation operators for security policy testing
are defined in terms of the concepts presented in the generic
meta-model, complicating the specialization of the security
tests. On the other hand, the modular architecture of the INTER-
TRUST framework (see Section 3) allows decoupling the security
functionality from the formalism used to specify the security
policies, and also from the test procedures. Although the INTER-
TRUST framework is based on the OrBAC model to specify the
security policies, our approach to deploy the security policies
and monitor the correlation between the security policies, the
aspects, and the security properties is independent from the
security model. Therefore, our approach can be adapted to use
with other security models, e.g., Modular Access Control
(ModAC) (Toledo et al., 2012), or Ponder Policy Specification Lan-
guage (Damianou et al., 2001), by defining the relation between
the security policies and the security functionalities to be de-
ployed and the security properties to be monitored. For instance,
the use of ModAC instead of OrBAC facilitates the encapsula-
tion of the access control functionality as an aspect (Toledo
and Tanter, 2013). However, obligation rules provided by OrBAC
allow specifying requirements for any kind of functionality (e.g.,
encryption, integrity), not only access control functionality.

In De Borger et al. (2010), the authors present an Aspect
Oriented Permission System (AOPS) for runtime policy en-
forcement. The policy decisions are based on the execution
History-Based Access Control (HBAC) model (Abadi and Fournet,
2003) and implemented in AspectJ following the Java permis-
sion model but applied to AOP. Only security vulnerabilities
related to access control permissions are considered (e.g., re-
stricted rights to read and modify attributes of the base system

by the aspects). Also, the approach assumes that the weaver
as well as the execution environment are trusted, and that the
weaver protects against scenarios in which untrusted aspects
are incorrectly woven into the application code. The INTER-
TRUST framework, in contrast, relies on dynamic deployment
of security functionalities (e.g., encryption, digital signature,
authentication) implemented as aspects that enforce the se-
curity policies after a negotiation phase. The application and
the aspects are continuously monitored to guarantee the en-
forcement of the security policies by the aspects and to detect
potential vulnerabilities and attacks.

2.2. Dynamic adaptation with aspect-oriented
programming

The dynamicity offered by AOP is similar to that offered by other
dynamic adaptation techniques (e.g., interceptors in component-
based application servers). AOP, however, offers a more flexible
solution since applications do not necessarily need to be de-
veloped conforming to a particular component model or run
on a particular application server container (e.g., JavaEE or
Spring) in order to be adapted at runtime.

Vulnerabilities introduced by the dynamic adaptation of the
applications are well-known and have been identified during
the development activity (De Win et al., 2006; Padayachee and
Eloff, 2007; Serme et al., 2012; Zhang and Zhao, 2007). In Zhang
and Zhao (2007), the authors present bug patterns in AspectJ
and illustrate the symptoms of the patterns through ex-
amples. The security risks in using AOP to develop secure
software are analysed in De Win et al. (2006) from a program-
ming level point of view. An aspect permission system is also
proposed to address some of the issues identified (e.g., pa-
rameter alteration, invocation hijacking,use of privileged aspects,
etc.). In Serme et al. (2012), the authors use a combination of
static code analysis and protection code generation during the
development phase.They focus on security vulnerabilities caused
by missing input validation, i.e., the process of validating all
the inputs for an application before using it. They analyse the
source code and/or binary code without executing it and iden-
tify anti-patterns that lead to security bugs. The unexpected
vulnerabilities that the dynamic weaving may introduce when
the aspects are woven at runtime cannot be covered with the
static analysis. In Padayachee and Eloff (2007), aspect orien-
tation is used to monitor the information flows between objects
in a system for the purpose of detecting misuse, that is, iden-
tifying behaviour that is close to some previously defined pattern
signature of a known intrusion. The problem with misuse-
based detections is that the anomalies must be known in
advance and cannot detect new vulnerabilities at runtime.

Finally, although AOP, as well as other existing dynamic ad-
aptation mechanism (e.g., interceptors, component-based
adaptation, reflection, etc.), may introduce vulnerabilities in the
system, some papers support the idea that AOP can be a good
technology for developing secure applications (De Win et al.,
2001, 2002; Pinto and Horcas, 2013).

2.3. Dynamic detection of vulnerabilities

There are several techniques to perform dynamic detection of
vulnerabilities, while monitoring (or passive testing) consists

in observing, at runtime, whether the application behaviour
conforms to a set of formal properties, active testing (Cavalli
et al., 2008) validates the application implementation by ap-
plying a set of test cases and analyzing its reaction. Fuzz testing
(Howard and Lipner, 2003) is also used in the INTER-TRUST
framework. It consists in stimulating the application using
random or mutated inputs in order to detect unwanted
behaviour, crashing, or security violation. However, fuzz and
active testing techniques are applied at the testing phase, and
thus, it is not possible to use them during the normal opera-
tion of the systems to detect the AOP vulnerabilities when
aspects are deployed at runtime. In the INTER-TRUST frame-
work, fuzz and active testing techniques are complemented
with the monitoring techniques presented in this paper in order
to help detect the vulnerabilities in the testing phase.

Our approach uses MMT-security properties (Morales et al.,
2010) to formally specify security goals and attack behaviours
related to the application or protocol under test. The original-
ity of the MMT-security properties with respect to existing
intrusion detection techniques, like for instance SNORT (Roesch,
1999) and BRO (Paxson, 1999), lies in that they are not based
on just pattern matching (i.e., signatures) as in SNORT nor do
they require writing executable scripts as in BRO. Instead, they
allow a more abstract description of sequences of events that
can represent normal/abnormal behaviour. They can also in-
tegrate pattern matching, statistics and machine learning
techniques; but describing this here is beyond the scope of this
paper.

3. Background information: the INTER-TRUST
framework

The INTER-TRUST framework is a dynamic security frame-
work that has been designed and implemented by the INTER-
TRUST European Project consortium (FP7 European Project
INTER-TRUST) to support trustworthy applications based on
the negotiation, enforcement and dynamic adaptation of se-
curity policies. Fig. B1 overviews the modular architecture of
the INTER-TRUST framework, whose functionality is divided
into four key blocks.

3.1. Dynamic specification of security policies

The first step when using the INTER-TRUST framework is to
specify the application’s security policies. In INTER-TRUST, se-
curity policies rely on the OrBAC model (Kalam et al., 2003) and
are first specified using a Security Editor (e.g., MotOrBac
Autrel et al., 2008) and then negotiated between the different
parties in a communication using a Negotiation module (e.g.,
a vehicle and an ITS server in the context of a Vehicle-to-
Infrastructure communication). Security policies support
interoperability that includes: access control requirements, per-
missions and prohibitions, usage control requirements,
obligations to respect, and delegation rules. It may also cor-
respond to complex requirements or comprise temporal
deadline conditions that specify what happens in the case of
violation of any of the contracts (e.g., sanctions that are trig-
gered when a violation is detected).

When the security requirements change at runtime the se-
curity policies are (re)negotiated. For instance, let us suppose
that a user is not allowed to register in an ITS application
because the provider requires different authentication cre-
dentials that the ones specified in the user’s security policy.
Since the user wants to register, the INTER-TRUST frame-
work gives him the opportunity to renegotiate his security
policy.

3.2. Dynamic deployment of security policies

The negotiated security policies are analysed and inter-
preted by the Policy Engine and the Policy Interpreter

modules.These modules are responsible for identifying changes
in the security policies that require the security concerns de-
ployed inside the application to be adapted. Security policies
are dynamically deployed, and/or adapted at runtime using the
Aspect Generation and the Aspect Weaver modules, which
are in charge of receiving the information generated by the
Policy Interpreter module and of incorporating or elimi-
nating the corresponding security aspects in the application.
Security aspects can be developed in any Java-based AOP lan-
guage such as AspectJ, Spring AOP, CaesarJ, or JBoss.The detailed
design of these modules is beyond the scope of this paper but
can be consulted in Fig. B6 of Appendix B.

