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Abstract

A non-hydrostatic depth-averaged model for dry granular flows is proposed, taking into ac-
count vertical acceleration. A variable friction coefficient based on the µ(I) rheology is consid-
ered. The model is obtained from an asymptotic analysis in a local reference system, where the
non-hydrostatic contribution is supposed to be small compared to the hydrostatic one. The non-
hydrostatic counterpart of the pressure may be written as the sum of two terms: one corresponding
to the stress tensor and the other to the vertical acceleration. The model introduced here is weakly
non-hydrostatic, in the sense that the non-hydrostatic contribution related to the stress tensor is
not taken into account due to its complex implementation. The motivation is to propose simple
models including non-hydrostatic effects. In order to approximate the resulting model, a simple
and efficient numerical scheme is proposed. It consists of a three-step splitting procedure and the
resulting scheme is well-balanced for granular material at rest with slope smaller than the fixed
repose angle. The model and numerical scheme are validated by means of several numerical tests,
including a convergence test, a well-balanced test, and comparisons with laboratory experiments
of granular collapse. The influence of non-hydrostatic terms and of the choice of the coordinate
system (Cartesian or local) is also analyzed. We show that non-hydrostatic models are less sensitive
to the choice of the coordinate system. In addition, the non-hydrostatic Cartesian model produces
deposits similar to the hydrostatic local model as suggested by Denlinger & Iverson [16], the flow
dynamics being however different. Moreover, the proposed model, when written in Cartesian coor-
dinates, can be seen as an improvement of their model, since the vertical velocity is computed and
not estimated from the boundary conditions. In general, the non-hydrostatic model introduced
here much better reproduces granular collapse experiments compared to hydrostatic models, espe-
cially at the beginning of the flow.
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1 Introduction

Granular flows have been intensely studied in recent years, since they play an important role in the
understanding of natural hazards (avalanches, submarine landslides,...) and industrial processes. Aerial
granular flow models as well as other more complex models such as debris flows have been widely stud-
ied (e.g. [30, 46, 28, 5]) and applied to simulate laboratory experiments [38, 29] and real landslides
[33, 45, 35] up to hazard assessment [42, 44]. The physical description of these type of flows is a very
active field of research from several points of view. On the one hand, the definition of rheological laws
describing the complex dynamics of the flow is a challenge nowadays [1, 14], namely the solid-fluid tran-
sition occurring when a granular material is flowing. On the other hand, the mathematical modelling
of these flows is a difficult issue, since the stress tensor has a complex expression usually, and therefore
its numerical treatment is not straightforward.

From the physical point of view, the µ(I) rheology, introduced in Jop, Forterre & Pouliquen [31, 32],
is the most accepted rheological law describing dry granular flows. It considers a pressure and strain-
rate dependent viscosity, through a variable friction coefficient depending on the inertial number. In
addition, in recent years, some works have been devoted to improving this law by adding non-local ef-
fects to the µ(I) rheology. However, there are still many open questions around these non-local models
(see e.g. [50, 8]). Thus, the local µ(I) rheology continues being a very popular law for physicist when
describing dry granular flows and start to be used for landslide simulation at the field scale [10].

The µ(I)-rheology was implemented in a 2D continuous model solving the full Navier-Stokes equa-
tions by Staron, Lagrée & Popinet [52] by using a regularization method to describe the static behavior
of the material. By fitting the rheological parameters of the µ(I)-rheology down to values smaller that
those of the granular material involved, they were able to reproduce 2D discrete elements simulations.
Ionescu et al. [27] and Martin et al. [40] quantitatively reproduced laboratory experiments of a gran-
ular collapse problem using finite element discretizations of the full 2D equations and an Augmented
Lagrangian method, as well as a simplified description of the lateral wall effects. Bouchut et al. [6]
derived an analytic expression for the non-hydrostatic pressure. It is based on an asymptotic analysis
under some hypothesis, such as shallow flow and small velocity. As a consequence, only the terms
related to the stress tensor are considered in the definition of the non-hydrostatic pressure counterpart,
while the acceleration in the direction normal to the slope is neglected. This analytical formulation
of the pressure is compared with the pressure computed solving the full 2D Navier-Stokes equations,
showing that these non-hydrostatic analytical terms describe well part of the non-hydrostatic pressure
(see Figure 18 of [40]), although the effect of the vertical acceleration is not taken into account.

