
A goal-driven software product line approach for evolving multi-agent 
systems in the Internet of Things
Inmaculada Ayala ∗, Mercedes Amor, Jose-Miguel Horcas, Lidia Fuentes
CAOSD Group, Universidad de Málaga, Andalucía Tech, Spain

Keywords:

Software product line 
Evolution
Internet of Things 
MAS-PL
Goal models
GORE

a b s t r a c t

Multi-agent systems have proved to be a suitable technology for developing self-adaptive Internet of 
Things (IoT) systems, able to make the most appropriate decisions to address unexpected situations. 
This leads to new opportunities to use multi-agent technologies to develop all kinds of cyber–
physical systems, which usually encompass a high diversity of devices (e.g., new home appliances). 
The heterogeneity of devices and the high diversity of the available technology, demand the explicit 
modeling of all kinds of variability for ultra-large systems. However, multi-agent systems lack 
mechanisms to effectively deal with the different degrees of variability present in these kinds of 
systems. Software Product Line (SPL) technologies, including variability models, have been successfully 
applied to different domains to explicitly model variability in hardware, system requirements or user-
intended goals. In addition, current market trends are unpredictable, imposing novel technologies, 
new requirements and goals that must be incorporated immediately into the running systems without 
damaging them. In this paper, we combine goal-driven and SPL approaches to develop and drive the 
evolution of multi-agent systems in the context of cyber–physical systems. We propose an SPL process 
and an evolution process that define a set of models (iStar 2.0 for goals and CVL models for variability) 
and algorithms to automatically propagate changes to agents running in multiple heterogeneous 
devices, each of them with a different configuration. We illustrate the proposal in the context of a 
home energy management system. Finally, we have tested the scalability and performance of the 
proposal using randomly generated models. The results show that with our approach it is possible 
to manage huge iStar models of 10000 elements in seconds.

1. Introduction

The strategy smart anything everywhere (SAE1) drives the next
wave of devices with electronic components inside, ranging from
mobile devices, smart home appliances and a myriad of Internet
of Things (IoT) devices that can be exploited by a new generation
of Cyber–Physical Systems (CPS). This leads to new opportunities
to build more sophisticated software products with an increas-
ing awareness of the surrounding environment [1,2]. Indeed,
the increasing complexity of current CPSs requires software sys-
tems with a higher level of pervasiveness, proactiveness and self-
adaptation to changing environments. Multi-Agent Systems (MAS)

∗ Corresponding author.
E-mail addresses: ayala@lcc.uma.es (I. Ayala), pinilla@lcc.uma.es

(M. Amor), horcas@lcc.uma.es (J.-M. Horcas), lff@lcc.uma.es (L. Fuentes).
1 https://ec.europa.eu/digital-single-market/en/smart-anything-everywhere.

embedded in networked IoT devices have proved to be a suitable
technology for developing self-adaptive CPSs, able to make the
most convenient decision to face unexpected situations [3,4].

The growing interest in new digital businesses encouraged by
the Digital Single Market initiative, brings new possibilities to use
MAS technologies to develop any kind of CPS, which range from
small-scale systems to large system of systems. The versatility
of these systems largely depends on the level of integration and
management of any kind of device that can produce relevant
information. Indeed, the list of devices that can connect to the
Internet continues to grow (e.g., new smart home appliances), so
system development is currently facing a diversity explosion with
respect to the types of devices that can be integrated. The large
number and heterogeneity of devices derived from the contin-
uous technological changes demand the explicit modeling of all
kinds of variability, which must be managed with efficient mech-
anisms, suitable even for ultra-large systems. However, MASs
lack mechanisms to effectively deal with the different degrees
of variability present in these kinds of systems. Software Product
Line (SPL) technologies have been successfully applied to different
domains to explicitly model variability in hardware or variations

https://doi.org/10.1016/j.knosys.2019.104883
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.104883&domain=pdf
https://doi.org/10.1016/j.knosys.2019.104883
https://doi.org/10.1016/j.knosys.2019.104883
mailto:ayala@lcc.uma.es
mailto:pinilla@lcc.uma.es
mailto:horcas@lcc.uma.es
mailto:lff@lcc.uma.es
https://ec.europa.eu/digital-single-market/en/smart-anything-everywhere
https://doi.org/10.1016/j.knosys.2019.104883


in both system requirements or user preferences [5]. In order to
overcome the limitations of traditional MAS development pro-
cesses, the MAS-PL initiative proposed combining SPL and MAS to
promote reuse and variability modeling in the context of complex
systems [6].

SPLs principally rely on variability models (e.g., feature mod-
els), which are used to specify the common assets shared by a
set of products of the same family and the variable elements that
will or will not be in the final product configuration, only if they
are selected. On the other hand, MASs foster system development
in terms of system objectives, plans and quality goals that should
be fulfilled. Integrating goal models and SPLs brings several ad-
vantages to the CPS development processes. Goal models improve
communication with stakeholders because they can better ex-
press their expectations about, for example, what technology they
want. It is easier for a stakeholder to express that they want a
system to help him with the power management of a smart home
than selecting the configuration variants of the heater, blinds and
home appliances that consume less energy. In addition, all kinds
of requirements, including non-functional requirements or soft
goals are explicitly identified and modeled using any goal model
alternative. Therefore, SPL can greatly benefit from Goal-Oriented
Requirements Engineering (GORE) approaches that complement
variability models with a stakeholder viewpoint. With goal mod-
els it is easier to represent intentional variability, which facilitates
the exploration of design alternatives [7].

However, combining GORE and SPL approaches [7,8] to im-
prove CPS development is not enough. CPS construction also
needs processes that provide support to systematically man-
age the evolution of SPLs according to changes in goal models
(e.g., new security goal for a smart home system) and technology
(e.g., new home appliance). Indeed, current market trends are
volatile, imposing novel technologies and requirements that must
be incorporated into running systems quickly. Therefore, we need
processes that automatically propagate changes (e.g., substitute
an obsolete technology) to agents running in multiple devices,
considering that each of them has a different and customized
configuration. In this paper, we combine goal-driven and SPL
approaches to drive the evolution of MASs embedded in IoT
devices that take into account the environmental context in the
decision-making to generate plans that fulfill CPS goals.

In [9] we have defined an SPL development process that per-
forms a model driven generation of agents (Self-StartMAS [10])
embedded in heterogeneous smart objects with different degrees
of self-management objectives. With this approach, instead of
generating a single system, we can generate custom-made MASs,
composed of agents embedded in smart devices, with capacity for
self-management. In this paper, we enhance this process with a
Goal-Oriented perspective which is integrated with amodel driven
evolution process. We name the joint work of these processes
GOSPEL, a Goal-Driven Product Line approach for evolving MAS
in the IoT. GOSPEL uses goal models specified in iStar 2.0 [11] to
describe system requirements and goals, and CVL (Common Vari-
ability Language) [12] to specify variability. It also defines a set of
algorithms that manage the evolution of iStar 2.0 and CVL mod-
els synchronously, and propagate these changes to the running
system, assuring CPS consistency at all times. We present and
validate our approach for a home energy management system.
This home energy assistant system will be evolved to self-adapt
its decision making, or the home appliances it manages, to new
requirements. As some CPSs are capable of managing hundreds
of computing devices, we validate our approach to test whether
or not it is applicable to ultra-large CPSs. Indeed, our approach
becomes especially valuable when the devices to propagate the
changes number in the hundreds, since we automate this process,
while ensuring the consistency of the resulting system.

The remaining sections of this paper are organized as follows:
Section 2 presents a brief overview of the models used in this
paper (iStar 2.0 and CVL) and Self-StartMAS. Section 3 presents
and discusses a revision of existing work, which explores the
combination of GORE and SPL, and the evolution based on goals
and requirements. Section 4 presents the GreenManager system,
a case study used to illustrate our proposal, and the challenges
that motivate our approach. Section 5 describes GOSPEL, the
Goal Oriented SPL process for IoT agents. Section 6 details our
process for the evolution of MAS due to new emerging goals and
requirements. Section 7 validates our approach while Section 8
discusses the threats to validity. Finally, Section 9 concludes the
paper.

2. Background

In this section we present an overview of the models used
in the work presented here and Self-StarMas (the target agent
technology of our processes) in a nutshell. We use CVL to model
variability and iStar 2.0 to model goals.

2.1. The Common Variability Language

Variability of SPLs can be specified using different modeling
languages. Although feature models are very popular in the SPL
community, the Common Variability Language (CVL) [13] was re-
cently proposed as a richer alternative. Both variability languages
can be used in our proposal, but here we have opted to use
CVL. CVL is a domain-independent language for specifying and
resolving variability over any instance of any language defined
using an MOF-based metamodel (e.g., UML) which is called the
base model.

In a CVL process (see Fig. 1(a)) all the variations of the base
model are specified in the variability model. The variability model
(see top of Fig. 1(b)) is a specification of the base model vari-
abilities and their relationships, and it is defined in two steps.
Firstly, the variation points (VP) (i.e., what varies) are marked over
the base model (see center of Fig. 1(b)). There are different types
of variation points: to indicate the existence of an element; to
substitute a particular part of the base model; to perform a value
assignment of a particular slot of the model.

Secondly, to complete the variability model we need to define
the Variability Specifications (VSpec) separately from the base
model. These entities are specifications of abstract variability
that are organized in tree structures (VSpec trees, where nodes
are called VSpec) (see Fig. 1(b)). Additionally, it is possible to
specify explicit constraints also known as cross-tree constraints.
The VSpecs can be divided into three kinds: choices, variables
and classifiers. Choices represent yes/no decisions or features that
can appear in the base model or not. Variables are VSpecs that
require a value to be resolved. VClassifiers (or clonable features)
mean having to create instances or clones and then providing
per-instance resolution for the VSpec in its sub-tree. In the mod-
els shown in following sections we use choices and variability
classifiers (VClassifiers). Group multiplicities are used to apply re-
strictions over the number of children of a VSpec that can be
chosen. Furthermore, the appearance of VSpecs in a selection can
be optional or mandatory.

The effect of the variability model on the base model is spec-
ified by binding variation points, which link the base model, the
variation points and the VSpec tree. Once the variability model
and the base model have been defined, the VSpecs of the VSpec
tree are resolved taking into account its specific type (e.g., choices
are selected or not, values are given to variable assignments. . . ),
and this selection makes up the resolution model. So, the VSpec
tree with the features (or VSpecs) selected is called resolution



Fig. 1. Common Variability Language overview as specified in [12].

model (i.e., a specific configuration of the variability model). This
resolution model holds dependencies entailed by the VSpec tree
structure and the cross-tree constraints of the variability model.

When one of the resolution models is selected, the CVL execu-
tion engine (see Fig. 1(a)) is executed and produces the resolved
model, a product model, fully described in the MOF-based meta-
model, which is a variation of the base model according to the
choices that have been made in the resolution model.

2.2. The iStar 2.0 core language

The iStar 2.0 core language [11] is an evolution of the early re-
quirements language i* (iStar). The main purpose of this language
is to facilitate the stakeholders’ understanding of the problem
solution. With this goal, the language takes into consideration the
social and the intentional dimensions of the problem. This lan-
guage is a goal-oriented and actor-oriented modeling language.
Therefore, iStar 2.0 models describe the goals of the system to
be developed, and how different actors cooperate to accomplish
them.

