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Abstract
This article presents an enhanced version of the Monte Carlo localization algorithm, commonly used for robot navigation
in indoor environments, which is suitable for aerial robots moving in a three-dimentional environment and makes use of a
combination of measurements from an Red,Green,Blue-Depth (RGB-D) sensor, distances to several radio-tags placed in
the environment, and an inertial measurement unit. The approach is demonstrated with an unmanned aerial vehicle flying
for 10 min indoors and validated with a very precise motion tracking system. The approach has been implemented using
the robot operating system framework and works smoothly on a regular i7 computer, leaving plenty of computational
capacity for other navigation tasks such as motion planning or control.
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Introduction

The new manufacturing paradigm pursues the acceleration

of delivery rates through the gradual implementation of

automated processes. Aerial robots can contribute to this

automation process by providing some intrinsic capabilities

such as flexibility, fast response, and availability. Figure 1

shows an aircraft manufacturing plant where small aerial

robots are expected to begin carrying out specific logistic

operations. In order to allow the safe introduction of aerial

robots collaborating with humans in manufacturing plants,

there is a need for robustness and reliability in a series of

key enabling technologies such as localization, mapping,

and path planning. Among them, the localization problem

is essential for building a mobile robotic system, since

accurate pose estimation is required for even the most basic

tasks, such as holding the position. It is commonly referred

to as “the most fundamental problem to providing a mobile

robot with autonomous capabilities.”1 Once the aerial robot

is capable of self-localizing with enough accuracy, the rest

of technologies such as navigation and guidance can be

implemented.

The localization problem consists in accurately deter-

mining the current pose of a robot (position and orientation)

in a specific environment. This has been an active research
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topic for the past decades. Ground robots moving in 2-D

environments have demonstrated good performances in

terms of localization either indoor2 or on streets and high-

ways.3,4 However, aerial robots operate and move in 3-D

environments and are exposed to additional challenges

apart from the space dimensionality, since onboard capabil-

ities are limited due to payload, computational resources,

and power constraints.

Outdoor operation for aerial robots based on global posi-

tioning system (GPS) can be generally assumed due to the

existence of low-cost commercial products offering mature

performances in a wide variety of applications.5–7 Despite

this, autonomous aerial vehicles are starting to play a major

role in applications such as inspection,8 search and rescue,9

or security surveillance,10 which usually require the aerial

robots to fly in dense environments, at low altitudes or

indoors. In such cases, GPS signals are often shadowed

or can be unavailable. In addition, the update frequency

of GPS location queries is not enough to achieve the afore-

mentioned tasks in a robust and safe manner, since the

aerial robots are supposed to be operating in small environ-

ments and move at relatively high speeds.

Related work

In order to compensate the issues that GPS poses, other

methods must be used to provide accurate and robust robot

localization. Vision-based approaches for robot localiza-

tion and odometry are very popular due to the affordability

and availability of cameras and the low weight of the

sensors. However, one important drawback is the associ-

ated processing complexity. It is very common to find

approaches that make use of monocular cameras fused with

inertial sensors in order to perform visual simultaneous

localization and mapping (SLAM).11–14 However, these

approaches tend to fail when the aerial vehicle exhibits

high-speed motions. Other approaches make use of

photogrammetry15 but pose additional processing require-

ments that hinder online computation.

Another trend is to employ stereovision,16–18 which

allows for calculation of 3-D depth measurements at a higher

computational cost. More recently, Red,Green,Blue-Depth

(RGB-D) sensors based on structured light have recently

become a very popular option19,20 due to their low weight,

low cost, and the amount of information provided. Besides

RGB images, they directly provide depth maps of the scene

in front of the sensor, saving the burden of 3-D reconstruc-

tion computation. Besides, this sensor exhibits another

important advantage with respect to classic camera-based

approaches: Depth estimation does not depend on the avail-

ability of distinct visual features in the scene and is less

reliant on lighting conditions while operating indoors. These

factors make RGB-D sensors more suitable for reliable loca-

lization in our framework. There are several state-of-the-art

algorithms available that provide localization estimations,

such as RGBD-SLAM,19 CCNY RGB-D,21 or RTAB-

Map.22 They exhibit good accuracies under realistic condi-

tions; however, when applied to aerial robots for online

localization estimation, they drop their performance due to

vibrations and faster motions than ground robots, as shown

in the section “Experimental results.” They may pose safety

issues when performing online localization in order to close

the control loop, since the map building process that they

perform at the same time may lead to localization jumps in

order to fit the current sensor point cloud to the map.