It is a well-known fact that the computational cost of solving flows with a moving free surface with
a 3D (or 2D) solver is huge. Shallow depth-averaged and hydrostatic layer-averaged models have been
widely used in order to reduce this computational effort. These models are mainly based on the pio-
neering work of Savage-Hutter [51], where the friction between the bottom and the granular material
is modelled though a constant Coulomb friction coefficient. Pouliquen [48, 47] proposed to replace this
constant value by a friction coefficient depending on the strain rate. In a more recent work, Pouliquen
& Forterre [49] proposed to make this coefficient depend on the Froude number. The resulting model
was used by Mangeney-Castelnau et al. [39] and Mangeney et al. [36] to simulate granular flows on
simple topography, making it possible to reproduce qualitatively self-channeling flows and levee for-
mation. It has also been successfully used to simulate real landslides over complex topography (e. g.
[45, 10]). More recently, Gray & Edwards [26] proposed a slightly modified depth-averaged model by
including second-order viscous terms derived by assuming a Bagnold profile for the downslope velocity.
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It reduced to the model of [48] when these second-order terms are dropped. This model, combined
with the friction coefficient proposed by [49], is used in Edwards & Gray [17] to simulate roll-waves and
erosion-deposition waves and in Baker et al. [3], making it possible to recover the transversal profile of
the downslope velocity. However, the main drawback of this model is the fact that the velocity profile
is prescribed even though the shape of the velocity profile is known to change during the flow. This
change can be handled using multilayer models as done by Fernández-Nieto et al. [22, 23] that also used
the µ(I) rheology. Indeed such models have been shown to reproduce the observed change in velocity
profiles during granular flows on inclined planes. Using multilayer models, [22] also showed that the
µ(I) rheology better reproduces the dynamics of granular flows than using a constant friction coefficient.

In all these depth-averaged or multilayer models, the pressure is assumed to be hydrostatic. In ad-
dition, as explained before, the analytic formula for the pressure proposed by [6] includes the rheology
terms but not the normal acceleration terms due to their assumption of small velocity flows. Further-
more, it is well known that the initial dynamics of granular collapse is not well reproduced by shallow
depth-averaged models, in particular because of the importance of non-hydrostatic effects in this regime
(e. g. [38], [22, 23]). Therefore, a non-hydrostatic shallow model for granular flows, which takes into
account the acceleration in the direction normal to the slope may significantly improve the ability of
depth-averaged models to reproduce flow regimes where non-hydrostatic effects are important such as
during the first instant of granular collapses.

Non-hydrostatic shallow water models have been a popular topic of research in recent years. The
idea is to improve nonlinear dispersive properties of water waves by including some information on the
vertical structure of the model. One way of doing so is by including a non-hydrostatic pressure in the
model. In the usual process of averaging the fully 3D equations, the pressure is no longer assumed to be
hydrostatic and is split into a hydrostatic and a non-hydrostatic part (see for instance [13], [53], [9], and
[54], among others). The advantage of non-hydrostatic models when compared to classical dispersive
systems is that they present only first-order derivatives, which are easier to treat numerically (see e.g.
[19]). Moreover, the particular structure of these type of models and their similarities with shallow
water equations allow extending many well-known numerical schemes for shallow water equations to
non-hydrostatic models, see for instance [18]. In view of the improvement and possibilities of this tech-
nique for shallow waters, one could think that a similar approach would be interesting for granular flows.