The notation of the language considers social entities (actors,
agents and roles), intentional elements (goals, qualities, tasks and
resources), social dependencies and links between intentional
elements. The language has two perspectives for system model-
ing: (i) the strategic rationale, which shows all the intentional
elements associated with their actors and their dependencies;
and (ii) the strategic dependency, which only shows the social
part of the model.

The iStar 2.0 core language has a tool2 that works with the
full specification of the language. Fig. 2 shows a minimal example
with some of the main elements of the language. The actor Re-
searcher wants i* models created. To do so he/she executes the task
Use piStar that helps to create Good quality models. Additionally,
if he/she cooperates with the agent piStar, which participates in
the role Modeling Tool, he/she can Export image of his/her models
in PNG of SVG. We will provide more details about the semantic
of the iStar 2.0 language later in Section 5.1, when describing its
use in our SPL process.

2.3. Self-StarMAs agents

Self-StarMAs is an agent system, which adapts and extends
standard agent technologies to help in the development of IoT

2 http://www.cin.ufpe.br/~jhcp/pistar/#.

applications. In this system, we can distinguish two parts: Self-
StartMAS [10], a set of self-adaptive cooperating agents devel-
oped for lightweight devices; and the agent platform where the
agents are deployed. Self-StartMAS agents can be executed on
top of different agent platforms like Jade [14] by just selecting
the appropriate plug-in. Concretely, in the work presented here,
we deploy Self-StartMAS agents in Sol [15], an agent platform
suitable for agents in the IoT.

Self-StarMAS agents can be embedded in typical devices of
the IoT like sensor motes, handheld personal devices or personal
computers. A distinguishing feature of these agents is that they
have self-adaptation capabilities, adapted to the resources of the
devices where agents are embedded [3]. For instance, agents
for handheld devices support goal-oriented self-adaptation, while
agents embedded in sensor motes support reactive adaptation
based on rules. The main features of the Sol agent platform are the
support for communication of agents in heterogeneous devices,
coping with heterogeneous transport protocols (WiFi, Bluetooth
and ZigBee) and the support for group communication, which are
often required by pervasive systems.

The joint work of Self-StarMAs and Sol provides the necessary
means for developing IoT applications and in particular Home
Automation Systems. Self-StarMAs agents can take advantage of
the Sol agent platform, to communicate through different trans-
port protocols and send multicast messages to a group of related
agents. With this approach, the functionality of the IoT applica-
tions is decomposed into a set of Self-StarMAS cooperating agents
that use the Sol agent platform for location and communication
between agents.

3. Related work

This section presents a revision of existing proposals that
explore the combination of goal models and SPL, and also those
which propose evolution processes based on goals. Finally, and in
relation to our case study, we mention previous work that applies
agent technology to smart homes and home automation systems.

This distinction reflects that, to the best of our knowledge,
there are no proposals that encompass MAS, SPL, goal modeling
and intentional evolution in the same work.

3.1. Goal-oriented software product lines

Bridging the gap between goal models and SPLs is not a new
topic, and there are different approaches that have combined goal
models into SPL [7,8,16–20]. The main reason of these proposals
is to show how the features of an individual product fulfill the

http://www.cin.ufpe.br/~jhcp/pistar/#


Fig. 2. Example of iStar 2.0 Goal Model in the piStar tool.

stakeholders’ goals and, therefore, how goals can be used to drive
and improve feature selection in the feature model configuration
process. Existing proposals show that combining goal and feature
models can be done through two different approaches: including
goal models in the life cycle of the SPL [7,8,16,21]; and using goal
models to generate feature models [17–20].

In the work presented in [7], a goal model, referred to as the
family goal model, is integrated in the SPL life cycle to illustrate
variability in the intentional space. The family goal model is
described using an extension of the Goal Requirements Language
(GRL) [21], and represents intentions in product lines and the
difference of intentions for various products. The family goal
model and the feature model are connected by bidirectional
mappings, which facilitates traceability between stakeholders’
objectives and features.

The approach by Noorian et al. [8] proposes the use of goal
models for the derivation of products taking into account stake-
holder requirements and preferences. The goal model and the
feature model are linked using the Quality-Centric Feature Model-
ing Method, which makes it possible to set quantitative relations
between intentional elements and features. Following a staged
configuration process, the featured model is gradually configured
to select an optimal set of features that can maximize stakehold-
ers’ needs. The authors propose a formalization of the structure
of the feature model, the stakeholders’ objectives and their selec-
tions as an Integer Linear Programming problem, which drives a
semi-automated staged configuration process.

Another interesting contribution is the work presented in [16],
which proposes to use the Aspect Oriented User Requirement No-
tation (AoURN) [22] at the requirement analysis phase of SPL life
cycle. AoURN is a modeling and reasoning framework that com-
bines goal-oriented, scenario-based, and aspect-oriented tech-
niques for requirements engineering. This approach focuses on
the analysis of the interaction between stakeholders’ require-
ments and feature models, and considers the use of tools that help
to identify, prioritize and choose products, taking into account
stakeholder requirements. As part of this proposal, the authors
propose a mapping between AoURN and feature models by the
definition of a URN profile that models common concepts of a
feature model in a URN profile as a specialized AoURN goal model.

In current proposals that integrate goal-models into the SPL
life cycle (at the requirements phase), the goal model and the
variability model are developed in parallel and linked later. This
lack of automation in the mapping makes the application of these
approaches difficult when the models contain a lot of elements.
Additionally, the aforementioned approaches provide different
mappings for the manual connection of models that focus on just

one type of element of the goal model. For example, [7] considers
a mapping from tasks to features, while in [16] the mapping is
performed between goals/soft-goals and features. Here we can
find an important difference to our work, which limits the use
of these proposals as part of our approach. Note that, with these
mappings, some of the information provided by the goal model
gets lost in the feature model (e.g., goals in [7,8] and tasks in [16]).
In our work, the use of MAS-PL, which combines MAS and SPL,
allows all the information provided by the goal model to be taken
into account, and this is included in the feature model use to
derive the MAS, and also to automate the generation of models.

Another distinction between our approach and those afore-
mentioned [7,8,16] is their reliability on non-standard goal mod-
els and extensions. Both approaches use extensions of GRL/URN
for goal modeling. The use of non-standard models reduce the
set of available tools, which complicates their automation. Our
approach uses iStar 2.0 standard models, which have helped to
automate the generation of models and mappings.

As mentioned, another approach to combine GORE and SPL is
to support the generation of feature models from goal models.
This approach is intended to support traceability, and/or comple-
ment and enhance the semantics and justification of the features.
Yu et al. in [19] explored the relations between goal models and
feature models to approach a requirement traceability problem.
They provided a model-driven tool to support a systematic pro-
cess for generating a feature model from a goal-oriented model.
This directly supports configuring feature models via preferences
as stated by end-users over higher level soft goals. Both models
can be further edited iteratively using the OpenOME tool. The
derivation of products is supported by the information provided
by the soft-goals that represent user preferences. A limitation in
the work of Yu et al. [19] is that it requires the variation points
to be manually defined in the goal model in order to be able to
generate the feature model. In contrast, our work automatically
derives the information of the variation points from the structure
of the iStar model.

IStarLPS [17] proposes adapting the SPL process to include
iStar to enhance and help to define feature models, providing
an early identification of variability. The concept of cardinality is
added to iStar to represent variability in the iStar models. The
domain engineering process of the IStarLPS approach deals with
the development of the iStar goal model, which is extended with
cardinality, and the feature model. The approach provides a set
of hypotheses to produce the feature model from iStar models.

The use of aspectual goal models is also considered in [18]
and [20]. The work in [18] defines an aspect-oriented require-
ment language (PL-AOVGraph) that integrates feature models



with requirements engineering concepts, and proposes a bidi-
rectional mapping that allows to generate feature models from
PL-AOVGraph models and viceversa. Silva et al. [20] propose using
aspectual iStar to capture common and variable features in SPL
requirements. The generation of the feature models is supported
by a set of heuristics.

Finally, we wish to remark that none of the aforementioned
approaches consider the generation of the application archi-
tectures for deployment. Those publications that consider the
derivation of products like [17–20] do not support the connec-
tion between configurations of the feature models and the final
system. In our approach, CVL is used to connect variability models
with architectures by means of binding variation points, and
supports the generation of the application architectures using the
CVL engine.

3.2. Goal-oriented software evolution

Even though software evolution is usually related to changes
in stakeholders’ needs and requirements, the research in goal-
oriented or intentional evolution is not profuse [23]. Nonethe-
less, there are some approaches that deal with the evolution of
requirements or goals and how this evolution impacts on the
system, including the context of SPLs [24–26] and MAS [27].

The work in [28] proposes a methodology for relating business
process models (modeled using BPMN) to high-level stakeholder
goals (modeled using KAOS) to be used in dynamic environ-
ments where organizational goals and/or processes are constantly
emerging.

The work in [23] is focused on requirements that cause the
evolution of other requirements, and how they affect the system
at runtime. Although this does not explicitly consider SPLs, it in-
troduces the concepts of variation points and control variables to
model variability at the requirements level. This approach deals
with anticipated and explicitly specified requirements changes,
and their impact on the system can be carefully predicted.

The work in [25] supports the evolution of the SPL to cope with
changes in the stakeholders’ requirements. The EvoPL framework
supports an integrated model-driven approach to plan the evolu-
tion of SPLs in the production of different releases of a product at
feature level. Evolution is considered a sequence of versions of a
feature model. The proposed integrated planning process starts
modeling goals and requirements using goal models. A set of
incremental model transformations allow the automated genera-
tion of a plan to generate the evolution of the feature model from
existing versions. Goals are refined into concrete requirements
and the features to fulfill them, but it is not explained how this re-
finement (i.e., goal-feature relationship) is established. The result
is a release plan which has to be realized by an implementation,
but which does not consider how to address the propagation of
changes at the architectural level.

The work in [26] focuses on analyzing evolving requirements
and contexts to evaluate the potential variations in features. The
authors propose a problem-oriented and value-based analysis
method for this variability evolution analysis. The method con-
firms that tracing back to requirements and contextual changes
is an effective way to understand the evolution of variability in
SPLs.

In the MAS domain, evolution is the ability of a group of
agents to cooperate and evolve so as to adaptively search an
optimization design space guided by a strategy [29] or an evolu-
tionary algorithm [30]. The fact that strategies and evolutionary
algorithms, embodied in agents, evolve over time is an extension
of evolutionary computation [31] in itself. The work of Gross and
Yu [27] is closer to our definition of evolution, as it proposes
combining goal models and agents for software evolution. This

approach focuses on modeling the relationships between busi-
ness goals and system qualities, and how these goals are met
during architectural design. In particular, modeling must encom-
pass changes to business goals over time and their effects upon a
system’s architecture. Goals serve as a guide in the search for de-
sign alternatives, and as criteria for choosing between them. This
approach uses the agent concept to model human organizations
as well as technical components.

In conclusion, these approaches [23–27] consider the evolu-
tion of the goal models but they do not propagate the changes to
the variability model nor the final architectural elements. In fact,
no work takes into account both mapping between goal models
and variability models and the subsequent automatic updating of
that mapping when the requirements evolve.