In general, vision-based odometry and localization systems

for aerial robots are not reliable enough in the long term due

not only to cumulative drift but also to external factors such as

poor illumination, lack of texture, occlusions, or moving

objects. All these have a significant impact on the robustness

and the reliability of the most state-of-the-art algorithms. The

aforementioned approaches demonstrate fairly good results in

the short term; however, they could quickly diverge depend-

ing on the environment. Some of them perform well even in

long trajectories when we revisit the same areas, which allows

for loop closing in order to reduce the localization uncer-

tainty.23,24 However, the problem of loop closing in order to

distinguish places in the environment is usually framed as a

classification task rather than a robot localization task.

Nevertheless, reliable place recognition can be challenging

in large-scale structured environments that might exhibit sim-

ilar scenes in different areas, such as a manufacturing plant.

Other approaches that cope with long-term localization

solutions based on vision rely on previously built maps of

the environment. Logistic services are usually carried out in

known environments, and this is also a requirement for path

planning because human workers should be able to specify

goals to the aerial robots in a predefined coordinate system

or a map. In addition, map-based approaches for localiza-

tion are usually better in terms of reliability and computa-

tional requirements. An a priori map can be computed

off-line using cameras and/or range sensors, making use

of existing algorithms, for example, RGBD-SLAM.25

Figure 1. Aerial robot taking off from a designated location to
perform logistic operations in an aircraft manufacturing plant.
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One of the approaches based on a predefined model of

the environment is commonly known as teach-replay,26,27

which is accomplished in two stages: First the robot is

manually piloted along the desired path as in a teaching

phase, and an accurate 3-D map of the environment is built,

along with the robot motion from this learning path; after-

ward, this map is used to locate the robot when it repeatedly

visits the same path. However, this approach is somewhat

simplistic and limited since it only enables a robot to follow

a predetermined trajectory.

Monte Carlo localization (MCL) is another approach

that makes use of a known map of the environment and is

commonly used for robot navigation in indoor environ-

ments.28 It is a probabilistic localization algorithm that

makes use of a particle filter to estimate the pose of the

robot within the map, based on sensor measurements.

Important benefits include the possibility of accommodat-

ing arbitrary sensor characteristics, motion dynamics, and

noise distributions. There is a variant of MCL called adap-

tive MCL (AMCL). The term “adaptive” comes from the

fact that the number of particles is adjusted dynamically:

If there is high uncertainty about the robot pose, the num-

ber of particles increases; if the pose is well known, the

number decreases. An open-source version of AMCL is

included in the robot operating system (ROS) navigation

stack (http://wiki.ros.org/amcl). However, it is meant for

wheeled robots moving in a 2-D environment, requiring a

2-D laser scanner for map building and localization. Other

authors presented an extension of this approach for 6-D

localization based on 2-D laser scanner,29 but it is meant

for the 2-D motion of humanoid robots in a 3-D environ-

ment, which makes it not suitable for aerial robots. The

use of GPUs can enhance the computing capabilities of

the onboard system regarding MCL-based approaches, as

proposed by other authors.30,31

Localization based on radio beacons has also been

deeply studied in the last years, with specific setups taking

place in manufacturing environments32 and using aerial

robots.33,34 Radio ranging sensors provide point-to-point

distance measurements and offer a low-cost solution that

can be implemented in almost any scenario, with the advan-

tage of not requiring a direct line of sight between each pair

of sensors. Besides, the data association problem is trivially

solved by attaching the sensor identification to the range

measurement information. Ultra-wideband (UWB) is a

wireless communication technology which has attracted

interest from the research community as a promising solu-

tion for precise target localization and tracking.35–37 It is

particularly well suited for short-distance indoor applica-

tions, using several fixed sensors placed at known positions

in the environment, and a mobile sensor onboard the aerial

robot. Hence, the position estimation of the onboard sensor

can be obtained by triangulation with an accuracy of the

order of that from the sensors. However, these sensors are

poorly suited to constitute a full localization system due to

the lack of bearing information, thus leading to multiple

location hypotheses. Combining error-bounded range sen-

sing with reliable short-term position estimation based on

visual odometry has been already studied for achieving

robust long-term localization in position.38 The aerial

robot orientation was not robustly determined by this

approach though; yaw angle was solely determined by the

visual odometry algorithm, while roll and pitch angles

were assumed to be observable with an inertial measure-

ment unit (IMU).

The article is structured as follows. The section “System

overview” briefly describes the overall approach. In the

section “Localization approach,” the main algorithm used

in this work is detailed, an enhanced MCL approach.

Experiments demonstrating long-term localization are

summarized in the section “Experimental results,”

followed by conclusions and future work.