The choice of the coordinate system plays a key role, in particular in depth-averaged models, which
are obtained after an integration procedure. If a Cartesian coordinate system is chosen, the 3D model
is integrated along the vertical Cartesian direction. However, it is usual in geophysical flows to use
local coordinates (see e.g. [45, 26, 5]), where the integration is made along the normal direction to the
topography, typically a reference plane with constant slope (although it may vary along the domain [20])
or an arbitrary topography [7, 36] where curvature effects may strongly impact the flow dynamics and
deposit [43]. These models are more accurate for granular flows since the computed velocity is tangent
to the topography, which is physically relevant, in contrast to Cartesian models. Recently, Delgado-
Sánchez et al. [15] proposed a two-layer depth-averaged model, where they use Cartesian coordinates for
an upper water layer and local coordinates for a lower granular layer since for water waves the vertical
acceleration can be supposed to be small while for granular flows the acceleration normal to the slope is
small. They showed that large errors are obtained when the coordinate system is not correctly chosen.
Denlinger & Iverson [16] proposed a Cartesian model for landslides, where the pressure is corrected
by an approximation of the vertical acceleration. They show that the results of this Cartesian model
are close to the results of a hydrostatic model in local coordinates for dam break analytical solutions.
In this model, the vertical acceleration is introduced in the approximate non-hydrostatic pressure by
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taking the average between the vertical velocity derived from the free surface and bottom boundary
conditions. As a result, the vertical velocity is not computed as an unknown of the system.

In this paper we deduce a simple model for granular flows including non-hydrostatic effects related
to the acceleration in the direction normal to the slope. Then, a simple and efficient numerical scheme
will be proposed that will allow us to notably improve the results of hydrostatic models. To our
knowledge, this is the first non-hydrostatic shallow model (computing the normal acceleration) for dry
granular flows. It follows from an asymptotic analysis and the decomposition of the pressure into a
hydrostatic pressure and a small perturbation (non-hydrostatic contribution). For simplicity, the non-
hydrostatic pressure will be assumed to follow a linear profile in the normal direction. Note that this is
a simplification so that the final system is easier to deal with. Nevertheless, other type of profiles could
be used, which would result in a more complex model, including extra variables and equations (see for
instance the approaches used in [24, 19]). The model will take into account a bottom friction coefficient
defined by the µ(I) rheology. Although the model will be derived using local coordinates, one may
follow easily the same procedure in order to obtain a similar version in Cartesian coordinates. In [16], a
Cartesian non-hydrostatic model is also proposed. The main differences are: (i) in the proposed model
the vertical velocity is an unknown, whereas in [16] it is estimated in terms of the kinematic boundary
conditions; (ii) the non-hydrostatic pressure correction in the proposed model is the Lagrange multiplier
associated to averaged incompressibility equation, while in [16] it is approximated from the total time
derivative of the estimated vertical velocity.

This paper is organised as follows. In Section 2 we present the initial system and the derivation of
the non-hydrostatic model, based on an asymptotic analysis. Section 3 is devoted to the development
of an efficient numerical scheme to approximate the proposed non-hydrostatic model. This is done with
a three-step splitting technique, where the friction term is applied before solving the non-hydrostatic
pressure. This is one of the key points of the scheme. In Section 4 different numerical tests are presented,
including convergence and well-balance tests. An objective is to show the influence of the choice of the
coordinate system (Cartesian or local) for hydrostatic and non-hydrostatic models. We also present a
comparison with experimental data of granular collapses over inclined planes, showing that the non-
hydrostatic model gives better results than the hydrostatic one, especially at short times and more
generally on the mass profiles during the spreading up to the deposit. In addition, non-hydrostatic
models make it possible to include the vertical velocity as a variable in the model and thus to simulate
the effect of the opening gate in the laboratory experiments, which is not possible with hydrostatic
model. Finally, some conclusions are presented in section 5.

2 Derivation of a non-hydrostatic shallow µ(I)-model

In this section we deduce the non-hydrostatic model. It follows from an asymptotic analysis of the 2D
Navier-Stokes system and the integration of the resulting equations along the normal direction to the
topography.

2.1 Initial system

First, let us establish the notation used in this paper. In particular, we shall consider two different
reference systems. We shall use local (or tilted) coordinates, as is usually done in granular flows, as
well as Cartesian coordinates. We shall denote by (x, z) the Cartesian coordinate system (the flow is
assumed to be independent of the y-direction), while (X,Z) will denote the local coordinates. This
local coordinates will refer to a given fixed inclined plane (being a straight line in the x − z plane).
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More explicitly, let us consider an inclined reference plane with slope θ, that is a plane given by the

function b̃(x) = (xend − x) tan θ, where xend is the ending point of the domain. Let us remark that
we consider here the usual convention in geophysical applications which establishes that a positive
angle θ corresponds to a negative slope. Local coordinates (X,Z) are then considered, measured along

the downslope and normal direction to the reference plane, b̃(x), respectively. The velocity vector is
u = (u,w), where u is the downslope component of the velocity and w is the normal one. Finally, we
consider also a bottom topography b(X) over the reference inclined plane (see Figure 1).