3.3. Agent technology for home automation systems

Agent technology and Smart House and Home Automation
systems are linked in several proposals [32–35]. The role of agents
is to act as an intelligent distributed control system [34], decision
support [36], or in diagnostics and monitoring [33]. With these
capabilities, the home can adapt the control of many aspects of
the environment such as climate or water consumption, lighting,
maintenance, and multimedia entertainment. Intelligent automa-
tion of these activities can reduce the amount of interaction
required from the inhabitants, reduce energy consumption and
other potential wastage, and provide a mechanism for ensuring
the health and safety of the dwellers [33,37]. In home automation
systems focused on power management the goal of agents is
to adapt the power consumption to the power resources avail-
able, and vice-versa [38–40], usually taking into account the
inhabitants’ comfort criteria [32,37].

As we stated in Section 2.3, the implementation of GreenMan-
ager is based on Self-StarMAS agents [9]. This agent technology
has been used for the implementation of home automation sys-
tems [3,41] and offers great support to manage the heterogeneity
of these environments. Current home automation products sup-
port a limited set of devices and communication protocols, but
our proposal can incorporate diverse hardware and communi-
cation technologies even after product deployment. Finally, our
agents have self-adaptation capabilities that facilitate the de-
velopment of systems with multiple and contradictory concerns
like power management and user comfort. Then, Self-StarMAS
appropriately addresses the main challenges of smart homes [42]
related to the adaptability to everyday domestic contexts and the
flexibility to modify adaptation policies on the fly.

4. Developing agent-based CPS applications

In this section we present the GreenManager system, a case
study used to illustrate our proposal. We also discuss the chal-
lenges that our approach has to address in order to improve the
development of agent-based IoT applications, using goal models
and SPLs.

4.1. Case study: The GreenManager system

Residential buildings represent the most important part of the
energy consumption of highly-populated areas, which worsens
the greenhouse effect. This problem is being mitigated thanks
to the popularization of smart home systems [42], which are
making home appliances smarter and include sustainable modes
for power and water consumption saving. Another feature of
these kinds of home appliances is the possibility to program a
specific task to be done at some point in the future (e.g., the
laundry can be delayed until night time), thereby avoiding the



peak periods of power consumption, which is when the energy
price is highest. In addition, energy tariff models imposed by
energy providers are now more complex and dynamic than in
the past [32,38], making the task of minimizing the energy cost
very complex to do manually. All this poses new challenges in
the automation of home energy management. Inhabitants need
some kind of assistant tool, an energy manager, to help them
in making complex decisions with different goals, depending on
their current situation.

The GreenManager system is an agent-based home automation
system, whose goal is to manage the smart home power. Sustain-
ability goals at home encourage inhabitants to use resources more
effectively. Experience has shown that small changes in habits
(e.g., turning off lights, selecting an appropriate home appliance
program) can result in a substantial energy saving. The goal of the
system is to help occupants optimize home power consumption
without imposing undue technological complexity, effort or in-
convenience. GreenManager manages home appliance operation
to adapt the power consumption to the available power resources
and taking into account user comfort criteria, and certain power
constraints. Therefore, the energy management system has to
reach a compromise between the priorities of the user in terms of
usability and in terms of cost considering providers’ tariffs, while
satisfying technological constraints of home appliances, in-house
devices and infrastructures.

The GreenManager system has to interact with the home appli-
ances of the user to automate the starting and stopping of service
tasks, and the monitoring and control of resource consuming
activities. Monitoring helps to detect faults or abnormal operating
situations. For instance, during peak consumption periods and
when the energy price is high, it would be possible to postpone
some consumption activities until late night, when energy price
and demand are usually lower. The best candidates to delay the
start of the service are those silent home appliances whose ser-
vice is not a priority to users, like washing machines, for example.
To model this situation, we consider two types of home appli-
ances, the silent ones and those whose work cannot be delayed
like the oven or the vacuum cleaner. The GreenManager plans
these activities taking into account the information provided by
the electric power company. However, if many energy consuming
tasks are programmed when the energy price is cheaper, it is
necessary to control the demanded power so that it does not
exceed the power limit contracted, or the power line limit. Auto-
matic power management is more challenging and useful when
the availability and price of the energy varies. It is extremely
complicated for users to manage the distribution of energy con-
sumption in a dynamic pricing context. Therefore, the system
has to reach a compromise between the inhabitants’ comfort and
the energy costs (consumption, price, or both) while satisfying
the technological and green conditions of home appliances and
devices.

The system behavior relies on a Multi-Agent paradigm. Each
agent is embedded inside a home appliance or piece of equip-
ment (computing unit). These devices can affect the environment
(e.g., thermal-air) or automate a task (e.g., washing). The agents
in the devices can cooperate with others to find acceptable power
consumption while maintaining comfort. Fig. 3 details part of the
MAS architecture integrated into the system to solve the power
management problem. The MAS comprises several types of agents
embedded in each home appliance: (WashingMachineAgent, Dry-
erAgent, DishwasherAgent, CooktopAgent, ExtractorHoodAgent and
OvenAgent). It also has the agent that manages its functioning,
the GreenManager, which considers the electricity cost and the
limitations of the electric power of the house.

In the normal functioning of the MAS, the agents embedded in
home appliances whose programs and start time can be delayed

(i.e., washing machine, dryer or dishwasher) request a time slot
to start and finish an activity from the GreenManager. In order
to assign the best time slot, the GreenManager uses information
provided by the other agents of the house and their demand on
power consumption. Each agent is aware of, in general terms,
the user preferences for the home appliance use and start time
(e.g., as soon as possible or at a certain time). So, in their decisions
there is a trade-off between cost, electrical power limitations
and meeting the user’s preferences. On the other hand, there
are home appliances whose start time cannot be postponed like
the oven or the cooktop. Once the agents embedded in the oven
and the cooktop (the OvenAgent and the CooktopAgent) inform
the GreenManager that the user has requested their service, and
taking into account the current state of the other home appliances
and the electrical power limit of the house, this agent (the system
manager) can take three actions: (i) to do nothing because the
start of the cooktop or the oven is not going to exceed the
electrical power limit of the house; (ii) to ask the corresponding
agent to use a low consumption program (if it is available); or
(iii) to suspend or delay the planned start of one of the home
appliances. The action (ii) is a recommendation that the user can
accept or cancel, in the case that the user does not accept it,
GreenManager takes action (iii).

4.2. Challenges for developing agent-based CPS applications

In this section we discuss the challenges of developing and
managing the evolution of CPS including IoT devices such as the
GreenManager.

One of the first challenges is C1: managing the heterogene-
ity in hardware and software. Since devices (home appliances
and personal devices) are heterogeneous in nature, the software
(the agents in the GreenManager) embedded in them is also
heterogeneous. This means that each agent will have its own
internal architecture, with goals and plans adapted to the specific
capacity of the device. However, the goals, the agent platform and
other shared characteristics have to be consistent for each agent
comprising the MAS. So, we need to model agents that have to
share some features, but at the same time the agent configuration
must be customized to each device.

Another challenge is C2: the customization required of the
system when deployed for different customers. This challenge
is clearly exemplified in the GreenManager. Developers should
work on a new version of the application for each house in
which the GreenManager has to be deployed. Each house has a
different set of home appliances or energy tariffs and in addition,
final users will have different preferences. The use of techniques
for systematic reuse of common assets and customization of
non-common variants could greatly facilitate this work.

Another important challenge is C3: management of the evo-
lution of the system. The original MAS deployed in a given
home, which is initially adapted and generated for specific home
appliances, personal devices, and currently applicable goals or
energy tariff models, must evolve to meet changes. These new
requirements could be demanded by the final stakeholders or as
a result of technological upgrades or even new rules or policies.
During a system’s operational life new devices may appear, while
others must be replaced, the tariff models can change, and in
general, the running GreenManager system configuration has to
be adapted to new requirements. This means that when a new
requirement appears, we need to calculate the changes that must
be made to each agent. Considering that for any given system this
may entail many agents, the manual calculation of changes would
be a costly and error-prone task, it would therefore be better to
make these calculations automatically.

Once the changes have been calculated in the design models,
we need to automatically and coherently propagate these changes



Fig. 3. Architecture of the GreenManager system.

to all the running agents. We need to ensure that agents will
continue interacting and cooperating in a coherent way, but
according to the new requirements. Some changes will entail the
modification of a single agent and others may imply modifying all
or several agents. For instance, in our case study, to manage the
water consumption together with the power consumption, new
goals and plans need to be added, but only in those agents em-
bedded in home appliances that consume water. Equally, a new
system requirement that affects all the agents is the detection of
faults in the functioning of the home appliances. These changes
imply having to add, remove or modify multiple components in
the architecture of the agents (see components marked in gray in
Fig. 3).

The objective of the GreenManager is to automate some user
decisions with respect to the power distribution between the
home appliances, with the goal of contributing to the planet’s
sustainability. So, another challenge here is C4: to include goals
specific to the energy efficiency of home appliances in sys-
tem modeling. This should be done in a language that can be
understood by all the application stakeholders.

The development and evolution processes that we propose in
the following sections try to address all these challenges. With
this goal, we rely on techniques that facilitate the management
of the variability of the system, the systematic re-use and the

Table 1
Challenges addressed in the related work.
Challenges Works Comment

C1 [7,8,16–20,24–26] Define SPL to manage heterogeneity.
C2 [7,8,16–20] Use goal models and SPL to support

system customization taking into
account user requirements.

C3 [23–31] Manage requirement evolution at the
SPL level.

C4 [32–35,37–40] Consider goals of energy efficiency.

evolution of the IoT system. In Section 3, we present different
works that address some of the challenges presented in this
section (see Table 1). However, as far as we know, there is not
a single approach that deals with all the challenges raised in this
section.

5. GOSPEL: A Goal-Oriented SPL process for IoT agents

In order to address the challenges related to the development
of CPS and IoT systems like the GreenManager, we propose a Goal-
Oriented SPL process based on the iStar 2.0 and the CVL modeling
languages (see Fig. 4).



Fig. 4. GOSPEL, goal-oriented and SPL process to develop MAS for the IoT.

CPS and IoT applications like Home Automation Systems, could
greatly benefit from an SPL approach [43,44]. SPL approaches are
composed of the Domain Engineering (DomE) and the Application
Engineering (AppE). In the DomE, the process has to produce the
common models and the core assets of the product family. The
AppE entails the creation and configuration of one of the family
members. CPS and IoT Systems are composed of a heterogeneous
set of devices and network technologies [45]. So, the identifi-
cation and management of this variability is performed at the
DomE level. Additionally, these systems should be customized for
each of the environments in which they will be deployed. This
task is performed at the AppE level, using the processes for the
derivation of new family members.

The GOSPEL process presented in this section is implemented
in iStar 2.0 (i.e., iStar) and CVL. We have selected iStar because
of its maturity and popularity in the Early Requirements stage.
Furthermore, it is tool supported and it has been used in other
approaches that integrate goal models with SPL [17,19]. In the
case of CVL, we use this language because it is a variability mod-
eling language that supports all the characteristics of the most
popular feature modeling mechanisms (i.e., VClassifier, variables,
propositional cross-tree constraints, groups, . . . ). In addition, this
language allows feature models (i.e. VSpec trees in CVL) to be
connected with the architecture of the system, which facilitates
the generation of products from the SPL (see Section 2.1).

5.1. Goal-oriented domain engineering

The DomE phase entails the definition of several software
artifacts that will be reused in each product of the family, so it
only has to be performed once (see Fig. 4). Our DomE phase, starts
with the elicitation, representation and management of stake-
holders’ requirements for the family of applications. These tasks
are supported by iStar and its tool. The result is a goal model,
which contains a goal-oriented modeling of the family of systems.
The goal model of the GreenManager (see Fig. 5) includes the
main actors of our case study, the GreenManager, the agents that
manage the home appliances, i.e., HomeApplianceController, and
other supporting actors like the Electric Company that provides
information about the energy tariff and the limit of the contracted
power. Due to limitations of space, we focus on the description
of the GreenManager.