System overview

The aforementioned approaches (visual odometry, MCL,

and radio-based localization) are promising in that they can

all provide solutions to the localization problem, but impor-

tant drawbacks are present using each approach alone. The

main contribution of this work focuses on the combination

of all three: an MCL algorithm relying on a previously built

3-D map, an RGB-D sensor for odometry and point cloud

matching, and radio-based sensors installed in the environ-

ment and localized within the map. This results in a system

suitable for long-term aerial robot localization, in a way

that these technologies benefit from each other. We are

able to have a reliable short-term position estimation based

on visual odometry, while keeping its drift bounded thanks

to the map matching and the integration of range measure-

ments. The noise and outliers present in range sensing are

filtered thanks to the odometry prior. Finally, the MCL

exploits the odometry to update the motion of the particles

and the range measurements to maintain a low dispersion

on the position of particles whenever the point cloud

matching with the map is not acceptable. This solution

offers reliable localization in position and yaw angle, while

roll and pitch angles can still be observable through an

IMU. Moreover, the implemented algorithms are highly

efficient so they are suitable for real-time operation on-

board the aerial robot for performing online localization.

The use of GPUs is discarded; we propose an approach

that can be implemented in standard CPUs and hence not

limited its applicability in regular platforms.

The block diagram in Figure 2 depicts an overview

of our method. The aerial robot localization solution is

based on the integration of visual odometry, 3-D point

clouds, and distance measurements to known radio beacons

into an MCL.

The odometry system combines images, point clouds,

pose estimation, and key-framing in a loose-coupling filter

in order to estimate a reliable and accurate localization at

the short term. As it was previously mentioned, odometry

Perez-Grau et al. 3



will accumulate errors over time. MCL takes care of detect-

ing and correcting the cumulative errors of the odometry by

comparing the point clouds with a known 3-D map of the

area and using range sensing to fixed beacons to readjust

localization errors.

This article shows how the integration of all the ele-

ments and sensing approaches was carried out in order to

get a fast, reliable, and error-bounded localization.

Localization approach

Robot localization involves the creation of a map of the

environment, which typically is based on some sort of

SLAM approach. This would later allow the estimation of

the robot pose (position and orientation) in the coordinate

frame of such map. Most localization algorithms require an

accurate odometry in order to maintain a reliable robot pose

estimation in the map. However, odometry is subject to

drift as a result of error accumulation over time, and there

is a need for some other source of information in order to

reset such drift.

Our work extends the MCL proposed by Hornung

et al.29 As previously stated, this algorithm needs a map

of the environment in order to estimate the robot pose

within the map based on its motion and sensing. The start-

ing point of the algorithm is an initial belief of the robot

pose probability distribution, which determines the distri-

bution of the particles around such pose according to such

belief. These particles are then propagated following the

robot motion model each time its pose changes. Every time

we receive new sensor readings, each particle evaluates its

accuracy by checking how likely it would receive such

sensor reading at its current pose. The next step of the

algorithm is redistributing (resampling) the particles to new

poses that are more likely to be accurate. This is an iterative

process that involves moving, sensing, and resampling,

while all the particles should converge to a single cluster

near the true pose of the robot.

The motion model used in this work is based on a fast

and reliable visual odometry computed from RGB-D data.

We have adapted a stereovision algorithm38 (which is pub-

licly available at http://wiki.ros.org/viodom) in order to

make it work with RGB-D sensors. The odometry estima-

tion is applied to the particles, providing an estimation of

the a priori distribution of the MCL. The sensor readings

are the point clouds provided by the RGB-D sensor and the

distance measurements to several radio-tags installed in the

environment. The weight of each particle is then calculated

according to the two types of sensor readings. The point

clouds are transformed to each particle pose in order to find

correspondences between the cloud and what the map

should look like from that particle’s pose. The distance

measurements to radio-tags are used to check how well

each particle position matches such distances. In order to

fuse both types of sensor readings, each particle has a

weight for each type of sensor and they are later fused into

a single weight.

The particle filter consists of N particles pi, each one

with the following state vector

pi ¼

x

y

z

 

2
6664

3
7775 (1)

where  refers to the yaw angle of the aerial robot. Note

how the robot roll and pitch angles are not included into the

robot pose definition. We assume that these angles are

available and accurate enough in an unmanned aerial vehi-

cle (UAV) through the use of its onboard IMU. They are

fully observable and their values are usually accurate in

aerial robots because they are the most basic control vari-

ables (together with the rotation rates) for the system sta-

bility.39 While it is true that roll and pitch estimation based

on accelerometer and gyroscope integrations might be

biased under constant accelerations (e.g. loitering in

fixed-wing UAVs), these scenarios are very difficult to

achieve indoors and hence are not considered in our

approach. Besides, this greatly reduces the computational

complexity of the algorithm, allowing for real-time

onboard computation.