Figure 1: Sketch of the Cartesian (blue) and local (red) reference system.

As starting point, we consider the 2D Navier-Stokes system for a flow with constant density ρ given
by 

∂Xu+ ∂Zw = 0,

∂tu+ u ∂Xu+ w ∂Zu+
1

ρ
∂X(pT ) = g sin θ +

1

ρ

(
∂X(τXX) + ∂Z(τXZ)

)
,

∂tw + u ∂Xw + w ∂Zw +
1

ρ
∂Z(pT ) = −g cos θ +

1

ρ

(
∂X(τZX) + ∂Z(τZZ)

)
,

(1)

where g is the gravity force, pT is the total pressure and

τ =

(
τXX τXZ
τZX τZZ

)
is the deviatoric part of the total stress tensor, σ = −pT I + τ , where I is the identity matrix.

The total pressure shall be decomposed as sum of the hydrostatic and the non-hydrostatic contri-
bution (see e.g. Casulli [13])

pT = pH + pNH , (2)

where pH = g cos θ (b+ h− z) is the hydrostatic pressure and pNH denotes the non-hydrostatic coun-
terpart. The atmospheric pressure has been set to zero for the sake of simplicity and we shall assume
that the non-hydrostatic pressure vanishes at the surface

pNH|b+h
= pH|b+h

= pT |b+h
= 0.
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We also assume that τXZ |b+h
= 0. We consider at the free surface the usual kinematic condition

∂th+ u|b+h
∂Xb− w|b+h

= 0. (3)

At the bottom, we have the non-penetration condition

u · nb = 0, (4)

where nb = (∂Xb,−1) is the downward normal vector to the bottom.
In addition, a Coulomb-type friction condition is considered:

σ nb −
((
σ nb

)
· nb
)
nb =

(
−µ pT

u

|u|
, 0
)′
, (5)

where the prime (′) denotes the transposed vector, and here µ denotes the friction coefficient. This
coefficient may be constant (i.e., Savage-Hutter model [51]) or variable according to some other rheo-
logical laws [35, 14]. Currently, the µ(I) rheology (see e.g. [31]) is the most accepted law describing
dry granular flows. Therefore, we shall consider this rheology and define

µ = µ(I) = µs +
µ2 − µs
I0 + I

I, (6)

where µs, µ2, I0 are constant values, and I is the inertial number defined as

I =
2ds‖D(u)‖√

pT/ρs
.

In the previous equation, ds is the particle diameter, ρs the particle density, and D(u) is the strain-rate

tensor with ‖D(u)‖ =
√

0.5D : D. Note that the apparent flow density is ρ = ρsϕs, where ϕs is the
solid volume fraction. This rheological law is included in system (1) by defining the deviatoric stress
tensor τ = νD(u), where the viscosity coefficient, ν, is defined according to the µ(I) rheology as (see
e.g. [34, 22])

ν =
µ(I)pT
‖D(u)‖

. (7)

2.2 Dimensional analysis and derivation of the model

We follow a classical dimensional analysis for dry granular flows (see e.g. [26, 23]) to obtain a simplified
shallow model. Therefore, the ratio between the characteristic height (H) and length (L) is assumed
to be small

ε =
H

L
.