The main goal of the GreenManager system is the manage-
ment of the power consumption of a smart home (see Power
consumption Managed at the top of Fig. 5). This general goal
is refined into the sub-goals Operation Schedule Generated and
Operation Schedule Executed by means of an AND-refinement iStar
operator. This kind of refinement represents the sub-goals as part
of the parent goal. The purpose of these sub-goals is to support

the work planning of the different home appliances. To achieve
these goals we need additional goals like Appliance Data Collected,
Schedule Obtained and Schedule Strategy Selected. This last goal is
OR-refined by the goals Adapt to user preferences, Adapt to user
needs, Adapt to Energy tariff, Adapted to power limit and Trade-off
comfort efficiency. So any of these sub-goals can be achieved for
fulfilling the Schedule Strategy Selected. Goals can also be refined
in tasks using AND-refinement (e.g., Collect Appliance Status) or
OR-refinement (e.g., Schedule Operation Remotely). The meaning
of the AND-refinement is that the sub-task must be fulfilled to
accomplish the goal, while in the OR-refinement, the sub-task is
a particular way for fulfilling the parent goal. The GreenManager
system also considers some qualities that will guide the search
for ways to achieve goals like Sustainable Home or Avoid Power
Interruption. Goals, tasks and other non-functional requirements
impact on these qualities by means of contribution links. At this
point, we have different situations because this impact could be
high (e.g., Energy Efficiency strongly contributes to the Sustainable
Home) or low (e.g., Adapt to user needs goal helps achieve user
comfort). Additionally, it is possible to model relationships with
a negative impact by means of the hurt and break contributions,
but they have not been considered in our case study.

In order to accomplish its goals or to obtain resources, the
GreenManager cooperates with other actors. These scenarios are
modeled using dependencies. For instance, to accomplish the task
Schedule Operation Remotely, GreenManager has to accomplish
Appliance Controlled, which requires the accomplishment of the
goal Appliance Smart Control of Appliance Basic Controller role.
Roles in iStar are used to characterize an abstract class of an
actor. Therefore, we have used them to model the controllers
of home appliances. These controllers have a similar behavior in
each home appliance, but in an iStar model for the GreenManager
family it does not make sense to define specific features that will
vary from one product to another. For example, it is not possible
to know the number of controllers (i.e., the home appliances
controlled by an agent) we need for a specific house, or some
additional specific behavior that certain home appliances might
provide, until we need to generate a specific GreenManager prod-
uct at the application engineering phase. Therefore, using iStar
roles, we can support the modeling of the structural variability,
which is essential to model CPS and IoT systems.

The next step in the DomE process is the automatic generation
of the Intentional Variability model of our SPL using the infor-
mation of the iStar model. To do so, we have implemented the
iStar2VM algorithm (see Algorithm 1), which makes a mapping
between the iStar and the CVL model. This algorithm generates
the VSpec tree that is adapted to the base variability model (Base
VM) (Fig. 4) defined by Self-StarMAS. The Base VM specifies
a MAS in terms of an agent platform and the set of agents,



Fig. 5. Goal model in iStar 2.0 of the GreenManager MAS.

where each agent contains the device features in which it is
embedded and a Cognitive model, expressed in terms of Con-
text, Plans and Qualities (see Fig. 6). One of the advantages of
using CVL is that it allows cardinality to be assigned to the
features of the VSpec tree, which in CVL language is known as
VSpec trees with VClassifiers (see Section 2.1). In these kinds of
models, VSpecs can be qualified with a cardinality (e.g., [1..*])
meaning that a VSpec (or feature) can be cloned with the en-
tire subtree rooted in that VSpec. The advantage of clonable
VSpecs is that each clone can have a different configuration of
the variability, e.g., to use different goals or plans, adapted to
each clone’s characteristics. In our approach the cardinality rep-
resents the number of agents, so each agent can have a different
configuration depending on the device in which it is embed-
ded. As shown in Fig. 6 for the GreenManager, we can explicitly
model the structural variability of the agents for home appliances
(e.g., the sub-trees under WaterAdvancedController[1..*],
CookingAdvancedController[1..*] and ApplianceBasic-
Controller[1..*]) with the agent functionality customized to
the characteristics of each home appliance.

So, Algorithm 1 adds the intentional variability modeled in
iStar to the base model where agents are clonable features. The
iStar models have three sources that can be interpreted as inten-
tional variability: (i) the OR-refinement links, (ii) the contribution
links for qualities, and, (iii) the roles, which stand for the struc-
tural variability of the system, meaning that we can have many
instances of a role in the system (e.g., the home appliance con-
troller). The algorithm creates a VSpec tree which contains all the
types of agent roles (line 5, Algorithm 1), actors (line 8), goals and
tasks (line 18). To generate these agents, the algorithm follows
the mapping shown in Table 2. Each time an element is added
to the VSpec, its relationships with other elements are added by

means of parent–child relationships or cross-tree constraints. For
example, in the case of an OR-refinement between two elements
of the same type (line 28), the result is an XOR group in the VSpec
tree, meaning that only one of the alternatives can be selected.
At the same time, a resource needed by a task generates a cross-
tree constraint (line 44). In the case of qualities (line 49), they
are modeled as optional VSpecs and if they are related with links
Make or Help, the algorithm generates a cross-tree constraint with
the feature that it helps or makes.

Returning to Fig. 4, at this point of our GOSPEL process, we
have a VSpec tree which contains the intentional variability of
the GreenManager. This model provides a view of the intentional
elements of the MAS and how they are realized using different
features, however, it cannot be used to generate a running version
of the GreenManager. We need information about the technolo-
gies that can be used to implement this system. Gathering this
information is the goal of the task IoT MAS Technological Domain
Analysis, which is accomplished by domain experts. For our case
study (see Fig. 6), we have considered the technologies of Self-
StarMAS and the Sol agent platform (see Section 2.3 and Fig. 6).
Therefore, the work of the GreenManager is supported by two
types of devices that have sensors related to battery consumption
and network technology coverage. Additionally, these applica-
tions use different network technologies, such as WiFi or ZigBee,
and require self-management capabilities for their correct func-
tioning. Therefore, we can find many variation points common to
IoT devices, or related to the connectivity required by the specific
the GreenManager that we are developing.

As explained in Section 2.1, the CVL variability model includes:
(1) an abstract part (the tree structure at the top of Fig. 6), and
(2) a realization part (middle of Fig. 6) with the variation points
that connects VSpecs with the software architecture of the agent



Fig. 6. Partial view of the variability model of the Green Manager Multi-Agent System.

Table 2
Mapping between the concepts of the i* model and the variability model.
iStar 2.0 Variability model

Actor Mandatory feature
Role Clonable feature [1..*]
Agent Instance of the clonable feature
Primary goals Mandatory feature
Tasks Optional feature
OR refinement same type
(goal to goal or task to task)

Alternative feature
(XOR group)

AND refinement same type
(goal to goal or task to task)

Mandatory feature

OR refinement different type
(goal to task or task to goal)

Cross-tree constraint
(XOR implications)

AND refinement different type
(goal to task or task to goal)

Cross-tree constraint
(AND implications)

Resources Optional feature
Qualities Optional feature
Resource needed by task Cross-tree constraint

(implication)
Task contributes to quality Cross-tree constraint

(implication)
Goal dependency Mandatory feature
Task dependency Optional feature
Resource dependency Optional feature
Quality dependency Optional feature

(bottom of Fig. 6). For example, the Operation scheduled generated
VSpec (derived from the task with the same name in iStar that
postpones the execution of a home appliance service) is linked to
a software component that implements this functionality inside
the agent. In CVL this is called the variability realization domain,
meaning that the variation points are linked with the software
architecture of the product family.

5.2. Goal-oriented application engineering

As we stated in the introduction to this section, one of the
challenges in the development of IoT applications, like GreenMan-
ager, is the complexity of the variability models that have to be
understood by final stakeholders. We address this challenge with
a two-step configuration process of the VSpec tree. In the first
step (Configuration of iStar 2.0 model in Fig. 4), final stakeholders
resolve the intentional variability of the system, and in the second
step (VSpec resolution), software architects and system developers
resolve the technological variability of the system, so the output
is the Resolution Model.

The Configuration of the iStar 2.0 model is supported by the
concept of agent in the iStar language. While actors and roles
are abstract entities, agents represent concrete, physical mani-
festations, such as persons, organizations or software. In order to
resolve the intentional variability of actors and roles, we model
agents that are versions of these entities without variability. Fig. 5
shows two agents that are derived from the role Home Appliance
Controller, one for the washing machine and another for cooking
appliances.

This iStar model with agents is used as the input of the
Agent2Resolution algorithm (see Algorithm 2) to generate a par-
tial configuration of the variability model of our IoT system.
For each agent in the iStar model, Agent2Resolution resolves its
corresponding intentional elements in the VSpec tree (see lines
14–16). If the agent participates in a Role, then the elements that
correspond to the agents in the VSpec tree are under a VClassifier
(i.e., a clonable feature). Therefore, Agent2Resolution creates an
instance of this agent in the resolution model (line 6) with the
intentional elements attached to the agent (lines 7–11).



Algorithm 1 Algorithm for the automatic generation of variability
models
INPUT: istar ▷ i* (istar) model
OUTPUT: VT ▷ VSpec Tree

1: VT ← VSpecTree() ▷ New empty VSpec Tree
2: root ← VT .addVSpec(‘GreenManager’, ‘mandatory’,None) ▷ The root has no

parent
3: addStructuralVariability(VT ) ▷ This information is not in the i* model
4: Actors, Roles ∈ istar
5: for all rol ∈ Roles do ▷ Mapping for roles
6: VT .addVClassifier(rol, ‘[1..*]’, root)
7: end for
8: for all act ∈ Actors do ▷ Mapping for actors
9: VT .addVSpec(act, ‘optional’, root)
10: end for
11: for all act ∈ Actors ∪ Roles do
12: Deps← Dependencies(act)
13: Goals, Tasks, Resources,Qualities ∈ IntentionalElements(act) ∪ Deps
14: GoalsF ← VT .addVSpec(‘Goals’, ‘optional’, VT .vspec(act))
15: TasksF ← VT .addVSpec(‘Tasks’, ‘optional’, VT .vspec(act))
16: ResourcesF ← VT .addVSpec(‘Resources’, ‘optional’, VT .vspec(act))
17: Qualities← VT .addVSpec(‘Qualities’, ‘optional’, VT .vspec(act))
18: for all gt ∈ Goals ∪ Tasks do ▷ Mapping for goals and tasks
19: if ¬∃VT .vspec(gt) then
20: if gt ∈ Goals then
21: VT .addVSpec(gt, ‘mandatory’,GoalsF )
22: else
23: VT .addVSpec(gt, ‘optional’, TasksF )
24: end if
25: end if
26: for all child ∈ Goals ∪ Tasks | gt.refinesTo(child) do
27: if gt.type() = child.type() then
28: if gt.refines().type() = ‘OR’ then ▷ OR refinement child of the

same type
29: VT .addVSpec(child, ‘alternative’, gt)
30: else ▷ AND refinement child of the same type
31: VT .addVSpec(child, ‘mandatory’, gt)
32: end if
33: else
34: diff _children ∈ {c ∈ Goals ∪ Tasks | gt.refinesTo(c) ∧ gt.type() ̸=

c.type()}
35: if gt.refines().type() = ‘OR’ then ▷ OR refinement children of

different type
36: VT .addConstraint(VT .vspec(gt) H⇒

⨁
c∈diff _children

VT .vspec(c))