Each particle has an associated weight wi such as

XN

i¼1

wi ¼ 1 (2)

Filter initialization

Particles can be initialized manually or automatically by

setting the initial position together with a covariance matrix

to distribute the particles in the space.

In the case of manual initialization, the particle cloud is

sampled following a 4-D normal distribution using as mean

the provided initial position and a specific covariance matrix

S. The associated weights wi are initialized to 1=N , uniformly.

Automatic initialization can handle the “kidnapped

robot” problem. Particles are drawn uniformly over the

Figure 2. Schematic overview of the processing pipeline.
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4-D state (x, y, z, and  ) into the whole map. As soon as the

UAV starts moving, the filter updates and good hypotheses

start gaining weight, while low-weight particles are shifted

toward more interesting areas in the resampling. The sec-

tion “Experimental results” includes an example of auto-

matic initialization in order to demonstrate the capabilities

of our approach.

Nevertheless, for achieving full autonomous operation

of an aerial robot before takeoff, we must manually initi-

alize the starting pose of the robot, providing an initial

position and orientation along with a covariance matrix to

distribute the particles around such initial pose. Knowing

the starting takeoff location of an aerial robot will usually

be the case when deploying an autonomous system in real

scenarios, for example, in a manufacturing plant for logistic

operations.

Besides, the risk of getting stuck in highly symmetric

environments is smaller when combining the 3-D point

clouds with radio range measurements. Particles that do

not fit distance measurements to fixed beacons will be

rapidly discarded.

Filter prediction

The odometry system periodically provides increments for

each of the components of the robot state vector

Dpi ¼

Dx

Dy

Dz

D 

2
6664

3
7775 (3)

This information is used to compute the a priori distri-

bution of the particles. Thus, considering that the multi-

rotors are holonomic systems, the state of the particles will

evolve according to the following expressions

xtþ1
i ¼ xt

i þ Dx � cosð t
iÞ � Dy � sinð t

iÞ (4)

ytþ1
i ¼ yt

i þ Dx � sinð t
iÞ þ Dy � cosð t

iÞ (5)

ztþ1
i ¼ zt

i þ Dz (6)

 tþ1
i ¼  t

i þ D (7)

The values of Dx, Dy, Dz, and D are drawn randomly

following a normal distribution centered in their actual

values and standard deviations proportional to each incre-

ment itself, for example σx ¼ kx � Dx with kx > 0. The

value of kx is always positive, and it is a design parameter

that depends on the accuracy of the odometry system.

Filter update

We have defined a threshold in both position and orienta-

tion such that if the visual odometry exceeds any of those, a

filter update is performed using the last 3-D point cloud

received from the RGB-D camera, and all the distance

measurements to the UWB beacons are received since the

last filter update. Then, each particle pi evaluates its rela-

tive importance by checking how likely it would receive

such sensor reading at its current pose, computing a

new weight value wi. This is performed through the use

of a 3-D occupancy grid of the environment in the form

of an OctoMap40 and augmented with the position of the

fixed locations of radio beacons.

Given the distinct nature of the two technologies

involved, we calculate separate weights for each sensing

modality. A weighted average is used to obtain the final

weight of each particle

wi ¼ � � w
map
i þ ð1� �Þ � w

range
i (8)

where � is chosen depending on the particularities of the

indoor environment where the UAV is going to operate. If

the map used in the MCL does not contain the full envi-

ronment or its accuracy is not enough to trust the map

matching, � should be lower than 0:5. Whereas if there are

few UWB sensors deployed in the environment or their

location is not accurate, � should be higher. The experi-

mental results are obtained with different values of � in

order to show its impact.

Computation of w
map
i : The acquired RGB-D point

cloud is transformed to each particle pose in order to

find correspondences between such cloud and what the

map should look like from that particle’s pose. Since

this is very expensive computationally, we first compute

a 3-D probability grid as in the study by Hornung

et al.,29 in which each position stores a value of how

likely it is that such position falls within an occupied

point of the map, instead of storing binary information

about occupancy as in the provided map. Each 3-D

position pi of the grid is then filled with probability

values according to a specific Gaussian distribution cen-

tered in the closest occupied point in the map from pi,

mapi, and whose variance σ2 depends on the sensor

noise used in the approach

gridðpiÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pσ2
p e�jjpi�mapijj2=2σ2

(9)

Such probability grid only needs to be computed once, is

not required to be updated for a given environment, and

relieves from performing numerous distance computations

between each cloud point for each particle and its closest

occupied point in the map. Besides, each point cloud is first

transformed according to the current roll and pitch pro-

vided by the onboard IMU. This transformation is done just

once per update, reducing the computational requirements

as well.