3.3. Monitoring (test and operation phases)

Negotiated security policies are also sent to the Monitoring

Tool in order to activate/deactivate the associated security prop-
erties that control the fulfillment of the security policies by the
deployed aspects. Security properties are formally described
as conditions in sequences of events (Morales et al., 2010) based
on Linear Temporal Logic (LTL) (Clarke et al., 1999) to define
security rules (i.e., rules that should be respected) or attacks
and misbehaviours (Mallouli et al., 2012). The Monitoring Tool

relies on an adaptation of the Montimage Monitoring Tool (MMT)
(Wehbi et al., 2012) which is an online monitoring solution that
allows a real-time network traffic, application, flow and user
level visibility to be provided. The Notification and Context

Awareness modules notify the Monitoring Tool about ap-
plication’s internal events and changes in the application
context, e.g. network packets, battery of the device, CPU con-
sumption, etc. The detailed design of the MTT tool is beyond
the scope of this paper but can be consulted in Fig. B7 of
Appendix B.

3.4. Testing for vulnerabilities detection

Different fuzz (Howard and Lipner, 2003) and active (Cavalli
et al., 2008) testing techniques are also provided as part of the
framework (Fuzz Testing Tool and Active Testing Tool

modules) in order to test the application’s security and ro-
bustness. In order to do that, during the testing phase the MMT
tool monitors the traces automatically generated by the fuzz
testing and active testing tools in order to simulate the appli-
cation behaviour.

Note that the INTER-TRUST framework is a modular solu-
tion with complementary functionalities that can be partially

or completely deployed according to the developer’s needs.This
modular framework has several benefits for the following
reasons: (1) the modules in charge of specifying, negotiating
and interpreting the security policies are unaware of the use
of AOP to enforce them. This allows the use of these modules
in other contexts where other dynamic mechanisms (e.g., in-
terceptors, reflection, component-based adaptation) may be
used to deploy the security policies; (2) the modules in charge
of weaving the aspects are unaware of the format used to
specify the security policy, relying only on the format of the
interpreted security policies. This decouples the aspects from
the formalism used to specify the security policies and also
allows using these modules in other contexts with other
modules and languages; (3) the MMT tool is extensible and can
support new analysis algorithms and definitions for parsing
network packets and message formats (Wehbi et al., 2012); (4)
it is a distributed architecture where modules are decoupled
among them and interact asynchronously by mean of a stan-
dard queue protocol (e.g., AMQP Vinoski, 2006), (5) the framework
is extensible to use additional AOP weavers and only the Aspect
Weaver module is affected. The rest of the modules can be
reused as they are, and (6) the use of aspects improves the sepa-
ration between applications and security concerns. Thus, the
applications can choose between using the INTER-TRUST frame-
work or any other security solution and the change is not
invasive.

In this paper, we focus on the dynamic deployment of the
security policies (block 2 in Fig. B1) and on the monitoring phase
(block 3 in Fig. B1), while the details of the dynamic specifi-
cation of security policies (Ayed et al., 2013; Horcas et al., 2014a)
and the testing phases (Aouadi et al., 2014, 2015) are beyond
the scope of this paper. The next section presents the corre-
lation that must be maintained between the security policies,
the aspects, and the security properties.

4. Correlation between security policies,
aspects and security properties

The correct enforcement and dynamic adaptation of the se-
curity policies are based on two cornerstones (see Fig. B2). The
first is the correlation defined between the security policies that
need to be enforced, the security aspects that are deployed/
undeployed in order to enforce those security policies and the
security properties that are activated/deactivated in order to check
whether or not the system is behaving according to the speci-
fied security policies. The second is the monitoring at runtime
of this correlation in order to detect any attack that breaks it.
These attacks could occur due to different kinds of security
vulnerabilities (e.g., an attacker could send a huge number of
legitimate requests to a server to monopolize its resources),
or due to those vulnerabilities that are introduced by the
dynamic deployment mechanism itself (e.g., a malicious aspect).

Let us illustrate the correlation with an example scenario
of the ITS case study: a police vehicle communicates with the
ITS central station by sending/receiving Cooperative Aware-
ness Messages (CAMs). CAM messages contain a set of
parameters describing the vehicle’s status, among other in-
formation. When the police vehicle receives an emergency call
and starts pursuing another vehicle, a context change is de-

tected. As a result of the change in the context (pursuit context)
a new security policy is negotiated between the police vehicle
and the ITS central station. One of the statement of the new
security policy is that the police vehicle has to encrypt the CAM
messages to avoid the pursued vehicle to know its location,
while still informing the ITS central station about its location
for this to regulate traffic and facilitate the pursuit (rule 1 in
the security policy of Fig. B2). The required functionality (i.e.,
cyphering) must be deployed inside the application in order
to encrypt the messages from the police vehicle and decrypt
them into the ITS central station (Encryption and Decryp-

tion aspects of Fig. B2). Also, a new security property is also
activated in the monitoring tool to check that the encryption
rule specified in the security policy is respected by the appli-
cation when the new functionality is added.

In Fig. B2 we have shown an example of the security prop-
erty that needs to be verified to ensure that the messages are
correctly cyphered. Also, for each rule in the security policy, a
set of aspects that fulfill the required functionality are de-
ployed inside the application. For instance, the encryption and
decryption aspects are deployed to cypher the messages, the
authentication, privacy and pseudonymous certificate aspects
are deployed to ensure the user anonymity, and the authori-
zation aspects are deployed to provide user authorization. The
aspectual knowledge depicted in Fig. B2 contains the function-
ality provided by the aspects for each security policy and the
join points where the aspects can be deployed. Finally, the ap-
plication with the aspects is monitored and the captured traces
are sent to the monitoring tool that correlates the deploy-
ment of the aspects with the security properties. Note that this
correlation must be maintained, both when the user joins the
application for the first time (i.e., after the deployment of the
initial security policies) and also at runtime, when the secu-
rity policies are dynamically negotiated and adapted.

The dynamic deployment of security policies and the dynamic
monitoring of security policies blocks of the INTER-TRUST frame-
work implement the correlation described. The next section
explains our approach to deploy the security policies and
monitor the correlation.

5. Deployment and monitoring approach

Fig. B3 provides a more detailed description of the dynamic
deployment of security policies (activities labelled 1, 2, and 3)
and the monitoring mechanism to maintain the correlation
between the security policies, the security aspects, and the se-
curity properties (activities labelled 4, 5, and 6).

5.1. Dynamic deployment of security policies

When a security policy needs to be deployed inside the ap-
plication at runtime (activity labelled 1 in Fig. B3), e.g., due either
to the initial deployment or to a (re)negotiation of the secu-
rity policy, the new security policy is sent to the modules of
the framework in charge of: (i) the Dynamic Deployment of

Security Policies, which will deploy/undeploy/reconfigure
the aspects, and (ii) the Dynamic Monitoring of Vulner-

abilities, which will activate/deactivate the corresponding

security properties. In order to deploy the security policy, the
Aspect Generation module receives a security deployment speci-
fication (activity labelled 2) that is the result of interpreting the
security policy and contains the list of security aspects that
must be deployed (woven), undeployed (unwoven), and recon-
figured (i.e., changing the configuration parameters such as the
digital certificate in an authentication aspect) within the ap-
plication to enforce the new security policy. The Aspect
Generation module also contains the required aspectual knowl-
edge that encompasses the list of aspects available in the aspect
repository of the framework.

Listing 1 excerpts the part of the aspectual knowledge related
to the encryption and decryption aspect. For each aspect, the
aspectual knowledge includes: (1) the provided advice with the
functionality that it implements, and (2) the associated pointcut
where the aspect will be incorporated into the application. For
instance, the encryption aspect (line 18) has associated an advice
(line 7) with the functionality to encrypt messages (lines 8 and
9) and also the pointcut (line 2) where messages will be en-
crypted. Similarly, the decryption aspect (line 19) has associated
with it an advice (line 11) to decrypt messages (lines 12 and

13) and the associated pointcut (line 3) that indicates where
messages will be decrypted. Both advices are implemented in
the same AspectJ file (see Listing 3) of the INTER-TRUST aspect
repository. This is indicated by the url attribute (lines 7 and 11)
defined for each advice.