37: else ▷ AND refinement children of different type
38: VT .addConstraint(VT .vspec(gt) H⇒

⋀
c∈diff _children

VT .vspec(c))

39: end if
40: end if
41: end for
42: end for
43: for all r ∈ Resources do ▷ Mapping for resources
44: VT .addVSpec(r, ‘optional’, ResourcesF )
45: if ∃t ∈ Tasks | r.needBy(t) then
46: VT .addConstraint(VT .vspec(t) H⇒ VT .vspec(r))
47: end if
48: end for
49: for all q ∈ Qualities do ▷ Mapping for qualities
50: VT .addVSpec(q, ‘optional’,QualitiesF )
51: if ∃t ∈ Tasks | t.contributesTo(q) then
52: if t.contributesTo(q).type() ∈ {‘Make’,‘Help’} then
53: VT .addConstraint(VT .vspec(t) H⇒ VT .vspec(q))
54: else
55: VT .addConstraint(VT .vspec(t) H⇒ ¬VT .vspec(q))
56: end if
57: end if
58: end for
59: end for
60: Return VT

The Agent2Resolution algorithm (in Algorithm 2) only resolves
the intentional variability (i.e., goals, qualities, plans and inten-
tions) and the structural variability of our system, (i.e., the num-
ber of agents deployed in the GreenManager). Finally, software
architects and developers select the appropriate features under
the GreenManager and the other agents, and after executing the

Algorithm 2 Algorithm for the generation of partial configuration
models
INPUT: istar, VT ▷ i* (istar) model, feature model
OUTPUT: VTresolution ▷ partial resolution of the VSpec tree

1: VTresolution← ResolutionModel() ▷ New empty resolution model
2: Agents, Actors, Roles ∈ istar
3: instance← 1
4: for all ag ∈ Agents do
5: if ∃rol ∈ Roles | ag.participatesIn(rol) then ▷ Instance of VClassifier
6: VTresolution.createInstance(VT .vspec(rol), instance)
7: for all ie ∈ IntentionalElements(rol) do ▷ Goals, Tasks, Resources, and

Qualities
8: if ie ∈ IntentionalElements(ag) then
9: VTresolution.select(VT .vspec(ie), instance)
10: end if
11: end for
12: instance← instance+ 1
13: else if ∃act ∈ Actors | ag.participatesIn(act) then ▷ Selection of feature (not

clonable)
14: for all ie ∈ IntentionalElements(act) do ▷ Goals, Tasks, Resources, and

Qualities
15: if ie ∈ IntentionalElements(ag) then
16: VTresolution.select(VT .vspec(ie))
17: end if
18: end for
19: end if
20: end for
21: Return VTresolution

CVL engine, the architecture configuration Resolved IoT Multi-
agent system architecture is obtained (shown in Fig. 3), with each
agent configured to fulfill their specific needs.

6. Evolving the multi-agent system in GOSPEL

Once a specific architecture configuration customized to each
agent has been generated and deployed, the MAS evolves due
to different factors. These factors include the emergence and
disappearance of technologies, something common in IoT en-
vironments, where the market demands new functionalities or
the adoption of new laws. Furthermore, once the changes issued
are defined, they should be propagated to the running instances
of the system. Finally, in the case of ultra-large systems the
modifications must be performed in hundreds of agents. All this
greatly complicates the manual evolution of IoT applications.

In a previous contribution, we proposed an evolution process
for MAS-PL in IoT environments [46]. The process focused on
the propagation of changes performed in the variability model
and the architecture of the SPL to the deployed agents. However,
performing system changes in the variability model and the ar-
chitecture is adequate for stakeholders with a deep knowledge of
the visible and no visible features of the system, like developers
or software architects. Even for these stakeholders, the evolu-
tion process could be challenging when the size of the models
is considerable and the relationships between features and re-
quirements of the system become highly complex. Additionally,
as we explain in Section 4.2, these models are not suitable for
stakeholders without a technical background, like final users. In
order to overcome these limitations, we propose performing the
evolution process beginning with the goal models.

Our evolution process (see Fig. 7) is similar to the one pre-
sented in [46], which is based on the algorithms presented in [47].
Moreover, we add two additional steps and three algorithms that
focus on iStar models. The output of the process is a weaving
model that updates the agents deployed in the MAS.

We illustrate the work of this process using our case study.
Let us suppose that two new requirements are incorporated: (1)
controlling and managing the water consumption, apart from
the power consumption, in those home appliances that consume



Fig. 7. Evolution process of MAS-PL agents.

water, and (2) detecting errors and malfunctions in all the home
appliances.

We divide the description of our algorithm into three parts:
(i) evolution of the intentional models; (ii) evolution of the vari-
ability model; and (iii) evolution of the agents’ architecture. In
the usual scenario, the three parts of the process are sequentially
executed. However, it is possible that the evolution process only
affects the variability models. This may occur when the evolution
is only related to technological requirements of the system. For
example, imagine that the GreenManager has to support NFC,
this will not affect its goal model because it does not include
elements to model specific network technologies. However, it will
affect the variability model and the architecture of the SPL, and
these changes must be propagated to the deployed agents of the
GreenManager.

6.1. Intentional evolution

The first step in the evolution process is themanual evolution
of the iStar model. For example, we can add additional actors or
intentional elements, or we can modify the relationships between
them. For our case study, the iStar model will be modified as
shown in Fig. 8 (new and modified elements are in yellow). We
have added new goals to support the control and management of
water consumption (Water Consumption Managed) and to support
the detection of faults (Fault Control). These goals are supported
by new sub-goals like Fault Corrected and new sub-tasks like
Notify Fault . In order to achieve these goals, the GreenManager
cooperates by means of new dependencies with Washer Advanced
Controller and Appliance Basic Controller.

The second step is to update the iStar 2.0 agent models
according to the modifications made in the iStar model. As we
have stated in Section 5.2, agents represent specific instances of
actor/role iStar elements that have a physical representation in
the real world. Therefore, agents do not contain variability and
they must conform to the corresponding actor/role element. In
order to propagate these changes, we use the algorithm Evolve
iStar Agent Model, which uses the original and the updated iStar
agent models as input (see Algorithm 3). The algorithm analyzes
the differences between actors/ roles from the updated version

and the original agents. Firstly, it focus on the intentional el-
ements that must be removed (lines 7–9), and then it focuses
on the elements that must be added to the agents (lines 10–
23). When an intentional element is added or removed, then
its relationships are also removed. The result of the execution
of this algorithm can be seen in Fig. 6, modifications made by
Algorithm 3 are highlighted in gray. The GreenManager agent has
been updated with the goals Water Comsumption Managed, Fault
Control and Fault Corrected. In addition, this agent has new plans
and qualities to manage such as Detect Fault and Water Saving.

Once the iStar agent model has been updated, the evolution
process may require the participation of the final user of the
application. This happens when the iStar model has been updated
with optional elements (i.e., agents, intentional elements or de-
pendencies). Then, the final user of the application must decide
whether he/she wants these optional elements in GreenManager
deployed in his/her home. The process cannot continue until
the final user has made a decision on this. When the final user
decisions are included in the iStar agent model, then the next step
of the process is to update the resolution model of the deployed
system. This task is performed automatically using the algorithm
Agent2Configuration (see Algorithm 2), which has been described
in Section 5.2.

The last step of the intentional evolution is to evolve the vari-
ability model taking into account the modifications introduced in
the iStar model. This task is accomplished automatically using the
algorithm iStar2VM (see Algorithm 1) presented in Section 5.1.

6.2. Software product line evolution

The evolution process of the SPL is based on the algorithms
presented in [47], which were intended for general SPL architec-
tures and show good results in terms of efficiency and complex-
ity.

The first step in this part of the process is to manually evolve
both the variability model and the base software architecture
of the MAS according to the technological upgrades. This step
results in a set of changes in the resolution model.

The second step is to propagate the changes made in the
variability model consistently in the resolution model of all the
existing agents. This step is done at the abstract level (i.e., at the



Fig. 8. Evolved goal model of the GreenManager in iStar.

Algorithm 3 Algorithm to update an agent model from an evolved
i* model.
INPUT: istarM, agentsM ▷ evolved Actor/Role model, previous Agent model
OUTPUT: evolvedM ▷ evolved Agent model

1: evolvedM ← copy(agentsM)
2: Actors ∈ istarM
3: Roles ∈ istarM
4: Agents ∈ agentsM
5: for all act ∈ Actors ∪ Roles do
6: for all ag ∈ Agents | ag.participatesIn(act) do

▷ Delete intentional elements that are not in the evolved model anymore
7: for all ie ∈ IntentionalElements(ag) | ie /∈ IntentionalElements(act),∀act ∈

Actors ∪ Roles do
8: evolvedM.delete(ie) ▷ Delete intentional elements and its associations
9: end for

▷ Add new intentional elements (including dependencies)
10: Deps ∈ Dependencies(act)
11: for all ie ∈ IntentionalElements(act)∪Deps | ie /∈ IntentionalElements(ag) do
12: if ie.refines().type() = ‘AND’ then ▷ mandatory intentional element
13: evolvedM.add(ie)
14: end if
15: end for

▷ Add associations
16: for all ie ∈ IntentionalElements(act) | ie ∈ IntentionalElements(ag) do

▷ Add new contributions
17: if ∃q ∈ Qualities(act) | ie.contributesTo(q) ∧ ie.contributesTo(q) /∈

evolvedM then
18: evolvedM.add(ie.contributesTo(q))
19: end if

▷ Add new neededBy associations
20: if ∃r ∈ Resources(act) | ie.neededBy(r)∧ ie.neededBy(r) /∈ evolvedM then
21: evolvedM.add(ie.neededBy(r))
22: end if
23: end for
24: end for
25: end for
26: Return evolvedM

resolution model) to make all the changes explicit and ensure the
consistency of the changes with all existing and new constraints.
To do so, we use the Evolve Configuration algorithm [46] that
generates a new resolution model from the previous resolution
model and from the evolved variability model, respecting the new
constraints.

Finally, the last step consists in automatically propagating
the evolution changes calculated in the previous steps to the
previously deployed software architecture. This is done through
the use of model-to-model transformation (in the case of a mod-
els@runtime approach) [48], changing the configuration files or
scripts of the agents [49], or directly changing the deployed
code [50]. To do that, we use the Create Weaving Model al-
gorithm, which generates a model in charge of propagating the
changes to the architecture of the agents when CVL is executed.

6.3. Evolution management in CVL

In order to apply these steps, we have identified the actions
over the elements of the variability model that need to be carried
out as a consequence of an evolution scenario in the MAS: (1)
adding or removing VSpecs that correspond to adding or re-
moving a new goal, plan, context, etc.; (2) adding, removing or
modifying group multiplicity that VSpecs may have; (3) modi-
fying instance multiplicity that VClassifiers have; (4) adding or
removing OCL constraints between VSpecs; and (5) modifying the
variability of a VSpec (i.e. a mandatory VSpec is made optional or
vice versa). Note that the modification of a VSpec can be defined
by removing a previous VSpec and adding a new one. The same
is true of OCL constraints modification. Composite VSpecs can be
seen as a collection of VSpecs under a VSpec. Variation points
in the CVL model are only affected when a VSpec is added or
removed.