Then, for every point of the transformed cloud, we

access its corresponding value in the 3-D probability grid.

Such value would be an indicator of how likely is that point

to be part of the map. By doing this with every point of the

cloud and adding all the probability values, we obtain a

Perez-Grau et al. 5



figure of how well that particle fits the true location of the

aerial robot according to the map.

Finally, the weight wi of each particle pi is computed.

Assuming that the point cloud is composed of M 3-D points

cj, the weight is computed by adding all the associated

probability grid values as follows

w
map
i ¼ 1

M

XM
j¼1

gridðpiðcjÞÞ (10)

where piðcjÞ stands for the transformation of the point to the

particle’s state and gridðpiðcjÞÞ is the evaluation of the

probability grid in such transformed position.

Computation of w
range
i : On the other hand, a set of fixed

radio-based sensors is used to localize the aerial robot, which

carries another radio-based sensor. They provide distance

measurements between them which could be used to con-

strain localization errors produced by both the odometry and

the matching between the point clouds and the map. The

sensors used in our approach are low-cost UWB that can

be easily found in the market. The distance measurements

have a standard deviation of roughly 0.1 m after filtering

potential outliers. Figure 3 shows a histogram of the mea-

surement errors for indoor operation, generated after collect-

ing nearly 400 samples. It can be seen how the measurements

follow a Gaussian distribution with some outliers.

The distance measurements are integrated into the

particle filter as follows. Since the radio beacons do not

provide bearing information, we first define new particle

states without  (yaw angle)

p
range
i ¼

x

y

z

2
64

3
75 (11)

and sensor UWB beacon states using their known positions

bk ¼
xk

yk

zk

2
64

3
75 (12)
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Figure 3. Error histogram characterization of the range sensor
for indoor environments.

Figure 5. CATEC indoor test bed and scenario used for the field
experiments. Picture of the site of the experiments (top). 3-D
map of the area with approximate UWB beacon locations (b1, b2,
and b3) (bottom). CATEC: Center for Advanced Aerospace
Technologies; UWB: ultra-wideband.

Figure 4. Particle cloud within the 3-D map (black arrows), and
associated 3-D point cloud projected from the weighted sum of all
particles along with the 3-D map of the environment. Top left
corner shows current RGB image.
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Given the measured radio-based distance rk from the

aerial robot to the k th beacon, the following constraint can

be applied to each particle state

rk ¼ jjp range
i � bk jj (13)

This constraint can be easily applied to the particle

weight calculation according to the computed distance dik

between the i th particle p
range
i and the k th beacon bk , and

how close this is to rk . A Gaussian distribution with mean

rk and a standard deviation σ of roughly 0.1 m (which fits

the error histogram in Figure 3) is used in order to obtain a

probability value. To aggregate the values from the mea-

surements of different beacons, the product is used because

they are independent probabilistic processes. The weight of

the i th particle associated with range sensing is calculated

as follows

w
range
i ¼

YL

k¼1

1ffiffiffiffiffiffiffiffiffiffi
2pσ2
p e�ðrk�dikÞ2=2σ2

(14)

where L is the number of beacons in the environment.

A great advantage of this approach is that the distance to a

single sensor is enough to update the weights of the particles,

it does not need to wait until distances to three or more sensors

are obtained by the onboard radio-tag, which usually happens

in other state-of-the-art range-based localization systems.

Figure 6. Aerial robot with RGB-D sensor at the front.
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Figure 8. Ground-truth trajectory followed by the aerial robot
during the experiment. X–Y trajectory (top). X–Z trajectory
(bottom).

Figure 7. RGB-D sensor with passive markers for precise 3-D
map building.
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Weight combination: Before combining the weights of

both sensing approaches according to equation (8), all the

weights must first be normalized within their categories in

order to verify equation (2) and represent a valid pro-

bability distribution. This also prevents combining

weights of distinct nature, which usually are in different

orders of magnitude. Equation (8) is used to obtain the

final weight of each particle, and the new weights are

normalized again in order to represent a valid probability.

The experimental results are first obtained with � ¼ 0:5,

and then this parameter is modified in order to evaluate its

impact.

The authors also evaluated the option of drawing new

particles into the filter with each new range measurement

taking into account the lack of bearing information. Thus,

with each range measurement, a set of particles would be

drawn in a sphere surrounding the onboard sensor position

into the map. Most of these particles will be later on

destroyed in the next resampling after update thanks to

the weight contribution of the point cloud matching with

the 3-D map. However, this approach was discarded

because it requires a large number of particles for a proper

representation of the range hypotheses, which hinders the

computational efficiency.