The Aspect Generation module performs a mapping
between the required security functionalities and the aspects
that provide these functionalities. The output of this mapping
is a new configuration that is analysed to: (1) obtain the dif-
ferences between the new and the current configurations of
the aspects deployed within the application, and (2) generate
a security adaptation plan with the list of actions that must be
performed over the aspects: weave, unweave, or reconfigure.
Listing 2 shows an example of a security adaptation plan where
we indicate that the encryption and decryption aspects need
to be deployed inside the application (lines 1–5) and config-
ured with parameters such as the encryption algorithm or the
key values (lines 9–18). Also, we indicate the aspects that need
to be undeployed (lines 6–8).

The security adaptation plan generated by the Aspect Gen-

eration module is sent to the Aspect Weaver module that

Listing 1 – Aspectual Knowledge.

Listing 2 – Security Adaptation Plan.

is in charge of executing the actions by interacting directly with
the aspects (activity labelled 3 in Fig. B3). The Aspect Weaver

module is a wrapper that translates the list of actions re-
ceived as input (which is specified independently of a particular
AOP language/framework) to the particular syntax of the AOP
weaver being used. This means that we provide different in-
stantiations of the Aspect Weaver module for using different
AOP weavers, since the use of a unique AOP solution does not
cover all the dynamicity, expressiveness, and performance re-
quirements that the applications may need. For instance,
AspectJ allows dynamically activating/deactivating at runtime
the aspects woven when deploying the application, while Spring
AOP allows directly weaving/unweaving new aspects at runtime.
However, Spring AOP only supports interceptions of method
executions, in contrast to AspectJ that can intercept any point
in the execution of the application (e.g., calls and executions
of methods and constructors, references and assignments of
fields, handler of exceptions, etc.).

Listing 3 shows an example of an encryption aspect using
the AspectJ language. The aspect defines two main pointcuts:
encrypt (line 5) and decrypt (line 6). Each pointcut defines the
points where the messages will be encrypted (line 2) or de-
crypted (line 3). To control the activation of the pointcuts we
use the if() pointcut constructor that AspectJ provides to
define a conditional pointcut expression which will be evalu-
ated at runtime for each candidate join point.1 This mechanism
increases the degree of dynamicity by coding patterns that can
dynamically support enabling and disabling advice in aspects
(Andrade et al., 2013). In our example, the AspectsStatus class
contains the configurations and status (enabled/disabled) of
the aspects that are changed at runtime by the Aspect Weaver

module. The aspect defines two advice associated with the
encrypt and decrypt pointcuts: one for encrypting (line 8) and
one for decrypting (line 14) CAM messages. The advice use a
CypheringModule object that provides the functionality for en-
cryption and decryption and is configured with the algorithm
and parameters indicated in the AspectsStatus class (lines 9
and 15).

Once the aspects have been adapted, the Aspect Weaver

module notifies the Monitoring Tool in order to inform about
the status of the deployment (activity labelled 5 in Fig. B3).That
is, to notify whether or not the deployment was successfully
carried out and which aspects were deployed/deployed/
reconfigured.

5.2. Dynamic monitoring of security policies

In order to maintain the correlation between the security poli-
cies, the aspects, and the security properties, the application
and the aspects are monitored at runtime by the Notifica-

tion module. The Notification module reports the
application’s internal events (e.g., traces with state changes,
error conditions, timestamps, method status, etc.) to a moni-
toring server (the Monitoring Tool) (activity labelled 7 in
Fig. B3). To operate at runtime, the Notification module is in-
troduced into the target application as an aspect in the
instantiation phase. The target source code is annotated, using
standard Java annotations, to specify the measurement points
(or meters) that generate the monitored data. These annota-
tions are also incorporated using AOP without manually
modifying the source code of the application, e.g., using the
declare annotation of AspectJ2.

While the target application is operating, the Notifica-

tion module produces a stream of log messages. Measurement
points can be attached to classes, methods and attributes, and
work on two different levels of scope: local and recursive. Meters
operating at the local scope level are always marked by an an-
notation. Only annotated elements are effected by local scope
meters (e.g., calls to nested methods are not tracked). In the
next scope level, recursive monitoring, beside the annotated
code, all code reachable through control flow is monitored, up
to the available call depth. Recursive monitoring may cause a
significant performance overhead, so this kind of monitoring
should be used by annotating only relevant data for security
analysis. Call depth is limited by the available source code,

1 http://eclipse.org/aspectj/doc/released/progguide/index.html.

2 https://eclipse.org/aspectj/doc/next/adk15notebook/annotations-
declare.html.

Listing 3 – Encryption aspect in AspectJ language.

http://eclipse.org/aspectj/doc/released/progguide/index.html
https://eclipse.org/aspectj/doc/next/adk15notebook/annotations-declare.html
https://eclipse.org/aspectj/doc/next/adk15notebook/annotations-declare.html

because static aspects operate by modifying accessible source
code. The instrumentation therefore does not penetrate pre-
compiled classes, such as .class files or system libraries. Table B1
summarizes the monitoring annotations that the Notifica-

tion module supports. Table B1 shows for each annotation the
scope (local or recursive), the location or context of the anno-
tation (i.e., before class, method, or attribute declarations), the
meaning of the annotation, and the output information that
is provided. The output is made up of key-value pairs. The No-

tification module appends status information to each logged
event. Apart from the specific output information of each an-
notation, the status information string contains the following
generic data:

• Monitored object name, which can be a class name, method
name or attribute name.

• Source file name and source line number.
• Thread id of current thread.
• Total number of threads.
• Total number of tracked objects.
• Time stamp.

Furthermore, the Context Awareness module notifies the
Monitoring Tool but, in contrast to the Notification module,
the Context Awareness monitors changes in the environ-
ment (activity labelled 8 in Fig. B3), i.e., contextual changes that
are external to the application such as packets over the com-
munication network, battery status of the device, CPU
consumption, etc. Both traces and context changes are sent
to the Monitoring Tool that interprets them (activity la-
belled 8 in Fig. B3) so it can react to changes or adapt the
security rules with the negotiation of a new security policy.

The right-hand side of Fig. B3 shows an excerpt of a sample
trace received by the Monitoring Tool with three events gen-
erated from the Notification module. For instance, the first
event (event with name Pursuing_DCL) provides the values of
the attributes captured by the monitoring annotation. When
the first event arrives, the Monitoring Tool checks whether
it fits one or more of the events defined in the security prop-
erty (Listing 4). In the example, the first event received fits the
event of the property event_id=“1” that corresponds with a
change in the context.The second event received with the name
DSA_Encrypt fits the event event_id=“2” of the property by
checking the values of the attributes received in the event with

the boolean expression defined in the property.The class object
captured is an instance of the DSAEncryption aspect that is
deployed inside the application of the police vehicle and is using
the DSA algorithm to encrypt the messages. Other attributes
such as the key and the type of the key are also checked against
the rule defined in the security property. As the two events re-
ceived have a delay of less than 1 s as defined by the security
property, the two events consecutively match the rules of the
security property. So, in this example the Monitoring Tool

checks that the CAM messages sent by the police vehicle are
being encrypted in the context of a pursuit, and verifies the
correct deploying of the encryption aspect required by the se-
curity policy, maintaining the correlation between the three
parts. A non-match condition in the boolean expression of the
rules in the security property, for instance, if the event with
the name DSA_Encrypt does not occur, or if the algorithm

attribute is different to DSA. This means the non-match of the
entire security property, and thus the detection of a gap in the
correlation between the security policy, the aspects and the se-
curity property.