Taking these modifications to the variability model into ac-
count, Fig. 6 shows the VSpec tree of the MAS with some of
the evolution changes presented in our example in Section 4.1
(new features shown in gray in Fig. 6). That is, the VSpec tree is
modified by adding new choices to control the water consump-
tion and to detect faults in the home appliances’ functioning.
Fig. 6 shows three new goals, Water Consumption Managed,
Fault Control and Fault Corrected; a new plan to control faults,
Detect Faults; and a new quality Water saving. Additionally,
services of the Agent Platform have been updated with Water
Monitoring and Fault Monitoring.

After evolving the variability model, the changes have to be
propagated in all the previous agent’s configurations taking into
account the new requirements of the system.

7. Evaluation

In this section, we evaluate the efficiency of the algorithms
of our SPL and evolution processes taking into account their
complexity and performance in terms of execution time.

7.1. Complexity of the algorithms

The computational efficiency of an algorithm is the number of
basic operations it performs depending on its input length [51].
To evaluate the efficiency of the mapping and evolution algo-
rithms, we analyze the time complexity of them. In our case the
input length (n) is the size of the iStar model that corresponds
with the number of elements: actors, roles, and intentional el-
ements (goals, tasks, resources, and qualities). Evolution algo-
rithms also take into account the number of agents (a) in the iStar
model as the number of instances of the clonable features accord-
ing to the defined mapping. Let us consider the following basic
operations of iStar models and feature models: (i) comparison
between elements, where elements can be actors and intentional
elements for the iStar model; and features and selections for the
variability model and its resolutions; (ii) adding a new element
to a model; and (iii) deleting an element from a model.

Table 3 shows the complexity in terms of the Big O notation
for our algorithms. Here we focus on the algorithms related to
the intentional variability represented in the iStar models. The al-
gorithms related to the technological variability were previously
evaluated in [46].

The iStar2VM algorithm (Algorithm 1) has cubic time complex-
ity (O(n3)) in n, while the Agent2Configuration (Algorithm 2) and
Evolve iStar Agent Model (Algorithm 3) algorithms have also cubic
time complexity (O(an3)), but taking into account n (the size of
the model) and a (number of agents in the model). Specifically,
for the iStar2VM algorithm, mapping the actors or roles to fea-
tures takes O(n) operations (lines 5–10), but for each actor/role,
mapping their goals and tasks takes O(2n3

+ 12n2) operations
(lines 18–42 in Algorithm 1). Mapping resources (lines 43–48)
and qualities (lines 49–58) takes O(8n2) and O(10n2) opera-
tions, respectively. In the Agent2Configuration algorithm, mapping
agents to instances of clonable features takes O(2an3

+ 3n) op-
erations (lines 4–12 in Algorithm 2), and mapping agents to
instances of simple actors (i.e., not clonable features) takes O(5n)
operations (lines 13–19). Finally, in the Evolve iStar Agent Model
algorithm, updating all the agents by deleting and/or adding
new intentional elements together with their dependencies and
associations, takes O(32an3) operations (lines 6–24 in Algorithm
3).

Algorithms that manage the intentional variability are more
complex than those managing technological variability [46]. This
is because algorithms that evolve intentional variability have to

Fig. 9. Performance of the iStar2VM algorithm.

Fig. 10. Performance of the Agent2Configuration algorithm.

Fig. 11. Performance of the Evolve iStar Agent Model algorithm.

deal with two kinds of models (i.e., the iStar model and the vari-
ability model), while the algorithms to manage the technological
variability only consider one model (i.e., the variability model).
In fact, in the approach presented in this paper, the complexity
of the algorithms that evolve the variability model is the same but
with a bigger input (n) because, after the mapping procedure, the
variability model contains both the intentional variability and the
technological variability.

7.2. Performance of the algorithms

To evaluate the performance of the algorithms we have gener-
ated random iStar models and iStar agent models with a variable
number of elements (from 1 up to 50,000), with the following
proportions: 2.5% of actors, 5% of roles, 7.5% of agents, 32.5% of
goals, 40% of tasks, 10% of qualities, and 2.5% of resources. So,
we have executed our algorithms measuring their execution time.
The experiments were performed on a desktop computer with
Intel Core i7-4770, 3.40 GHz, 16 GB of memory, Windows 10



Table 3
Complexity of the algorithms.

Algorithm Computational complexity

Intentional variability
iStar2VM (Algorithm 1) O(4n3

+ 44n2
+ 10n+ 2)

Agent2Configuration (Algorithm 2) O(4an3
+ 5n+ 1)

Evolve iStar Agent Model (Algorithm 3) O(32an3
+ n)

Technological variability
Evolve Configuration [46] O(5n2)
Difference Configuration [46] O(4n2)
Create Weaving Model [46] O(3n3)

64 bits and Python 3.5.2. All algorithms and scripts have been
implemented in Python and are available online together with
the results of this evaluation,3 so they can be reused and to allow
readers to replicate these experiments.

We have performed 30 runs for each model size (from 1 up to
5000) and 10 runs for huge models (from 10,000 up to 50,000),
and we have calculated the averages, standard deviations, and
medians of the execution times (in seconds).

Figs. 9, 10, and 11 show the results of the empirical exper-
iments for the three algorithms presented in this paper. The
efficiency depends on the iStar model size (n) for the mapping
algorithm and in the size (n) and the number of agents (a) for
the evolution algorithms. For instance, to perform a mapping
from an iStar model of 5000 elements to a feature model, the
iStar2VM algorithm (Algorithm 1) takes around 4 s (Fig. 9). In a
fictitious model of 50,000 elements (impossible to build manu-
ally), the algorithm takes around 6 min to generate a valid and
consistent feature model. Algorithm 2, it takes even longer to
generate the resolution model with the different configurations
of the agents (Fig. 10). For instance, it takes 75 s to generate a
resolution model from an iStar agent model of 10,000 elements
with 1500 agents, but for an iStar agent model of 50,000 elements
with 7500 different agents the algorithm takes 33 min. Updating
those configurations of the agents (Algorithm 3) demonstrates a
similar efficiency as shown in Fig. 11. For instance, to evolve an
iStar agent model of 10,000 elements with 1500 agents, Algo-
rithm 3 takes 69 s, while for the huge model of 50,000 elements
with 7500 agents it can take around 30 min. Therefore, we
can conclude that the efficiency is acceptable for huge models
(e.g., models with a 50,000 elements and 7500 agents). Models of
this size are very difficult to find in the real world in the context
of Home Automation Systems.

The other algorithms responsible for evolving a resolution
model and the deployed configurations of the agents were an-
alyzed in detail in [46]. The results, shown in Figs. 12, 13, and
14, prove that managing variability models is more efficient than
managing iStar models. This is owing to the fact that in variability
models we only have to deal with one concept (i.e., VSpecs), while
in iStar model we have to deal with many kinds of concepts such
as intentional elements (goals, tasks, qualities, resources) and also
with actors, roles, and agents, apart from also dealing with VSpecs
of the variability model.

We think that our scalability and performance results are quite
good since it is possible to manage huge iStar models in seconds.
We would like to compare these results with similar works. How-
ever, the works that generate feature models using goal models
like [17–20] do not evaluate the proposed algorithms [18,19], nor
even provide the code making it impossible to compare them
with our work [17,20]. In the case of the evolve configuration
algorithm it is possible to compare it with a similar work [52]
that generates a configuration from a feature model (instead
of a CVL model as we do), and that calculates the differences

3 https://github.com/jmhorcas/istar2fm.

Fig. 12. Evaluation of the evolve configuration algorithm.

Fig. 13. Evaluation of the difference configuration algorithm.

Fig. 14. Evaluation of the create weaving algorithm.

between configurations as we do. The algorithms of Gamez and
Fuentes take around 120 s to create a configuration with a total of
11,000 elements (500 agents with 22 elements each), and around
60 s to obtain the differences between configurations, while our
algorithms take, for the same models size, only 75 s to create
the configuration and 4 s to obtain the differences. In fact, our
algorithms have been evaluated for models with 7500 agents and
a total of 50,000 elements.

8. Threats to validity

This section discusses the threats to validity with respect to
the four groups of common threats to validity: internal validity,
external validity, construct validity, and conclusion validity [53].

https://github.com/jmhorcas/istar2fm


8.1. Internal validity

The internal validity examines whether or not the experi-
mental results are influenced by other factors apart from those
considered in the experiments.

Complexity of the technological variability. The complexity evalu-
ation of our iStar2VM mapping algorithm (Table 3) considers only
intentional variability expressed in the iStar model. However, the
resulting variability model also contains the structural variabil-
ity of the MAS-PL that is generated from scratch from specific
templates (line 3 in Algorithm 1), since that information is not
in the iStar model. The complexity of generating the structural
variability was previously evaluated with the algorithms that
manage the variability models [47]. In the worse case scenario,
complexity is quadratic in the size of the model, it being smaller
than the complexity of dealing with iStar models as discussed
in Section 7. Therefore, the complexity of adding the structural
variability does not affect the global complexity of our iStar2VM
mapping algorithm.

8.2. External validity

The external validity analyzes whether the results obtained in
the experimentation can be generalized or not.

Generalization of the results. We have assumed that the structure
of the iStar models specify the intentional elements of the actors
and roles, while the structure of the iStar Agent models specifies
only the agents as instances (configurations) of the roles in the
iStar models. While the iStar2VM mapping algorithm (Algorithm
1) can be applied regardless of the structure of the iStar mod-
els, the evolution algorithms: Agent2Configuration (Algorithm 2)
and Evolve iStar Agent Model (Algorithm 3) must respect the
structure of Self-StarMAS agents defined as instances of roles.

Scalability of the proposal. We have automatically generated iStar
models of up to 50,000 elements, and 7500 agents to evaluate
our proposal. From 10,000 elements, the performance of our
algorithms considerably decreases (from seconds to minutes).
However, an iStar model of that size is not realistic in practice.
In fact, the main iStar model of the MAS-PL needs to be manually
defined by the stakeholders during domain engineering, as it is
impossible to automatically define that model.

8.3. Construct validity

The construct validity analyzes the completeness and consis-
tency of the evolved models.

Completeness and consistency. Our evolution algorithms only val-
idate that the generated models are built conforming the vari-
ability metamodel, but they do not check for additional prop-
erties such as dead features, redundancy constraints, or false-
optional features. To guarantee the consistency of our models,
our algorithms include some scripts to generate the variabil-
ity models in different formats such as those supported by the
S.P.L.O.T. [54] and FeatureIDE [55] tools that allow us to analyze
the completeness and consistency of the models.

8.4. Conclusion validity

The conclusion validity relates to the reliability of the ex-
periments and whether they can be replicated with the same
results.

The threats related to the reliability of the experiments are
represented by the mapping performed by the algorithms and the
models are taken as input. As can be derived from the evaluation

section (in Section 7) and the subsequent discussion, since the
mapping and models (both goal and VSpec tree model) rely on
the concepts and entities of metamodels, if the metamodels do
not change, the results of the experimentation would be the
same. Additionally, the algorithms were tested with input goal
models and variability models, generated randomly. In all cases,
the algorithms worked fine and generated well-formed iStar and
variability models, i.e., models that are correct instances of iStar
and CVL metamodels respectively [56].