Finally, the particle set is resampled to allow spreading

the particles over the maximum likelihood areas. The algo-

rithm employed for resampling is the low-variance

sampler.41

The updated state vector for the aerial robot is then

calculated as the weighted sum of all the particles. Due

to this mixed approach, the outliers commonly present in

indoor range measurements are rejected thanks to the par-

ticle weighting. If an outlier in the distance measurement

from a range sensor is received, following equation (14),

this would result in very low values for w
range
i ; in this case,

the resampling would only depend on the associated

weights calculated from the point cloud matching, and the

relative scoring among the set of particles would remain

unaffected. Figure 4 shows the particle cloud within the

map and the 3-D point cloud projected from the pose asso-

ciated with the weighted sum of all the particles.

Experimental results

An experimental setup has been conceived to validate the

presented approach. The field test took place at the indoor

test bed of the Center for Advanced Aerospace Technol-

ogies (CATEC). This facility is used to develop and test

a wide range of technologies related to autonomous

systems. There is a useful volume of 15 � 15 � 5 m3; part

of it can be seen in Figure 5. The test bed houses an indoor

localization system based on 20 tracking cameras, which

only needs the installation of passive markers on the objects

to locate and/or track. This system is able to provide the

Figure 9. Automatic initialization of particles. From left to right and top to bottom, time evolution of particles after automatic
initialization. Black arrows represent the particles.

Table 1. MCL parameters.

Parameter Value

Number of particles 500
� (equation (8)) 0.5
OcTree resolution 0.1 m
RGB-D sensor σ 0.05 m
UWB sensor σ 0.1 m
Update threshold (pos) 0.1 m
Update threshold (yaw) 0.1 rad
kx 0.4
ky 0.4
kz 0.2
k 0.5
Initial σ (pos) 0.2 m
Initial σ (yaw) 0.2 rad

MCL: Monte Carlo localization.
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position and attitude of each object in real time with milli-

metric precision.

This section provides experimental results from the esti-

mated localization compared with ground truth data

obtained from the test bed tracking system. Prior to the

discussion of the experimental results, the setup describing

all the elements involved in the experiment is presented in

the next subsection.

Experiment setup

The aerial robot in Figure 6 performed a flight based on

VICON telemetry for localization and navigated using

joystick commands that sent nearby position and orien-

tation waypoints in the robot coordinate frame. The

results presented in this article were obtained off-line.

In order to validate the long-term character of our

approach, the flight took roughly 9 min so the visual

odometry could drift enough to verify that the two sen-

sing measurements used in the particle filter help pre-

venting localization error growth.

The complete experimental setup is composed of the

following elements:

� An aerial robot with the following onboard sensors:

an RGB-D sensor, an IMU, and a radio range sensor

(see Figure 6).

� A 3-D map of the working area (see Figure 5)

obtained using another RGB-D sensor, with a reso-

lution of 0.1 m.

� Three radio range sensors installed across the indoor

test bed at known positions.

The 3-D map of the area was acquired using another

RGB-D sensor whose housing was augmented with several

passive markers (see Figure 7) in order to get its pose with

high accuracy from the test bed’s motion capture system.

Such sensor was carried around the test bed while con-

nected to a laptop, and the acquired point clouds were

projected using the current sensor pose and merged into

an accurate octree. This map can be seen in Figure 5.

A small infrastructure of range sensors (three sensors)

has been installed in the indoor scenario where the flight

has taken place. The radio-based sensors have been

installed at three different locations homogeneously dis-

tributed within the indoor test bed. These fixed locations

were acquired using the VICON tracking system and

provided to our filter. There is an additional node
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Figure 10. Localization results. UAV ground-truth position and yaw captured by the motion capture system (red line). Estimated UAV
position and orientation using the proposed odometry (blue line). Estimated UAV position and orientation using the proposed
approach (green line). UAV: unmanned aerial vehicle.
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installed on the aerial robot in order to compute point-to-

point distances.

The aerial robot was remotely piloted through the

test bed area at different heights. The ground-truth tra-

jectory followed by the vehicle is presented in Figure 8.

This is roughly 200-m long trajectory in which the

robot performed a trajectory for a whole battery

duration.

Automatic initialization

Even though for the experiment we manually set the

initial pose of the aerial robot, an example of automatic

initialization is shown in Figure 9. This demonstrates

the capabilities of our approach toward handling the

case in which the initial pose of the aerial robot is

unknown. During takeoff, the filter starts performing

prediction, update, and resampling of particles, based

on the distance thresholds that were defined in Table 1.