6. Evaluation and discussion

In this section we quantitatively evaluate the performance over-
head of the dynamic deployment of security policies and the
dynamic monitoring of the application. Also, as part of our par-
ticipation in the INTER-TRUST project, the deployment modules
(the Aspect Generation3 and the Aspect Weaver4), the moni-
toring modules (Notification and Context Awareness)5 as
well as the MMT tool6 presented in this paper have been used
to implement a demonstrator of the project that provides
dynamic adaptation of security policies for two real case studies:
the ITS case study presented in this paper and an online elec-
tronic voting (e-voting) case study. This demonstrator has been
evaluated both quantitatively, by controlled tests performed
for the implementation of the modules, and qualitatively, by
collecting the opinion of software developers with different

3 https://github.com/Inter-Trust/Aspect_Generation.
4 https://github.com/Inter-Trust/Aspect_Weaver.
5 https://github.com/Inter-Trust/Testing_and_Monitoring

_related_modules.
6 https://github.com/Inter-Trust/MMT_Security.

Listing 4 – MMT-security property.

https://github.com/Inter-Trust/Aspect_Generation
https://github.com/Inter-Trust/Aspect_Weaver
https://github.com/Inter-Trust/Testing_and_Monitoring_related_modules
https://github.com/Inter-Trust/Testing_and_Monitoring_related_modules
https://github.com/Inter-Trust/MMT_Security

expertise on both security and AOP. The main results of this
evaluation are discussed in this section.

The evaluated scenario focuses on the communication
between an ITS central station and a vehicle ITS station (called
OBU for On Board Unit) via a Roadside ITS station (called RSU
for Road Side Unit) based on CAM messages. CAM messages
are part of the implementation of several services provided by
the ITS central like the CSA service (stands for Contextual Speed
Advisory service) or the DRP service (stands for Dynamic Route
Planning service) that constitutes the target of the evalua-
tion in the context of INTER-TRUST project. These CAM
messages are filled with a set of parameters describing the ve-
hicle’s status and are sent to the ITS central station. When a
negotiation between the parties involved ends by an agree-
ment or after the detection of a context change by the Context
Awareness module, new security aspects (e.g., providing an ob-
fuscation algorithm to hide the current location in the CSA
service, or providing an encryption algorithm to maintain
private the route in the DRP service) need to be deployed at
runtime and the Monitoring Tool needs to monitor the appli-
cation in order to detect possible attacks that break the
correlation between the security policy, the security aspects,
and the security properties.

6.1. Performance evaluation

We have measured the performance overhead introduced by
the dynamic deployment process and the performance over-
head introduced by the dynamic monitoring of the application.
The experiments were done on a laptop Intel Core i3 M350,
2.27 GHz, 4 GB of memory, and with 1.7 JVM. Aspects were
implemented in AspectJ and Spring AOP.

6.1.1. Performance of deployment
The performance overhead of the deployment process con-
siders the time from the reception of a security deployment
specification in the Aspect Generation module to the ex-
ecution of the adaptation plan by the Aspect Weaver. This time
includes the generation of the adaptation plan by the Aspect

Generation and the interaction with the aspects in order to
weave, unweave, and/or reconfigure them. We consider the
number of aspects that need to be dynamically adapted (i.e.,
woven, unwoven, or reconfigured) in order to fulfill the re-
quired functionality specified in the security policy.

The results are summarized in Fig. B4 where the perfor-
mance presents a linear increment of the overhead over the
number of aspects. We observe that the overhead introduced
by the adaptation process is lower than the one initially ex-
pected. For instance, the adaptation process takes 320 ms for
deploying 20 aspects specified in the security policy. Recon-
figuring aspects takes 20 ms more on average than deploying
them, while undeploying aspects takes 15 ms more than de-
ploying them.The results indicate that adapting security policies
at runtime does not suppose a high overhead taking into
account the use of aspects.

6.1.2. Performance of monitoring
The performance overhead of the dynamic monitoring con-
siders the time overhead introduced in the application during

operation when the Notification and Context Awareness

modules are integrated as aspects inside the application. We
evaluated the time overhead of generating the traces for the
most expensive monitor annotation presented in Table B1, i.e.,
the recursive @Taint annotation that tracks all methods en-
countered by the control flow from the annotated method.
Fig. B5 shows the time overhead based on the number of join
points captured. We can observe that the performance pres-
ents a linear increment of the overhead over the number of
join points while this number is lower than 100. Then, from
100 join points, the increment is higher but still linear. In all
cases, the results obtained do not suppose a significative over-
head. For instance, monitoring 10,000 join points in the control
flow of a method takes 250 ms on average. The analysis of the
generated traces is carried out by the Monitoring Tool which
is independent of the application and can reside in a differ-
ent computer, and thus, the analysis of the traces does not affect
the application’s performance.

6.2. Vulnerabilities detection

A critical part of the evaluation of our approach is the evalu-
ation of the effectiveness of the attack detection by the
monitoring tool. On the one hand, we evaluate the capability
to detect that the correlation between the security proper-
ties, the security aspects and the security properties has been
broken, by simulating different attack scenarios and intru-
sion attempts by relying on the Fuzz Testing (Howard and
Lipner, 2003) and the Active Testing (Cavalli et al., 2008) tools
of the INTER-TRUST framework. These testing tools automati-
cally generate the set of traces that are used to test the
scenarios. On the other hand, to evaluate the effectiveness of
the detection techniques, three metrics are proposed: (1) the
detection rate of the MMT tool in detecting security vulnerabili-
ties; (2) the false positive rate of the MMT tool (i.e., the ratio of
vulnerabilities detected by the MMT tool when they are not
present); and (3) the detection coverage of the MMT tool that can
target the network, the application, or the system, for detect-
ing vulnerabilities.

6.2.1. The attack model
We have identified a set of vulnerabilities that can break the
correlation in our approach. Table B2 shows examples of attacks
based on the identified vulnerabilities. For each attack, we
present the result of the effectiveness in detecting the attack
by the Monitoring Tool.

According to the vulnerabilities identified, we assume that
an attacker is able to access and corrupt sensitive informa-
tion that is interchanged and managed by the INTER-TRUST
framework modules. This kind of attack would be possible due
to vulnerabilities V1–V4 and V6–V7. By exploiting these vul-
nerabilities, the attackers can follow a deceptive attack model
(Ajay, 2012), where deception can be defined as an interac-
tion between two parties, a deceiver and a target, in which the
deceiver successfully causes the target to accept as true a spe-
cific incorrect version of reality, with the intent of causing the
target to act in a way that benefits the deceiver (Teixeira et al.,
2012). A specific class of deception attack is the false-data in-
jection attack (Teixeira et al., 2012), where the attacker would
inject false data into the INTER-TRUST framework.

Using the false-data injection attacks, one of the benefits
that attackers can obtain by exploiting the vulnerabilities V1–
V4 of the INTER-TRUST framework is altering the aspects that
are woven/unwoven/reconfigured, thereby the security level of
the applications. For instance, the implementation class of an
aspect may be changed by altering the information in the
aspectual knowledge to provide a less secure authentication
mechanism. Or, false functionality may be assigned to an aspect
by altering the aspectual knowledge so an inappropriate aspect
is woven into the system. Also, the pointcuts where an aspect
is applied could be maliciously changed at runtime (when
Spring AOP is used) to weave an aspect in more or fewer join
points than expected by the application. Finally, a rule in the
security policy may be maliciously deactivated by omitting the
information about that rule in the security deployment speci-
fication that is received by the Aspect Generation module.
This will avoid the weaving of the corresponding aspect.

The same benefit can also be obtained by exploiting the se-
curity vulnerability introduced by the Spring AOP runtime
weaver (vulnerability V5), or any other AOP solution offering
runtime weaving. Here the attack model is different because
the attacker does not modify the information interchanged by
the modules and instead directly injects new code into the
running application by means of aspects. However, the con-
sequence is the same: the security level of the application is
altered (the same examples illustrated before apply here).