9. Conclusions

This paper has described GOSPEL, a model-driven evolution
process that uses goal models specified in iStar 2.0 to describe
system requirements and goals, and the CVL language to specify
variability. The process makes it possible for stakeholders who are
not familiar with variability models to define new requirements
and goals in iStar, which is a GORE language. It also defines a
set of algorithms that manage the evolution of iStar 2.0 and CVL
models synchronously, and propagate these changes to the run-
ning system, assuring CPS consistency at all times. The approach
has been presented and validated for a home energy management
system. This home energy assistant system has been evolved to
self-adapt its decision making, or the home appliances it man-
ages, to new requirements. As some CPSs are able to manage
hundreds of computing devices, we have validated our approach
to test whether or not it is applicable to ultra-large CPSs. Indeed,
validation shows that our approach becomes especially valuable
when the number of devices that have to propagate the changes
number in the hundreds, since we have automated this process,
thereby ensuring the consistency of the resulting system.

The GOSPEL process continues and enhances the work in [46],
which presented the GreenManager system, providing an extensi-
ble approach that allows addressing the goal-driven configuration
and evolution of MAS by means of SPL for heterogeneous domains
and platforms.

Despite the fact that in this contribution the focus is on a home
energy management system, GOSPEL is generic enough to deal
with different MASs in the context of IoT frameworks or plat-
forms. Therefore, our approach can be generic enough to change
the configuration needs, tailored to incorporate heterogeneous
application domains in the context of the IoT. We are currently
working on the application of GOSPEL to a case study of Electric
companies.

As future work, we plan to extend our work with a method
to assist stakeholders in the configuration of products using soft-
goals. In this sense, we are analyzing how to introduce meth-
ods that quantify the relationships among elements in the goal
model and features like the Quality Centric Feature Modeling
Method [8].

Acknowledgments

This work is supported by Junta de Andalucía under the project
Magic P12-TIC1814, by Ministerio de Economía y Competitivi-
dad under project TASOVA MCIU-AEI TIN2017-90644-REDT, by
Ministerio de Ciencia e Innovación co-financed by FEDER funds
under projects HADAS TIN2015-64841-R and MEDEA RTI2018-
099213-B-I00, and by the post-doctoral plan of the University of
Málaga.

References

[1] C.G. García, D. Meana-Llorián, J.M.C. Lovelle, et al., A review about smart
objects, sensors, and actuators, Int. J. Interact. Multimedia Artif. Intell. 4
(3) (2017) 7–10.

http://refhub.elsevier.com/S0950-7051(19)30352-1/sb1
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb1
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb1
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb1
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb1


[2] J.C. Preciado, Á.E. Prieto, R. Benitez, R. Rodríguez-Echeverría, J.M. Conejero,
A high-frequency data-driven machine learning approach for demand
forecasting in smart cities, Sci. Program. 2019 (2019).

[3] I. Ayala, M. Amor, L. Fuentes, Self-configuring agents for ambient assisted
living applications, Pers. Ubiquitous Comput. 17 (6) (2013) 1159–1169,
http://dx.doi.org/10.1007/s00779-012-0555-9.

[4] M.S. Taboun, R.W. Brennan, An embedded multi-agent systems based
industrial wireless sensor network, Sensors 17 (9) (2017) http://dx.doi.org/
10.3390/s17092112, URL https://www.mdpi.com/1424-8220/17/9/2112.

[5] K. Pohl, G. Böckle, F.J.v.d. Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag, New York, Inc.,
2005.

[6] I. Nunes, C.J.P. de Lucena, U. Kulesza, C. Nunes, On the development of
multi-agent systems product lines: A domain engineering process, in: M.-
P. Gleizes, J.J. Gomez-Sanz (Eds.), Agent-Oriented Software Engineering X,
Springer, Berlin, Heidelberg, 2011, pp. 125–139.

[7] M. Asadi, G. Gröner, B. Mohabbati, D. Gašević, Goal-oriented modeling and
verification of feature-oriented product lines, Softw. Syst. Model. 15 (1)
(2016) 257–279, http://dx.doi.org/10.1007/s10270-014-0402-8.

[8] M. Noorian, E. Bagheri, W. Du, Toward automated quality-centric product
line configuration using intentional variability, J. Softw. Evol. Process 29
(9) (2017) 1–26, http://dx.doi.org/10.1002/smr.1870.

[9] I. Ayala, M. Amor, L. Fuentes, J.M. Troya, A software product line process
to develop agents for the IoT, Sensors 15 (7) (2015) 15640–15660.

[10] I. Ayala, J.M. Horcas, M. Amor, L. Fuentes, Using models at runtime to adapt
self-managed agents for the IoT, in: M. Klusch, R. Unland, O. Shehory,
A. Pokahr, S. Ahrndt (Eds.), Multiagent System Technologies, Springer
International Publishing, Cham, 2016, pp. 155–173, Best Paper Award
MATES 2016.

[11] F. Dalpiaz, X. Franch, J. Horkoff, iStar 2.0 language guide, 2016, https:
//arxiv.org/abs/1605.07767. (Accessed 31 March 2019).

[12] CVL Submission Team, Common Variability Language (CVL), OMG revised
submission, 2012, URL http://www.omgwiki.org/variability/.

[13] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G.K. Olsen, A. Svendsen, Adding
standardized variability to domain specific languages, in: 2008 12th In-
ternational Software Product Line Conference, 2008, pp. 139–148, https:
//doi.org/10.1109/SPLC.2008.25.

[14] F. Bellifemine, A. Poggi, G. Rimassa, JADE: A FIPA2000 compliant agent
development environment, in: Proceedings of the Fifth International Con-
ference on Autonomous Agents, AGENTS ’01, ACM, New York, NY, USA,
2001, pp. 216–217, https://doi.org/10.1145/375735.376120.

[15] I. Ayala, M. Amor, L. Fuentes, The sol agent platform: Enabling group com-
munication and interoperability of self-configuring agents in the internet
of things, J. Ambient Intell. Smart Environ. 7 (2) (2015) 243–269.

[16] G. Mussbacher, J. Araújo, A. Moreira, D. Amyot, AoURN-based modeling and
analysis of software product lines, Softw. Qual. J. 20 (3) (2012) 645–687,
http://dx.doi.org/10.1007/s11219-011-9153-8.

[17] S. António, J. Araújo, C. Silva, Adapting the i* framework for software
product lines, in: C.A. Heuser, G. Pernul (Eds.), Advances in Conceptual
Modeling - Challenging Perspectives, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 286–295.

[18] L. Santos, L. Silva, T. Batista, On the integration of the feature model
and PL-AOVGraph, in: Proceedings of the 2011 International Workshop
on Early Aspects, EA ’11, ACM, New York, NY, USA, 2011, pp. 31–
36, http://dx.doi.org/10.1145/1960502.1960509, URL http://doi.acm.org/10.
1145/1960502.1960509.

[19] Y. Yu, J.C.S. do Prado Leite, A. Lapouchnian, J. Mylopoulos, Configuring
features with stakeholder goals, in: Proceedings of the 2008 ACM Sym-
posium on Applied Computing, SAC ’08, ACM, New York, NY, USA, 2008,
pp. 645–649, http://dx.doi.org/10.1145/1363686.1363840.

[20] C. Silva, F. Alencar, J. Araújo, A. Moreira, J. Castro, Tailoring an aspec-
tual Goal-Oriented approach to model features ζ , in: Proceedings of
the 20th International Conference on Software Engineering & Knowledge
Engineering, 2008, pp. 472–477.

[21] ITU-T Z-Series Recommendations, User Requirements Notation (URN) —
Language Definition, Tech. rep., Telecommunication Standarization Sector
of ITU, 2018.

[22] G. Mussbacher, D. Amyot, Extending the user requirements notation with
aspect-oriented concepts, in: R. Reed, A. Bilgic, R. Gotzhein (Eds.), SDL
2009: Design for Motes and Mobiles, Springer, Berlin, Heidelberg, 2009,
pp. 115–132.

[23] V.E. Souza, A. Lapouchnian, K. Angelopoulos, J. Mylopoulos, Requirements-
driven software evolution, Comput. Sci. 28 (4) (2013) 311–329, http:
//dx.doi.org/10.1007/s00450-012-0232-2.

[24] L. Montalvillo, O. Díaz, Requirement-driven evolution in software product
lines, J. Syst. Softw. 122 (C) (2016) 110–143, http://dx.doi.org/10.1016/j.jss.
2016.08.053.

[25] M. Schubanz, A. Pleuss, L. Pradhan, G. Botterweck, A.K. Thurimella,
Model-driven planning and monitoring of long-term software product
line evolution, in: Proceedings of the Seventh International Workshop on
Variability Modelling of Software-Intensive Systems, VaMoS ’13, ACM, New
York, NY, USA, 2013, pp. 18:1–18:5, http://dx.doi.org/10.1145/2430502.
2430527, URL http://doi.acm.org/10.1145/2430502.2430527.

[26] X. Peng, Y. Yu, W. Zhao, Analyzing evolution of variability in a software
product line: From contexts and requirements to features, Inf. Softw. Tech-
nol. 53 (7) (2011) 707–721, http://dx.doi.org/10.1016/j.infsof.2011.01.001,
URL http://www.sciencedirect.com/science/article/pii/S0950584911000024.

[27] D. Gross, E. Yu, Evolving system architecture to meet changing business
goals: An agent and goal-oriented approach, in: Proceedings of the Fifth
IEEE International Symposium on Requirements Engineering, RE ’01, IEEE
Computer Society, Washington, DC, USA, 2001, p. 316, URL http://dl.acm.
org/citation.cfm?id=882477.883649.

[28] G. Koliadis, A. Ghose, Relating business process models to goal-oriented
requirements models in KAOS, in: A. Hoffmann, B.-h. Kang, D. Richards,
S. Tsumoto (Eds.), Advances in Knowledge Acquisition and Management,
Springer, Berlin, Heidelberg, 2006, pp. 25–39.

[29] A. Byrski, R. Dreżewski, L. Siwik, M. Kisiel-Dorohinicki, Evolutionary multi-
agent systems, Knowl. Eng. Rev. 30 (2015) 171–186, http://dx.doi.org/10.
1017/S0269888914000289.

[30] J. Pieter, E.D. de Jong, Evolutionary multi-agent systems, in: International
Conference on Parallel Problem Solving from Nature, Springer, 2004, pp.
872–881.

[31] A. Brabazon, M. O’Neill, S. McGarraghy, Introduction to evolutionary
computing, in: Natural Computing Algorithms, Springer, Berlin, Heidelberg,
2015, pp. 17–20, http://dx.doi.org/10.1007/978-3-662-43631-8_2, Ch. 1.

[32] H. Joumaa, S. Ploix, S. Abras, G.D. Oliveira, A MAS integrated into home
automation system, for the resolution of power management problem in
smart homes, Energy Procedia 6 (2011) 786–794.

[33] D.J. Cook, M. Youngblood, S.K. Das, A multi-agent approach to controlling
a smart environment, in: Designing Smart Homes, Springer, 2006, pp.
165–182.

[34] Q. Sun, W. Yu, N. Kochurov, Q. Hao, F. Hu, A multi-agent-based intelligent
sensor and actuator network design for smart house and home automation,
J. Sensor Actuator Netw. 2 (3) (2013) 557–588.

[35] N. Gatti, F. Amigoni, M. Rolando, Multiagent technology solutions for plan-
ning in ambient intelligence, in: Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Tech-
nology, Vol. 02, WI-IAT ’08, IEEE Computer Society, 2008, pp. 286–289,
http://dx.doi.org/10.1109/WIIAT.2008.63.