The result reveals how the UAV does not need to move

much in order to converge a solution in position (top

row in Figure 9). This mainly occurs because the radio

ranging measurements quickly induce the right location.

However, some of these particles do not represent the

correct yaw angle. As soon as the UAV starts moving in

the horizontal plane toward some obstacles, the point

cloud matching with the map refines the position and

properly approximates the yaw angle (bottom row in

Figure 9).

Results and discussion

The main objective of the experiment is to demonstrate

the suitability of the approach in real time during regular

operations. The estimated UAV position and yaw during

the experiment can be seen in Figure 10, both from the

visual odometry and the MCL. Roll and pitch angles are

not included in the plots because, as previously stated,

they are observable from the onboard IMU and are

directly integrated into our localization approach. The
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Figure 11. Position and orientation errors through time. Left plots correspond to the odometry approach, while right plots show
results from the complete proposed approach including the MCL. Computed error of the estimated position and orientation with
respect to the ground truth (red line). Estimated RMS error for each axis (blue line). RMS: root mean square; MCL: Monte Carlo
localization.

Table 2. RMS localization errors.

x (m) y (m) z (m) yaw (rad)

Odometry 2.47 2.53 0.19 0.88
MCL 0.36 0.39 0.17 0.18

RMS: root mean square; MCL: Monte Carlo localization.
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IMU used in our approach provides accurate and filtered

estimations of such angles.

These results (Figures 10 and 11) were obtained after

configuring the MCL algorithm with the parameters shown

in Table 1.

The plot also shows the ground-truth position and

orientation provided by the test bed’s motion capture sys-

tem. It can be seen how the visual odometry slowly accu-

mulates errors over time, while the estimations from our

complete approach closely follow the ground truth during

all the experiments. It is also worth to mention that this
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Figure 12. Estimated UAV position and orientation using other approaches based on RGB-D sensors. UAV: unmanned aerial vehicle.

Table 3. RMS error comparison.

x (m) y (m) z (m) yaw (rad)

CCNY RGBD 5.07 1.94 5.55 2.24
RTAB-Map 3.68 6.59 6.09 2.06
RGBD-SLAM 2.46 0.79 3.63 0.71
Our approach 0.36 0.39 0.17 0.18

RMS: root mean square.

Table 4. Pose estimation speed.

Average
frequency (Hz)

Frame processing
time (ms)

CCNY-RGBD 8.1 124
RTAB-Map 6.2 161
RGBD-SLAM 5.8 173
Our approach 15.8 63
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Figure 13. Localization errors for different values of �.
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estimation does not drift with time and the errors are

approximately bounded.

Figure 11 shows the error of the estimation during the

trajectory execution. The error is computed as the Eucli-

dean distance between the estimation and the ground truth

at every time step. Besides, the plot depicts the computed

root mean square (RMS) errors for each axis, which are

also shown in Table 2.

It can be seen how the RMS errors are approximately

0.4 m in x and y, while in z is less than 0.2 m. RMS error in

yaw angle is around 10�. Errors in x and y are higher due to

the larger distance traveled through these axes. Neverthe-

less, the global RMS error in position is 0.32 m which can

be considered acceptable for robot navigation.

In order to quantitatively assess the performance of our

localization approach, we have tested the data from the vali-

dation experiment against other popular approaches that

make use of RGB-D data for robot localization, either visual

odometry and mapping such as CCNY_RGBD (http://

wiki.ros.org/ccny rgbd) or SLAM approaches such as

RTAB-Map (http://wiki.ros.org/rtabmap) or RGBD-SLAM

(http://wiki.ros.org/rgbdslam). The plots in Figure 12 show

the performance of the same flight data processed off-line

using these approaches, and Table 3 summarizes general

RMS errors compared to those from our approach.

The RMS errors in x, y, and z from the compared

approaches are slightly higher. Omitting z values, which

could be observable through the use of an altimeter, only

RGBD-SLAM seems to be a viable alternative to the

proposed approach. We are able to provide a better accu-

racy while keeping robustness and computational effi-

ciency as key features. Notice that we did not fine tune

the parameters of the algorithms, so a better accuracy

could be achieved.

Table 4 includes values for the mean frequency and

corresponding mean processing times at which new

pose estimations are published, using an i7 Linux laptop

with 2 Cores (the UAV onboard processor is also an i7

Linux computer). Our approach, including the visual

odometry, is able to deliver pose estimations approxi-

mately every 60 ms when using 500 particles, which

makes it suitable for working at around half the frame

rate of the RGB-D sensor. The other approaches may

publish pose estimations to the ROS ecosystem at a

higher rate than that of the table, but internally they

just copy the same values to the output message until

a new estimation is computed.