There is a particular situation in which the false-data
injection attack can cause a denial-of-service attack, under-
standing that the service that is denied is the application
security. This can be achieved through the vulnerability V3 that
alters the information in the aspectual knowledge. This kind
of attack requires the attacker to know that in the process of
adapting at runtime a security policy is transactional and in
consequence any error when deploying the security policy (e.g.,
a required aspect is not described in the aspectual knowl-
edge or no implementation class can be found in the aspect
repository for one required aspect) leaves the system in the
previous stable state.

Finally, the information received by the monitoring modules
in order to monitor the vulnerabilities and to detect the pos-
sible attacks could also be altered, affecting the results obtained
(vulnerabilities V6–V7). The attack model is the same (the in-
formation interchanged by the INTER-TRUST modules is altered)
but the motivation behind this kind of attack is different since
the main goal would be to hide the attacks performed through
the other vulnerabilities. Basically, not only if the security policy,
the aspectual knowledge or the aspects’ implementations are
maliciously altered but also the generated traces are appro-
priately altered then the attack could be undetectable. In any
case it is not straightforward and, in this case, a very detailed
knowledge of the framework’s behaviour is needed to suc-
cessfully perform the attack. Within INTER-TRUST, we consider
that the risk of attacks exploiting V6–V7 is very low.

6.2.2. Effectiveness of the monitoring tool
We evaluate the effectiveness of the detection techniques with
the help of questionnaires. The evaluation procedure in-
volved 30 evaluators.The evaluators were selected mainly from
among software developers and security experts, with differ-
ent backgrounds and levels of knowledge, and experience in

security modelling, testing and monitoring.They followed a set
of instructions to run the monitoring tool to analyse both
network traffic and the application’s internal events.The evalu-
ators were also requested to create new security properties and
use the tools on different pre-collected traces (containing vul-
nerabilities or not).

Table B3 shows the results of the effectiveness of our ap-
proach in vulnerabilities detection. For each metric we show the
expected value and the values obtained by our approach after
the evaluators have analysed the output of the MMT tool. For
instance, 42% evaluators answer the MMT tool detected more
than 80% vulnerabilities.The estimation of the detection rate is
difficult to perform for a non-expert user.The testing report (i.e.,
outcome of monitoring experimentation) provides detailed results
about the events that led to the testing verdict. This allows us
to understand the testing report and to estimate the detection
rate. The analysis of the results demonstrates that the evalua-
tors were satisfied with the detection rate provided by the MMT
tool.The detection rate (more than 80%) may be regarded as sat-
isfactory, although improvements still need to be made.

False positive verdicts occur when the tool detects vulner-
abilities that are not present. The false positive rate (less than
20%) is excellent, but improvements still need to be made. As
for the previous metric, a non-expert evaluator could have dif-
ficulties in estimating the false positive rate.

The analysis of the evaluator’s results demonstrates the re-
liability of the monitoring techniques used in INTER-TRUST.
They found the tool easy to understand and configure. It pro-
vides readable and relevant reports that can be easily exploited
by the developers in order to detect and correct potentially de-
tected bugs and vulnerabilities. MMT has also been applied to
high speed networks (up to 5 Gigabits/s) internally at the
Montimage company and showed its scalability and capabil-
ity to detect vulnerabilities by combining events coming from
different sources (network traffic, application internal events
or environmental context).

6.3. Threats to validity and lessons learnt

In this section we discuss the threats to validity of the evalu-
ation presented in this section and some lessons learnt during
the development and evaluation of our approach.

6.3.1. Dynamicity offered by INTER-TRUST
There are many application domains that will benefit from
using INTER-TRUST due to the dynamicity offered in order to
negotiate and deploy runtime security policies using aspects.
However, we have seen that new vulnerabilities are intro-
duced in the application due to this dynamicity. This is not
exactly a limitation of AOP or the INTER-TRUST framework since
other existing dynamic deployment techniques present the
same vulnerabilities, but rather the price that it has to be paid
in order to have applications which are more adaptive to chang-
ing security requirements. Anyway, it is still definitively an issue
to be taken into account. This is the reason why the use of a
monitoring technique such as the one presented in the paper
is so important in coping with this threat.

6.3.2. Monitoring capabilities
The INTER-TRUST monitoring capabilities depend on the list
of notified events. The more events are notified, the higher the

detection capabilities of the monitoring tool. However, here a
trade-off needs to be considered between the detection capa-
bilities and the performance of the monitoring tool, especially
when the recursive monitoring annotations (see Table B1) are
used. Although in the performance evaluation we showed that
the overhead is not so significant, special care needs to be taken
when annotating the applications for monitoring. Regarding
the capabilities of the Monitoring Tool we would like to high-
light that it can be used to detect multiple kinds of
vulnerabilities, but in this paper we have focused only on those
vulnerabilities related with maintaining the correlation between
the security policies, the security properties and the security
aspects deployed.

6.3.3. Privacy protection of the MMT tool
The monitoring of the application’s internal events can en-
gender several privacy issues, since sensitive data can be shared
with MMT. Within INTER-TRUST, a privacy protection module
is provided to ensure the anonymity of the shared data.

6.3.4. Implementation of security using aspects
There are some security concerns (e.g., authorization) that are
more difficult to encapsulate as an aspect than others. In these
cases additional components are needed in order to appro-
priately implement such security concerns.The approach that
we followed in INTER-TRUST to implement the authorization
aspect confirms this difficulty. Concretely, INTER-TRUST, as was
illustrated in Section 3, is a framework specifically designed to
incorporate security to applications and to be able to dynami-
cally adapt it at runtime.This is achieved not only by the weaving/
unweaving of aspects, but also by the security specific modules.
Concretely, the authorization or access control aspect has been
implemented in the context of the INTER-TRUST project for
both the ITS and the e-voting case studies making use of the
Policy Engine module (in a similar way that access control is
aspectized in ModAC (Toledo et al., 2012)). The Policy Engine
acts as a PDP (Policy Decision Point – point which evaluates
access requests against authorization policies before issuing
access decisions7). The process is: the authorization rules are
defined as part of the security policy and can be consulted at
runtime through the Policy Engine module. The INTER-
TRUST aspects encapsulate a predefined mechanism in order
to access the modules of the INTER-TRUST framework in a
decoupled and distributed way and that the authorization aspect
uses this mechanism to access the Policy Engine module.

Another issue of the implementation of security using
aspects is that the aspect developers cannot be completely
unaware of how applications are developed. A clear example
is the case when reflection is used to implement parts of the
application. In this case, the pointcuts need to be written in
a special way.8 Otherwise, the classes created using reflec-
tion or the methods invoke using reflection will not be captured
by the security aspects.

6.3.5. Undetectable attacks
The knowledge that the attackers have regarding how the
INTER-TRUST framework works can make some of the attacks

undetectable. Some of the situations have already been men-
tioned. For instance, the attacker is undetectable if the security
policy is simultaneously altered in both the Aspect Genera-

tion module and the Monitoring Tool (vulnerability V2). Also
if the attacker knows that the process of adapting a security
policy at runtime is transactional and in consequence any error
deploying the security policy (e.g., a required aspect is not de-
scribed in the aspectual knowledge or no implementation class
is found in the aspect repository for a required aspect) leaves
the system in the previous stable state, vulnerability V3 could
be used to perform a denial-of-service attack by avoiding the
correct deployment of the negotiated security policy. Thus, we
still need to continue working to improve the monitoring and
detection mechanisms in order to detect these undetectable
or denial-of-service attacks.

6.3.6. Vulnerable points used to perform the attack
As discussed in the previous section, the Monitoring tool

is able to detect the attacks performed by exploiting most of
the vulnerable points introduced by the mechanism for the
dynamic deployment of aspects. This is done basically by de-
tecting that the correlation between the security policies, the
security aspects and the security properties is broken. More-
over, since security is always enforced in INTER-TRUST by using
aspects it is possible to identify that a required aspect is missing
or that a woven aspect should not be in a specific join point.
However, it is not straightforward to identify the precise vul-
nerable point that was used to perform the attack. In order
to do that the application administrator needs to also consult
the audit information generated by the implicated INTER-
TRUST module. Although the description of this audit process
is not in the scope of the paper it is important to highlight
here that it complement the information generated by the
monitoring tool.