[36] S. Khiat, H. Djamila, A temporal distributed group decision support system
based on multi-criteria analysis, Int. J. Interact. Multimedia Artif. Intell.
(2019) 1–15, http://dx.doi.org/10.9781/ijimai.2019.03.002, in press.

[37] C. Reinisch, M.J. Kofler, W. Kastner, ThinkHome: A smart home as digital
ecosystem, in: 4th IEEE International Conference on Digital Ecosystems and
Technologies, IEEE, 2010, pp. 256–261.

[38] P. Egri, Information elicitation for aggregate demand prediction with costly
forecasting, Auton. Agents Multi-Agent Syst. 30 (4) (2016) 681–696, http:
//dx.doi.org/10.1007/s10458-015-9301-9.

[39] T.G. Stavropoulos, G. Koutitas, D. Vrakas, E. Kontopoulos, I. Vlahavas, A
smart university platform for building energy monitoring and savings, J.
Ambient Intell. Smart Environ. 8 (3) (2016) 301–323.

[40] B. Asare-Bediako, W.L. Kling, P.F. Ribeiro, Multi-agent system architecture
for smart home energy management and optimization, in: IEEE PES ISGT
Europe 2013, IEEE, 2013, pp. 1–5.

[41] I. Ayala, M. Amor, M. Pinto, L. Fuentes, N. Gámez, iMuseumA: An agent-
based context-aware intelligent museum system, Sensors 14 (11) (2014)
21213–21246, http://dx.doi.org/10.3390/s141121213.

[42] C. Wilson, T. Hargreaves, R. Hauxwell-Baldwin, Smart homes and their
users: a systematic analysis and key challenges, Pers. Ubiquitous Comput.
19 (2) (2015) 463–476.

[43] N. Gámez, L. Fuentes, Famiware: A family of event-based middleware for
ambient intelligence, Pers. Ubiquitous Comput. 15 (4) (2011) 329–339,
http://dx.doi.org/10.1007/s00779-010-0354-0.

[44] C. Cetina, P. Giner, J. Fons, V. Pelechano, Autonomic computing through
reuse of variability models at runtime: The case of smart homes, Computer
42 (10) (2009) 37–43, http://dx.doi.org/10.1109/MC.2009.309.

[45] H. Khallouki, M. Bahaj, Multimodal generic framework for multimedia
documents adaptation, Int. J. Interact. Multimedia Artif. Intell. 5 (4) (2019)
122–127, http://dx.doi.org/10.9781/ijimai.2018.02.009.

[46] I. Ayala, M. Amor, J.M. Horcas, L. Fuentes, Model driven evolution of
an agent-based home energy management system, in: New Trends in
Intelligent Software Methodologies, Tools and Techniques–Proceedings
of the 17th International Conference, SoMeT_18, Granada, Spain, 26–28
September 2018, 2018, pp. 17–30, https://doi.org/10.3233/978-1-61499-
900-3-17.

[47] J.M. Horcas, M. Pinto, L. Fuentes, Product line architecture for automatic
evolution of multi-tenant applications, in: IEEE 20th EDOC, 2016, pp. 1–10,
https://doi.org/10.1109/EDOC.2016.7579384.

http://refhub.elsevier.com/S0950-7051(19)30352-1/sb2
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb2
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb2
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb2
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb2
http://dx.doi.org/10.1007/s00779-012-0555-9
http://dx.doi.org/10.3390/s17092112
http://dx.doi.org/10.3390/s17092112
http://dx.doi.org/10.3390/s17092112
https://www.mdpi.com/1424-8220/17/9/2112
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb5
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb5
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb5
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb5
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb5
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb6
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb6
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb6
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb6
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb6
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb6
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb6
http://dx.doi.org/10.1007/s10270-014-0402-8
http://dx.doi.org/10.1002/smr.1870
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb9
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb9
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb9
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb10
https://arxiv.org/abs/1605.07767
https://arxiv.org/abs/1605.07767
https://arxiv.org/abs/1605.07767
http://www.omgwiki.org/variability/
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1145/375735.376120
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb15
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb15
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb15
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb15
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb15
http://dx.doi.org/10.1007/s11219-011-9153-8
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb17
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb17
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb17
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb17
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb17
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb17
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb17
http://dx.doi.org/10.1145/1960502.1960509
http://doi.acm.org/10.1145/1960502.1960509
http://doi.acm.org/10.1145/1960502.1960509
http://doi.acm.org/10.1145/1960502.1960509
http://dx.doi.org/10.1145/1363686.1363840
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb21
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb21
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb21
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb21
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb21
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb22
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb22
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb22
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb22
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb22
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb22
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb22
http://dx.doi.org/10.1007/s00450-012-0232-2
http://dx.doi.org/10.1007/s00450-012-0232-2
http://dx.doi.org/10.1007/s00450-012-0232-2
http://dx.doi.org/10.1016/j.jss.2016.08.053
http://dx.doi.org/10.1016/j.jss.2016.08.053
http://dx.doi.org/10.1016/j.jss.2016.08.053
http://dx.doi.org/10.1145/2430502.2430527
http://dx.doi.org/10.1145/2430502.2430527
http://dx.doi.org/10.1145/2430502.2430527
http://doi.acm.org/10.1145/2430502.2430527
http://dx.doi.org/10.1016/j.infsof.2011.01.001
http://www.sciencedirect.com/science/article/pii/S0950584911000024
http://dl.acm.org/citation.cfm?id=882477.883649
http://dl.acm.org/citation.cfm?id=882477.883649
http://dl.acm.org/citation.cfm?id=882477.883649
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb28
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb28
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb28
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb28
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb28
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb28
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb28
http://dx.doi.org/10.1017/S0269888914000289
http://dx.doi.org/10.1017/S0269888914000289
http://dx.doi.org/10.1017/S0269888914000289
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb30
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb30
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb30
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb30
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb30
http://dx.doi.org/10.1007/978-3-662-43631-8_2
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb32
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb32
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb32
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb32
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb32
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb33
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb33
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb33
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb33
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb33
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb34
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb34
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb34
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb34
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb34
http://dx.doi.org/10.1109/WIIAT.2008.63
http://dx.doi.org/10.9781/ijimai.2019.03.002
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb37
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb37
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb37
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb37
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb37
http://dx.doi.org/10.1007/s10458-015-9301-9
http://dx.doi.org/10.1007/s10458-015-9301-9
http://dx.doi.org/10.1007/s10458-015-9301-9
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb39
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb39
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb39
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb39
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb39
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb40
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb40
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb40
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb40
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb40
http://dx.doi.org/10.3390/s141121213
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb42
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb42
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb42
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb42
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb42
http://dx.doi.org/10.1007/s00779-010-0354-0
http://dx.doi.org/10.1109/MC.2009.309
http://dx.doi.org/10.9781/ijimai.2018.02.009
https://doi.org/10.3233/978-1-61499-900-3-17
https://doi.org/10.3233/978-1-61499-900-3-17
https://doi.org/10.3233/978-1-61499-900-3-17
https://doi.org/10.1109/EDOC.2016.7579384


[48] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product
lines, Computer 41 (4) (2008) 93–95, http://dx.doi.org/10.1109/MC.2008.
123.

[49] I. Kumara, J. Han, A. Colman, M. Kapuruge, Runtime evolution of service-
based multi-tenant SaaS applications, in: Service-Oriented Computing,
Springer, 2013, pp. 192–206.

[50] J.a.B.F. Filho, S. Allier, O. Barais, M. Acher, B. Baudry, Assessing product
line derivation operators applied to java source code: An empirical study,
in: International Conference on Software Product Line, SPLC, 2015, pp. 36–
45, http://dx.doi.org/10.1145/2791060.2791099, URL http://doi.acm.org/10.
1145/2791060.2791099.

[51] S. Arora, B. Barak, Computational Complexity: A Modern Approach,
Cambridge University Press, 2009.

[52] N. Gamez, L. Fuentes, Architectural evolution of famiWare using
cardinality-based feature models, Inf. Softw. Technol. 55 (3) (2013)
563–580, http://dx.doi.org/10.1016/j.infsof.2012.06.012, Special issue on
Software reuse and product lines, URL http://www.sciencedirect.com/
science/article/pii/S0950584912001152.

[53] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, Experimentation
in Software Engineering, Springer, 2012, http://dx.doi.org/10.1007/978-3-
642-29044-2, URL https://doi.org/10.1007/978-3-642-29044-2.

[54] M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.: Software product lines
online tools, in: Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’09, ACM, New York, NY, USA, 2009, pp. 761–
762, http://dx.doi.org/10.1145/1639950.1640002, URL http://doi.acm.org/
10.1145/1639950.1640002.

[55] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, FeatureIDE:
An extensible framework for feature-oriented software development, Sci.
Comput. Program. 79 (2014) 70–85, http://dx.doi.org/10.1016/j.scico.2012.
06.002, Experimental Software and Toolkits (EST 4): A special issue of
the Workshop on Academic Software Development Tools and Techniques,
WASDeTT-3 2010, URL http://www.sciencedirect.com/science/article/pii/
S0167642312001128.

[56] E. Seidewitz, What models mean, IEEE Softw. 20 (5) (2003) 26–32, http:
//dx.doi.org/10.1109/MS.2003.1231147.

http://dx.doi.org/10.1109/MC.2008.123
http://dx.doi.org/10.1109/MC.2008.123
http://dx.doi.org/10.1109/MC.2008.123
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb49
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb49
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb49
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb49
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb49
http://dx.doi.org/10.1145/2791060.2791099
http://doi.acm.org/10.1145/2791060.2791099
http://doi.acm.org/10.1145/2791060.2791099
http://doi.acm.org/10.1145/2791060.2791099
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb51
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb51
http://refhub.elsevier.com/S0950-7051(19)30352-1/sb51
http://dx.doi.org/10.1016/j.infsof.2012.06.012
http://www.sciencedirect.com/science/article/pii/S0950584912001152
http://www.sciencedirect.com/science/article/pii/S0950584912001152
http://www.sciencedirect.com/science/article/pii/S0950584912001152
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1145/1639950.1640002
http://doi.acm.org/10.1145/1639950.1640002
http://doi.acm.org/10.1145/1639950.1640002
http://doi.acm.org/10.1145/1639950.1640002
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://www.sciencedirect.com/science/article/pii/S0167642312001128
http://www.sciencedirect.com/science/article/pii/S0167642312001128
http://www.sciencedirect.com/science/article/pii/S0167642312001128
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1109/MS.2003.1231147

	A goal-driven software product line approach for evolving multi-agent systems in the Internet of Things
	Introduction
	Background
	The Common Variability Language
	The iStar 2.0 core language
	Self-StarMAs agents

	Related work
	Goal-oriented software product lines
	Goal-oriented software evolution
	Agent technology for home automation systems

	Developing agent-based CPS applications
	Case study: The GreenManager system
	Challenges for developing agent-based CPS applications

	GOSPEL: A Goal-Oriented SPL process for IoT agents
	Goal-oriented domain engineering
	Goal-oriented application engineering

	Evolving the multi-agent system in GOSPEL
	Intentional evolution
	Software product line evolution
	Evolution management in CVL

	Evaluation
	Complexity of the algorithms
	Performance of the algorithms

	Threats to validity
	Internal validity
	External validity
	Construct validity
	Conclusion validity

	Conclusions
	Acknowledgments
	References