We denote as well by U the characteristic velocity. In what follows, we will denote with tildes (̃·) the
non-dimensional variables. Then, we have:

(X,Z, t) = (LX̃,HZ̃, (L/U)t̃),

(u,w) = (Uũ, εUw̃),

h = Hh̃, ρ = ρ0ρ̃, pT = ρ0U
2p̃T ,

(τXX , τXZ , τZZ) = ρ0U
2 (ετ̃XX , τ̃XZ , ετ̃ZZ) .
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Note also that

D(u) =
U

H

1

2

(
2ε∂X̃ ũ ∂Z̃ ũ+ ε2∂X̃w̃

∂Z̃ ũ+ ε2∂X̃w̃ 2ε∂Z̃w̃

)
, and ‖D(u)‖ = |∂Zu| /2

up to first order. Defining now the Froude number as Fr = U/
√
gH cos θ and dropping tildes for the

sake of simplicity, system (1) is written in non-dimensional form as

∂Xu+ ∂Zw = 0,

ρ
(
∂tu+ u∂Xu+ w∂Zu

)
+ ∂X(pT ) =

1

ε

ρ

Fr2
tan θ + ε∂X(τXX) +

1

ε
∂Z(τXZ),

ρε2
(
∂tw + u∂Xw + w∂Zw

)
+ ∂Z(pT ) = − ρ

Fr2
+ ε∂X(τZX) + ε∂Z(τZZ).

(8a)

(8b)

(8c)

Note that the deviatoric tensor is multivalued and we only know that |τXZ | ≤ µ(I)pT if |D| = 0 (see
e.g. [27]).

The friction condition (5) at the bottom is given by

(τXZ , 0)
′
=

(
µ(I)pT

u

|u|
, 0
)′

if |u| 6= 0, at z = b, (9)

while this friction condition is multivalued if |u| = 0, where
∣∣τXZ|b∣∣ ≤ µ(I|b)pT |b in this case.

Finally, we assume that the non-hydrostatic pressure is smaller than the hydrostatic one. To this
aim, we consider that the pressure takes the form

pT = pH + εq1 + ε2q =
ρ

Fr2
(b+ h− z) + εq1 + ε2q,

where q1, q are the first and second order terms of the non-hydrostatic counterpart. It leads to the
vertical momentum conservation equation

ρε2
(
∂tw + u ∂Xw + w ∂Zw

)
+ ε∂Zq1 + ε2∂Zq = ε∂X(τZX) + ε∂Z(τZZ), (10)

where the gravitational term has been cancelled with the hydrostatic contribution of the pressure. Note
that the previous equation (10) involves the first and second order terms of the non-hydrostatic pressure
q, q1 balanced by the a term related to the vertical acceleration (left hand side) and a term coming from
the stress tensor (right hand side). Now, by comparing the terms with same order of magnitude in
equation (10), we obtain that

∂Zq1 = ∂X(τZX) + ∂Z(τZZ), (11)

and
−∂Zq = ρ

(
∂tw + u ∂Xw + w ∂Zw

)
. (12)

In this work, the aim is to obtain the simplest depth-averaged non-hydrostatic model, improving the
results of hydrostatic models. First, from the numerical point of view, it is difficult to deal with the
viscous terms in (11). Second, the problem of considering the vertical acceleration has been widely
studied for shallow water flows, both from the modeling and the numerical point of view. Thus, we are
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going to neglect the first order terms of the pressure and keep the second order contribution, i.e., we
keep (12) and do not consider (11). In the numerical tests, we will show that this choice significantly
improves the results compared to the hydrostatic assumption.

Next, we derive the final model by integrating (8a),(8b) and (12) along the vertical direction. To
this aim, for any variable f we define its average on the normal direction by

f =
1

h

∫ b+h

b

fdZ.

We shall use that f · g = f · g, which is true up to first order. Then, by integrating on the normal
direction equations (8a) and (12) between b and b + h, and taking into account the Leibniz’s rule, we
get

∂X (hu) +
(
u|b∂Xb− w|b

)
−
(
u|b+h

∂X (b+ h)− w|b+h

)
= 0,

∂t (hw) + ∂X (huw) + w|b
(
u|b∂Xb− w|b

)
− w|b+h

(
∂t (b+ h) + u|b+h

∂X (b+ h)− w|b+h

)
=

1

ρ
q|b .

Using now the kinematic and non-penetration conditions we get

∂th+ ∂X (hu) = 0,

∂t (hw) + ∂X (huw) =
1

ρ
q|b .