6.3.7. Security expertise
A consequence of the high flexibility and adaptability offered
by the INTER-TRUST framework is the difficulty to configure
the different modules and to instantiate the security require-
ments into aspects. Also, the mapping of the security
requirements to the security properties that are then checked
by the monitoring tool is not a straightforward task. This in-
stantiation work needs to be performed by a developer that
has security expertise, which is not always easy to find in
Industry.

7. Conclusions and future work

We have defined a dynamic aspect-oriented approach for the
deployment and monitoring of security policies at runtime.The
approach maintains the correlation between the security poli-
cies that need to be enforced, the security aspects that are
deployed/undeployed in order to enforce those security poli-
cies and the security properties that are activated/deactivated
in order to check whether or not the system is behaving ac-
cording to the specified security policies. Following our
approach, the adaptation of security policies at runtime and
the monitoring of the correlation defined do not suppose a high
overhead in the application’s performance.

7 See RFC2904 in http://tools.ietf.org/html/rfc2904.
8 http://www.eclipse.org/aspectj/doc/released/faq.php#q

:reflectiveCalls.

http://tools.ietf.org/html/rfc2904
http://www.eclipse.org/aspectj/doc/released/faq.php#q:reflectiveCalls
http://www.eclipse.org/aspectj/doc/released/faq.php#q:reflectiveCalls

Our approach has been integrated as part of the INTER-
TRUST framework, however, it can also be applied to many
other types of pervasive systems in other contexts indepen-
dently of the INTER-TRUST framework, and can also be used
to adapt other functionalities implemented as aspects (not
only security). INTER-TRUST has been successfully inte-
grated in two real case studies: the ITS case study presented
in this paper and an e-voting case study. Each case study is
based on different technologies and has different security re-
quirements. The flexibility exhibited by the INTER-TRUST
framework allows its integration with different middlewares
such as FamiWare (Pinto et al., 2015) in order to provide se-
curity and privacy to wireless sensor networks; and with
security adaptation services such as a MAPE-K (Monitor–
Analyse–Plan–Execute over a shared Knowledge) loop approach
(Horcas et al., 2014b).

The proposed solution is innovative since it relies on
dynamic deployment of security policies after a negotiation
phase and the continuous monitoring of resulting applica-
tion to detect potential vulnerabilities and attacks.The solution
allows to enforce context-awareness and dynamic adapta-
tion of security in real world applications. The evaluation’s
results demonstrate the reliability of the monitoring tech-
niques used in INTER-TRUST, regarding the effectiveness of our
approach in vulnerabilities detection.

As for future work, we plan to complete our approach by
dynamically generating the structure of the aspects and the
security properties from the security policies minimizing the
aspectual knowledge needed to maintain the correlation.

Acknowledgments

This work was funded by the European INTER-TRUST FP7-
317731 and the Spanish TIN2012-34840 (co-funded by EU with
FEDER funds), FamiWare P09-TIC-5231, and MAGIC P12-TIC1814
projects.

Appendix A

Aspect generation and aspect weaver

Fig. B6 shows the detailed design of the Aspect Generation

and Aspect Weaver modules.
The Aspect Generation module receives notifications

about security policy updates that must be deployed, and
dynamically generates an adaptation plan. An adaptation plan
consists of a list of aspects, advices or pointcuts that need to
be added or removed into the application. The Aspect Gen-

eration module contains all the information that the Aspect

Generation and Aspect Weaver modules need in order to

adapt the aspects deployed in the application to security
policy changes, i.e., the Security Aspectual Knowledge.
The Aspect Generation module has the capability to incor-
porate (as part of the Security Aspectual Knowledge) the
initial aspectual information and the capability to update
that initial information at runtime. Moreover, this module
also allows adding new aspects (pointcuts and/or advices) to
the aspect repository at runtime, in order to make them
available to deploy in the applications. In order to generate
the adaptation plan, the Aspect Generation performs the
mapping process that matches the required functionalities
specified in the security deployment specification with the
functionalities provided by each aspect.

The adaptation plan is sent to the Aspect Weaver module,
that is in charge of executing it by translating the list of
aspects received as input (which is specified independently
of a particular AOP framework) to the particular syntax
of the particular AOP weaver being used. This means
that different instantiations of the INTER-TRUST framework
for using different AOP weavers will provide different
implementations of this component. The output of this
component is a direct interaction with the selected
AOP weaver in order to interact with it and to weave/
unweave/reconfigure the corresponding aspects into the
applications.

Appendix B

Montimage monitoring tool (MMT)

Fig. B7 shows the detailed design of the Montimage Moni-

toring Tool (MMT).
The main objective of the MMT is to continuously capture

observable information at different levels (e.g., application en-
vironment, network level, operating system, internal application
events, etc.) and correlate them in order to detect potential
vulnerabilities, security flaw and/or intrusion attempts. This
module verifies application or protocol network traffic traces
against a set of MMT-Security properties. The MMT can be
used in the testing phase to complement the work already
done by the testing tools, or during the application operation
(i.e., at runtime) in order to detect live security issues. The
MMT has two main inputs: the negotiated security policy, and
the security properties denoting known vulnerabilities and
attacks to be checked on the system/application collected traces.
The main output of this module is a security analysis report
for each security property.The detection of the non-compliance
of security properties at runtime generates warnings and alarms
that may provoke the reaction (by means of re-activating
an obligation security policy) and enforce thus secure interop-
erability.

Table B1 – Monitoring annotations.

Annotation Scope Context Description and output

@Monitor Local Method Measures the execution time and monitors its exit status. Output: Start event,
end event, duration, exit status, status information.

@Monitor Local Attribute Captures changes made to attributes and logs the new value. Output: Attribute
value on each assignment operation.

@Monitor Local Class Combines method and attribute monitoring applied to all methods and
attributes of the class. Output: Combines the method and attribute monitoring
output.

@Count Local Class Tracks the number of objects on the memory heap. Output: Global object
counter.

@Ping Local Method Generates a signal whenever a function is called. Output: A “Ping” message is
added to the log on each invocation.

@Taint Recursive Method Tracks the control flow of methods. Output: Same as method monitoring for
each method encountered by the control flow.

@Exclude Recursive Method, attribute,
class

Methods, attributes, and classes are excluded from the monitoring scope.
Output: “Negative output”, curtails output of impacted code.

Table B2 – Vulnerabilities detection by the Monitoring Tool.

Vulnerability and attack Detected

Vulnerability V1: An attack changes the security policy before sending it, and thus the same malicious and potentially
damaging security policy is sent to both modules.

Attack: The rule that specifies the obligation to cypher is deleted. Both modules receive the security policy changed.

No

Vulnerability V2: An attack changes the security policy but only the one sent to one of the modules.
Attack: The rule that specifies the obligation to cypher is deleted. Only one of the modules receives the security policy

changed. The other one receives the original policy.

Yes

Vulnerability V3.1: Adding or changing the functionality provided by an existing aspect or adding new, untrustworthy aspects.
Attack: A new aspect bypassing the user authentication is included.

Yes

Vulnerability V3.2: Adding or changing the pointcuts where the aspect will be injected.
Attack: An encryption aspect encrypts a message that will not be understood by the receiver because it does not expect it be

cyphered.

Yes

Vulnerability V3.3: Deleting the information about existing aspects.
Attack: An intruder deletes an existing pointcut in the aspectual knowledge (e.g., some messages that should be encrypted

are not encrypted anymore), or deletes an existing advice or aspect in the aspectual knowledge (e.g., may force an error
during the deployment of the aspects that make the application to remain in its last stable state).

Yes

Vulnerability V4: Changing the security adaptation file (e.g., modifying the actions that the Aspect Weaver will perform over
the aspects).

Attack: An intruder changes in the aspects deployed/undeployed/reconfigured in the security adaptation plan. Note that the
consequences are the same as for vulnerabilities V3 and the examples are similar.