The visual odometer took an average 90% of a single

thread and the proposed MCL algorithm the 55% of a sin-

gle thread. This configuration leaves plenty of computation

for robot planning and navigation.

The main contribution of this approach is that the

localization accuracy can be improved in long-term

operation using both RGB-D and radio-range sensing.

Therefore, the parameter � from equation (8), which is

used to combine the contributions of map matching and

distances to beacons, is modified in order to assess loca-

lization errors. The rest of parameters from Table 1

remained the same for this experiment. Figure 13 shows

errors in X , Y , Z, and Yaw for different values of �,

from � ¼ 0 (MCL only relies on radio-based sensing) to

� ¼ 1 (MCL only uses map matching). While, in gen-

eral, RMS errors are low, best performances in terms of

overall stability and particle cloud convergence were

achieved between � ¼ 0:5 and � ¼ 0:8. As expected,

Yaw error increases when the contribution from map

matching decreases (lower �), since radio sensing does

not provide such angle and the approach relies on the

odometry integration. Errors in Z are also expected to be

higher when � is closer to 0, since the spatial distribu-

tion of the installed radio beacons in height was not as

much as in the XY plane, leading to poor estimations in

the UAV altitude when not using the point cloud match-

ing with the 3-D map. On the other hand, when � is

close to 1, point cloud matching leads to smoother esti-

mations but sometimes is not enough to correct odome-

try drift, leading to higher errors in X and Y .

Figure 14 presents the estimation accuracy using dif-

ferent numbers of particles, along with the required

computational times included in Table 5 in order to

demonstrate the capabilities of our approach. The rest
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Figure 14. Localization errors for different number of particles
used in MCL. MCL: Monte Carlo localization.

Table 5. Computation times for one MCL iteration when
modifying the number of particles.

Number of particles Average processing time (ms)

100 26
200 42
300 50
400 58
500 65

MCL: Monte Carlo localization.
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of parameters are still the default ones, as shown in

Table 1. It can be seen how the impact of the number

of particles on RMS errors is fairly minor, while com-

putation times are drastically reduced.

The spatial occupancy of the working area is approxi-

mated by an octree, as previously shown in Figure 5.

Another set of experiments has been performed by mod-

ifying the spatial resolution of such map from the default

(0.1 m) to the following two depths of the tree, which

correspond to leaf sizes of 0.2 m and 0.4 m. Figure 15

shows these maps. Running the experiment with higher

sizes was discarded because the map is no longer re-

presentative enough for map matching. The number of

particles was 500, and � ¼ 0:5. Figure 16 shows the loca-

lization RMS errors using different map resolutions. It can

be noted how when using a map resolution of 0.2 m, and

downsampling the sensor point clouds accordingly, it is

possible to achieve similar localization errors while

decreasing the computational complexity of the approach,

as shown in Table 6.

Conclusions and future work

An implementation of MCL suitable for operation in 3-D

environments has been presented. Visual odometry based

on an RGB-D sensor is used along with a previously known

map of the environment and a set of radio-based sensors for

point-to-point distance measurements.

Experimental results demonstrate a strong overall sys-

tem performance as well as the feasibility of the approach,

both in accuracy and computational efficiency. The pro-

posed localization approach provides a reliable and accu-

rate 4-D (x, y, z, and  ) estimation during the 9 min flight

of the experiment. In view of these results, we think this

algorithm could be used for longer periods of time, but

this should be evaluated in the future with longer

experiments.

Future work will consider the inclusion of other sensor

modalities into the localization system. Information as

visual place recognition or altimeter can be used to draw

new particles into the filter. Additionally, the authors will

also evaluate how to compute accurate 3-D maps of the

environment including range sensors to be used as input to

the proposed approach. Moreover, improvements to the

conventional MCL used in this approach will be evalu-

ated, such as modifying the resampling method while

keeping in mind the computational efficiency of the

whole algorithm.

Finally, the authors are currently preparing to release the

source code of the algorithms and add the corresponding

information on the ROS wiki to be publicly available.
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Figure 16. Localization errors for different octree resolutions of
the 3-D map.

Table 6. Computation times for one MCL iteration when
modifying the 3-D map resolution.

Map resolution (m) Average processing time (ms)

0.1 65
0.2 52
0.4 28

MCL: Monte Carlo localization.

Figure 15. 3-D map of the area with different resolutions: 0.2 m (left) and 0.4 m (right).
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