(13)

A closure relation is needed for the non-hydrostatic pressure. For the sake of simplicity, we shall assume
that pT (X, ·, t) has a linear profile. This hypothesis implies that q|b = 2q. Then, as a consequence, the
system has only one extra unknown, q. Nevertheless, other possible choices may be made on the profile
of the non-hydrostatic pressure. This would mean then that the system will have extra unknowns and
equations (see e.g. [24, 19]).

We focus now on the horizontal momentum equation (8b) up to first order. Noticing that∫ b+h

b

∂XpT dz =
ρ

Fr2
h∂X (b+ h) + ε2

(
∂X (hq) + q|b∂Xb

)
,

and using qb = 2q, the depth-averaged momentum conservation equation is

ρ

(
∂t (hu) + ∂X

(
hu2
)

+
1

Fr2
h∂X

(
h+ b+

x tan θ

ε

))
=

−ε2
(
∂X (hq) + 2q∂Xb

)
− 1

ε
µ(I|b)pT |b

u

|u|

(14)

where the friction condition (9) has been used.
Considering equations (13) and (14), we have a system with 3 equations and 4 unknowns (h, u, w, q).

Then, in order to close the system, we integrate the continuity equation (8a) between the bottom (b)
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and the midpoint of the layer (b+ h/2), obtaining (by using the Leibniz’s rule and the non-penetration
condition)

∂X

(∫ b+h/2

b

udz

)
− u|b+h/2

∂X (b+ h/2) + w|b+h/2
= 0.

Notice that

u = u|b+h/2
+O(ε2),

∫ b+h/2

b

udz =
hu

2
+O(ε) and w = w|b+h/2

+O(ε2),

thanks to the midpoint and the rectangular quadrature rule to approximate those integrals. Then, we
obtain that

w = u∂Xb−
h

2
∂Xu. (15)

The resulting system is equivalent to an optimization problem consisting of the minimization of the
energy subject to the constraint (15), at least for a semi-discrete version of the momentum equation
(14) (see for example [21]). In this sense q|b = 2q̄ may be seen as the Lagrange multiplier associated to
the constraint (15).

In the final model, equation (15) is multiplied by h in order to write the system in terms of the
conservative variables (see (16d)).

2.3 Final model

Collecting the equations that we have obtained in previous subsections and going back to dimensional
variables, we get the system

∂th+ ∂X (hu) = 0,

ρ
(
∂t (hu) + ∂X

(
hu2
)

+ g cos θh∂X

(
h+ b+ b̃

))
= −

(
∂X (hq) + 2q∂Xb

)
− τXZ|b ,

ρ
(
∂t (hw) + ∂X (huw)

)
= 2q,

hw = hu∂Xb−
h

2
∂Xhu+

hu

2
∂xh,

(16a)

(16b)

(16c)

(16d)

where

τXZ|b =

 µ(I|b)pT |b
u

|u|
if |u| 6= 0,∣∣τXZ|b∣∣ ≤ µspT if |u| = 0,

(16e)

and µ(I) is given by (6), and

I|b =
ds
∣∣(∂zu)|b

∣∣√
pT|b/ρs

, with pT |b/ρs =
ρ

ρs

(
g cos θh+ 2

q

ρ

)
= ϕs

(
g cos θh+ 2

q

ρ

)
. (16f)
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Note that the friction term is computed taking into account the total pressure, hydrostatic and
non-hydrostatic. In order to simplify system (16), in what follows we shall redefine the non-hydrostatic
variable as q = q/ρ. In the next section, we detail the numerical scheme proposed to approximate
system (16).

Remark 1. A hydrostatic version of model (16) is obtained from (16a), (16b) and (16f), by setting
q̄ = 0. The resulting hydrostatic model corresponds to the one proposed in [47], which is the Savage-
Hutter model [51], where the friction coefficient is improved by using the µ(I) rheology. This model also
matches to the one proposed in [26] when the the viscous term ∂XτXX is removed.

Remark 2. Concerning steady states for system (16), we shall focus on stationary solution when the
granular flow is at rest. Writing the momentum equation (16b) with ū = w̄ = q̄ = 0, and taking absolute
values we get

ρg cos θh
∣∣∣∂X (h+ b+ b̃

)∣∣∣ =
∣∣τXZ|b,u=0

∣∣ ≤ ∣∣µ(I|b,u=0
)pT |b,u=0

∣∣ = ρg cos θhµs.