Yes

Vulnerability V5: Directly weaving/unweaving/reconfiguring at runtime an aspect inside the application without any previous
change to the security policy (i.e., without following the workflow of the deployment process).

Attack: A new aspect bypassing the user authentication is included directly through the Spring framework at runtime or an
existing aspect is modified.

Yes

Vulnerability V6: Modifying the notification about the deployment status.
Attack: A malicious user notifies the deployment of a new aspect that has been directly woven into the application via

vulnerability V5.

Yes

Vulnerability V7: Changing the traces received and analysed by the MMT tool.
Attack: An intruder changes the contextual traces sent to the Monitoring Tool by the Notification module and the Context

Awareness module.

No

Table B3 – Evaluation results.

Metric Expected value Evaluators Results

Detection rate >80% 42% >80%
25% >60% and <80%
33% No experience

False positive rate <20% 50% 0%
8% <20%

42% No experience
Detection coverage 33% 25% 100%

50% 66%
25% No experience

DEVICE

INTER-TRUST Framework for Secure Interoperation

Testing for
Vulnerabilities

Detection

Monitoring
(Test & Operation

phases)

Dynamic
Deployment of

Security Policies

Dynamic
Specification of
Security Policies

Negotiation
Module

Policy
Interpreter

Aspect
Generation

Aspect
Weaver

Test Init
Module

Notification
Module

Context
Awareness

Application

Active
Testing Tool

Fuzz
Testing Tool

Monitoring
ToolSecurity Policy

Policy
Engine

Security
Editor

Fig. B1 – Architecture of the INTER-TRUST framework.

Fig. B2 – Correlation of the security policies, the aspects, and the security properties.

Monitoring
context

DEVICE

Aspect
Generation

Aspect
Weaver

2

Security
Deployment

Specification

3

Aspectual
Knowledge

4

APPLICATION

...

REPOSITORY OF SECURITY ASPECTS

Aspect1 Aspect2 Aspect3
...

Object1 Object2 Object3 ObjectN

Deployment
of aspects

Monitoring
Tool

Context
Awareness

Notification
7 8

6

Context
Change

Potential
Threat

Monitoring
application

Trace Context
changeWeave/Unweave/

Reconfigure

Deployment
notifications

Security
Policy

1

5

Security
Adaptation Plan

{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"Pursuing_DCL",
 "timestamp":1411471331917,
 "serviceId":1,"attributes":
 [{"Vehicle_id":"8766"},
 {"Vehicle_type"=="police"},
 {"Speed":"120"},
 {"Section":"11_SECTION"}]}}
{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"DSA_Encrypt",
 "timestamp":1411471331927,
 "serviceId":1,"attributes":
 [{"Vehicle_id":"8766"},
 {"Speed":"120"},
 {"Section":"11_SECTION"},
 {"Object":"6a12876b6567"},
 {"key_type":"X509"},
 {"algorithm":"DSA"}, ...]}}
...
{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"Rec_SPEED",
 "timestamp":1411471331937,
 "serviceId":1,"attributes":
 [{"vehicle_id":"8766"},
 {"Section":"11_SECTION"},
 {"Recommended_Speed":"134"}]}}
...

Sample trace

Fig. B3 – Our approach for deploying and monitoring security policies.

Fig. B4 – Performance of deploying, reconfiguring, and
undeploying security policies. Fig. B5 – Performance of monitoring join points at runtime.

Fig. B6 – Aspect Generation and Aspect Weaver modules.

R E F E R E N C E S

Abadi M, Fournet C. Access control based on execution history.
In: Proceedings of the 10th annual network and distributed
system security symposium (NDSS). 2003. p. 107–21.
doi:10.1007/11863908_17.

Ajay V. A survey on system attack models. Bonfring Int J Res
Commun Eng 2012;2(1):1–4. doi:10.9756/BIJRCE.1132.

Andrade R, Rebelo H, Ribeiro M, Borba P. AspectJ-based idioms
for flexible feature binding. In: Software components,
architectures and reuse (SBCARS), VII Brazilian symposium
on. 2013, p. 59–68. doi:10.1109/SBCARS.2013.17.

Aouadi M, Toumi K, Cavalli A. On modeling and testing security
properties of vehicular networks. In: IEEE seventh
international conference on software testing, verification and
validation workshops (ICSTW). 2014. p. 42–50. doi:10.1109/
ICSTW.2014.56.

Aouadi M, Toumi K, Cavalli A. A formal approach to automatic
testing of security policies specified in xacml. In: Foundations
and practice of security. Vol. 8930 of lecture notes in
computer science. Springer International Publishing; 2015. p.
367–74 doi:10.1007/978-3-319-17040-4_25.

Atzori L, Iera A, Morabito G. The internet of things: a survey.
Comput Netw 2010;54(15):2787–805. http://dx.doi.org/
10.1016/j.comnet.2010.05.010.

Autrel F, Cuppens F, Cuppens N, Coma C. MotOrBAC 2: a security
policy tool. Third joint conference on security in networks
architectures and security of information systems (SARSSI).
2008.

Ayed S, Idrees MS, Cuppens-Boulahia N, Cuppens F, Pinto M,
Fuentes L. Security aspects: a framework for enforcement of
security policies using AOP. In: Signal-image technology &
internet-based systems. SITIS; 2013. p. 301–8 doi:10.1109/
SITIS.2013.57.

Cavalli A, de Oca E, Mallouli W, Lallali M. Two complementary
tools for the formal testing of distributed systems with time
constraints. In: Distributed simulation and real-time
applications. 2008. doi:10.1109/DS-RT.2008.43.

Chinrungrueng J, Sunantachaikul U, Triamlumlerd S. Smart
parking: an application of optical wireless sensor network. In:
Applications and the internet workshops, 2007. SAINT
workshops 2007. International symposium on. 2007, p. 66.
doi:10.1109/SAINT-W.2007.98.

Clarke EM Jr, Grumberg O, Peled DA. Model checking. MIT Press;
1999.

Damianou N, Dulay N, Lupu E, Sloman M. The ponder policy
specification language. In: Policies for distributed systems
and networks (POLICY), vol. 1995. Berlin Heidelberg: Springer;
2001. p. 18–38.

De Borger W, De Win B, Lagaisse B, Joosen W. A permission
system for secure aop. In: Aspect-oriented software
development. 2010. doi:10.1145/1739230.1739254.

De Win B, Vanhaute B, De Decker B. How aspect-oriented
programming can help to build secure software. Informatica
2001;26(2):141–9.

De Win B, Vanhaute B, De Decker B. Security through aspect-
oriented programming. In: Advances in network and
distributed systems security, vol. 78. 2002. p. 125–38.
doi:10.1007/0-306-46958-8_9.

De Win B, Piessens F, Joosen W. How secure is AOP and what can
we do about it? In: Software engineering for secure systems.
2006. p. 27–34. doi:10.1145/1137627.1137633.

DeMillo RA, Lipton RJ, Sayward FG. Hints on test data selection:
help for the practicing programmer. Computer 1978;11(4):34–
41. doi:10.1109/C-M.1978.218136.

Dornbush S, Joshi A. Streetsmart traffic: discovering and
disseminating automobile congestion using vanet’s. In: IEEE
65th vehicular technology conference, VTC‘07. 2007. p. 11–15.
doi:10.1109/VETECS.2007.15.

FP7 European Project INTER-TRUST. Interoperable trust
assurance infrastructure, 2012–2015. <http://www.inter
-trust.eu/>.

Horcas J-M, Pinto M, Fuentes L. Closing the gap between the
specification and enforcement of security policies. In: Eckert
C, Katsikas S, Pernul G, editors. Trust, privacy, and security in
digital business. Vol. 8647 of Lecture Notes in Computer
Science. Springer International Publishing; 2014a. p. 106–18.
doi:10.1007/978-3-319-09770-1_10.

Horcas J-M, Pinto M, Fuentes L. Runtime enforcement of dynamic
security policies. In: Software architecture. Vol. 8627 of LNCS.
Springer International Publishing; 2014b. p. 340–56. doi:10
.1007/978-3-319-09970-5_29.