Therefore, these stationary solutions take the form

ū = w̄ = q̄ = 0, and
∣∣∣∂X (h+ b+ b̃

)∣∣∣ ≤ µs. (17)

Note that previous equation corresponds to solutions at rest for classical Savage-Hutter model. When
designing a numerical scheme for model (16) we will be interested in preserving these steady states, that
is, a well-balanced scheme for (17).

3 Numerical approximation

One of the aims of this paper is to propose a simple and efficient numerical scheme to approximate the
previously introduced non-hydrostatic shallow µ(I)-model (16). We propose a numerical approximation
consisting in a three-steps method, where the main novelty is how to deal with the Coulomb friction term
together with the non-hydrostatic pressure. The first step involves the hyperbolic part of the system
and an explicit discretization of the non-hydrostatic term. In this first step a path-conservative finite
volume scheme is considered, together with a hydrostatic reconstruction in order to ensure the well-
balance property. Secondly, the Coulomb friction is added taking into account also the non-hydrostatic
contributions. Finally, a non-hydrostatic pressure deviation in time is computed and the velocity field
is corrected accordingly.

Regarding the computational cost of this non-hydrostatic model, it was shown that using the strategy
in Escalante et al. [18], the computational effort associated to a non-hydrostatic model for shallow water
flows is approximately 2.4 times greater than the one for the hydrostatic version of the model. Similar
results are expected here for the proposed model (16). In what follows we shall describe each step in
detail.

Let us denote by U = (h, hu, hw)
′
. We consider a usual Finite Volume discretization, where the

horizontal domain is divided in control volumes Vi =
[
xi−1/2, xi+1/2

]
, for i ∈ I. For the sake of

simplicity we assume a fixed volume mesh size ∆x. We denote the center of each volume cell by
xi =

(
xi−1/2 + xi+1/2

)
/2. For any time t, we consider the cell averages

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U(x, t)dx.

10



Regarding non-hydrostatic terms, a staggered grid is considered formed by the points xi−1/2, xi+1/2 of
the interfaces for each cell Vi. Let us denote the approximation of the point values of the function q
representing the non-hydrostatic pressure on point xi+1/2 at time t by

qi+1/2(t) = q(xi+1/2, t).

Remark that this corresponds to a second order approximation of the cell average of the pressure on
the staggered grid [xi, xi+1]. In what follows and for the sake of simplicity, we omit the dependence on
the time t.

In order to define a numerical scheme for (18), we have to consider the following three key points:

• The resulting scheme should be well-balanced for (17). This is achieved by means of a hydrostatic
reconstruction procedure, taking into account friction terms (see [23]).

• The friction contribution should be taken into account before solving the non-hydrostatic pressure.
Otherwise, the incompressibility condition is not ensured.

• Both, hydrostatic and non-hydrostatic pressures, should be considered when dealing with the
friction term.

We propose here a numerical scheme based on three steps which are described in what follows.

Step 1: Hyperbolic problem

The first step focuses on solving the hyperbolic system obtained when friction and non-hydrostatic
effects are removed from system (16). Therefore, we obtain the following system (bars are dropped for
simplicity): 

∂th+ ∂X (hu) = 0,

∂t (hu) + ∂X
(
hu2
)

+ g cos θh∂X

(
h+ b+ b̃

)
= 0,

∂t (hw) + ∂X (huw) = 0.

(18a)

(18b)

(18c)

We see that equations (18a) and (18b) correspond to a shallow water system, combined with a transport
equation for a passive scalar (18c). In order to solve system (18), we follow a similar approach as in
[25]. In particular, we follow the path-conservative framework [41] to define a HLL-type method for the
shallow water system in a similar way as it is done in [23]. After that, the third equation is considered
as a transport equation of a passive scalar. For the sake of completeness, let us describe this in detail.