Howard M, Lipner S. Inside the windows security push.
IEEE Secur Priv 2003;1(1):57–61. doi:10.1109/MSECP.2003
.1176996.

Kalam A, Baida R, Balbiani P, Benferhat S, Cuppens F, Deswarte Y,
et al. Organization based access control. In: Policies for

MMT

System Env.
Ev. Capture

Security
Analysis ReportingFilter

Context
Change

AMQP Broker

EFSM based
properties

EFSM based
correlation

Application
events

Network
packets

Events

Events

Publish Publish

Subscribe Subscribe

Subscribe

Publish

MMT Channel

Notification
Module

Context
Awareness

Fig. B7 – INTER-TRUST Montimage Monitoring Tool (MMT).

http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0010
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0010
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0010
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0010
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0015
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0015
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0020
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0020
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0020
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0020
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0025
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0025
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0025
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0025
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0025
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0030
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0030
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0030
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0030
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0030
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0035
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0040
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0040
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0040
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0040
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0045
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0045
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0045
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0045
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0045
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0050
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0050
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0050
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0050
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0055
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0055
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0055
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0055
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0055
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0060
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0060
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0065
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0065
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0065
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0065
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0070
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0070
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0070
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0075
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0075
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0075
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0080
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0080
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0080
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0080
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0085
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0085
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0085
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0090
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0090
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0090
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0095
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0095
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0095
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0095
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0100
http://www.inter-trust.eu/
http://www.inter-trust.eu/
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0105
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0105
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0105
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0105
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0105
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0105
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0110
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0110
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0110
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0110
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0115
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0115
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0115
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0120
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0120

distributed systems and networks. 2003. doi:10.1109/
POLICY.2003.1206966.

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier
J-M, et al. Aspect-oriented programming. In: ECOOP – object-
oriented programming, vol. 1241. 1997. p. 220–42. doi:10.1007/
BFb0053381.

Mallouli W, Wehbi B, de Oca EM, Bourdelles M. Online network
traffic security inspection using MMT tool. In: System testing
and validation. 2012.

Morales G, Maag S, Cavalli A, Mallouli W, de Oca E, Wehbi B.
Timed extended invariants for the passive testing of web
services. In: IEEE international conference on web services.
2010. p. 592–9. doi:10.1109/ICWS.2010.17.

Mouelhi T, Fleurey F, Baudry B, Traon Y. A model-based
framework for security policy specification, deployment and
testing. In: Model driven engineering languages and systems.
2008.

Padayachee K, Eloff J. An aspect-oriented model to monitor
misuse. In: Innovations and advanced techniques in
computer and information sciences and engineering. 2007.
p. 273–8. doi:10.1007/978-1-4020-6268-1_49.

Paxson V. BRO: a system for detecting network intruders in real-
time. Comput Netw 1999;31(23–24):2435–63. doi:10.1016/
S1389-1286(99)00112-7.

Pinto M, Horcas J. How to develop secure applications with
aspect-oriented programming. In: Risks and security of
internet and systems (CRiSIS), 2013 international conference
on. 2013. p. 1–3. doi:10.1109/CRiSIS.2013.6766345.

Pinto M, Gámez N, Fuentes L, Amor M, Horcas JM, Ayala I.
Dynamic reconfiguration of security policies in wireless
sensor networks. Sensors 2015;15(3):5251. doi:10.3390/
s150305251. <http://www.mdpi.com/1424-8220/15/3/5251>.

Roesch M. SNORT – lightweight intrusion detection for networks.
In: Proceedings of the 13th USENIX conference on system
administration, LISA ’99. 1999. p. 229–38. <http://dl.acm.org/
citation.cfm?id=1039834.1039864>.

Serme G, De Oliveira AS, Guarnieriy M, El Khoury P. Towards
assisted remediation of security vulnerabilities. In: 6th
International conference on emerging security information,
systems and technologies (SECURWARE). 2012.

Steimann F. The paradoxical success of aspect-oriented
programming. SIGPLAN Not 2006;41(10):481–97. doi:10.1145/
1167515.1167514.

Sun Microsystems, Inc. Sun’s XACML implementation, 2003.
<http://sunxacml.sourceforge.net/>.

Teixeira A, Pérez D, Sandberg H, Johansson KH. Attack models
and scenarios for networked control systems. In: Proceedings
of the 1st international conference on high confidence
networked systems, HiCoNS ‘12. 2012. p. 55–64. doi:10.1145/
2185505.2185515.

Toledo R, Tanter E. Secure and modular access control with
aspects. In: Proceedings of the 12th annual international
conference on aspect-oriented software development,
AOSD’13. 2013. p. 157–70.

Toledo R, Nunez A, Tanter E, Noye J. Aspectizing Java access
control. IEEE Trans Softw Eng 2012;38(1):101–17. doi:10.1109/
TSE.2011.6.

Varaiya P. Smart cars on smart roads: problems of control. IEEE
Trans Autom Control 1993;38(2):195–207. doi:10.1109/9
.250509.

Vinoski S. Advanced message queuing protocol. IEEE Internet
Comput 2006;10(6):87–9. doi:10.1109/MIC.2006.116.

Wang F-Y, Zeng D, Yang L. Smart cars on smart roads: an IEEE
intelligent transportation systems society update. IEEE
Pervasive Comput 2006;5(4):68–9. doi:10.1109/MPRV.2006.84.

Wehbi B, de Oca E, Bourdelles M. Events-based security
monitoring using MMT Tool. In: Software testing, verification
and validation. 2012 doi:10.1109/ICST.2012.188.

Zhang S, Zhao J. On identifying bug patterns in aspect-oriented
programs. In: 31st annual international computer software
and applications conference, Vol. 1 of COMPSAC’07. 2007.
p. 431–8. doi:10.1109/COMPSAC.2007.159.

http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0120
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0125
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0125
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0125
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0125
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0130
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0130
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0130
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0135
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0135
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0135
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0135
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0140
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0140
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0140
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0140
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0145
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0145
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0145
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0145
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0150
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0150
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0150
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0155
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0155
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0155
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0155
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0160
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0160
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0160
http://www.mdpi.com/1424-8220/15/3/5251
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0165
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0165
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0170
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0170
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0170
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0170
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0175
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0175
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0175
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0180
http://sunxacml.sourceforge.net/
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0185
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0185
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0185
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0185
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0185
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0190
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0190
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0190
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0190
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0195
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0195
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0195
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0200
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0200
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0200
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0205
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0205
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0210
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0210
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0210
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0215
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0215
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0215
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0220
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0220
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0220
http://refhub.elsevier.com/S0167-4048(15)00183-2/sr0220
http://www.aosd-europe.net

	 An approach for deploying and monitoring dynamic security policies
	 Introduction
	 Related work
	 Security frameworks
	 Dynamic adaptation with aspect-oriented programming
	 Dynamic detection of vulnerabilities

	 Background information: the INTER-TRUST framework
	 Dynamic specification of security policies
	 Dynamic deployment of security policies
	 Monitoring (test and operation phases)
	 Testing for vulnerabilities detection

	 Correlation between security policies, aspects and security properties
	 Deployment and monitoring approach
	 Dynamic deployment of security policies
	 Dynamic monitoring of security policies

	 Evaluation and discussion
	 Performance evaluation
	 Performance of deployment
	 Performance of monitoring

	 Vulnerabilities detection
	 The attack model
	 Effectiveness of the monitoring tool

	 Threats to validity and lessons learnt
	 Dynamicity offered by INTER-TRUST
	 Monitoring capabilities
	 Privacy protection of the MMT tool
	 Implementation of security using aspects
	 Undetectable attacks
	 Vulnerable points used to perform the attack
	 Security expertise

	 Conclusions and future work
	 Acknowledgments
	 Appendix A
	 Aspect generation and aspect weaver

	 Appendix B
	 Montimage monitoring tool (MMT)

	 References