System (18a)-(18b) may be written in compact form as

∂tW + ∂XFc(W) + S(W)∂X

(
b̃+ b+ h

)
= 0 (19a)

∂t (hw) + ∂X(huw) = 0, (19b)

where W = (h, hu)
′
∈ R2, Fc(W) = (hu, hu2)

′
is the convective part of the flux and S(W) =

(0, g cos θh)
′

defines the source term which accounts for the hydrostatic pressure.

11



Then, the finite volume method is described as

W
n+1/3
i = Wn

i +
∆t

∆x

(
Fn
i−1/2 −Fn

i+1/2 +
1

2

(
Sn
i+1/2 + Sn

i−1/2
))

, (20)

with

Sn
i+1/2 =

1

2
(S(Wn

i+1) + S(Wn
i ))∆ηni+1/2, (21)

where ∆ηni+1/2 =
(
b̃+ b+ h

)n
i+1
−
(
b̃+ b+ h

)n
i
. Finally, the numerical flux corresponding to the

convective terms Fn
i+1/2, is

Fn
i+1/2 =

1

2

(
Fc(W

n
i+1) + Fc(W

n
i )
)
− 1

2
Dn
i+1/2,

where Dn
i+1/2 is the numerical diffusion of the scheme.

Here we use the framework of Polynomial Viscosity Methods (PVM) introduced in [12] in order
to define the numerical diffusion term. In particular, we use a generalization of the HLL scheme for
non-conservative hyperbolic systems where

Di+1/2 = α0

(
Ŵ

+

i+1/2 − Ŵ
−
i+1/2

)
+ α1

(
Fc(W

n
i+1)− Fc(W

n
i ) + Ŝ

n

i+1/2

)
, (22)

with

Ŝ
n

i+1/2 =
1

2
(S(Wn

i+1) + S(Wn
i ))
(
ĥ+,ni+1/2 − ĥ

−,n
i+1/2

)
,

where the definition of Ŵ
±
i+1/2, which will be given in equation (24), is a key point in order to preserve

steady state solutions (17), and

α0 =
SR|SL| − SL|SR|

SR − SL
, α1 =

|SR| − |SL|
SR − SL

,

being SL and SR approximations of the minimum and maximum wave speed. In practice,

SL = min
(
ui −

√
g cos θhi, ui+1/2 −

√
g cos θhi+1/2

)
,

SR = max
(
ui+1 +

√
g cos θhi+1, ui+1/2 +

√
g cos θhi+1/2

)
,

where hi+1/2, ui+1/2 are the usual Roe’s averaged states for Shallow Water system.

One of the difficulties of this method is to ensure the well-balance property for (17). In particular, we
find in (17) two types of steady states. On the one hand we have the ones corresponding of lake at rest

in Shallow Water, where ∂X

(
h+ b+ b̃

)
= 0. In this case the well-known hydrostatic reconstruction

[2] provides a tool based on reconstructed states that would allow us to cancel the numerical diffusion
in such situations, and resulting in a well-balanced scheme. On the other hand, we have the family

of steady states where ∂X

(
h+ b+ b̃

)
6= 0, which correspond to granular flows at rest for which the

12



friction force is greater than pressure forces. In that case, the classical hydrostatic reconstruction is not
enough to preserve those steady states. In [4], a modification of the original hydrostatic reconstruction
is presented with the goal of canceling the numerical diffusion associated to the approximated Riemann
solver in that case, in order to ensure ∂th = 0 when the granular flow is at rest (u = 0). Here we use
similar ideas. We define the following reconstructed states: for every interface xi+1/2 we define

h−i+1/2 = max(0, hi − (∆Zi+1/2)+);

h+i+1/2 = max(0, hi+1 − (−∆Zi+1/2)+),
with (∆Zi+1/2)+ = max(0, zb,i+1 − zb,i). (23)

and

Ŵ
−
i+1/2 =

(
ĥ−i+1/2, ĥ

−
i+1/2ui

)
, Ŵ

+

i+1/2 =
(
ĥ+i+1/2, ĥ

+
i+1/2ui+1

)
, (24)

in (22), where ĥ±i+1/2 are defined as in (23), taking in this case

(∆Zi+1/2)+ = max(0, zb,i+1 − zb,i + ∆Ci+1/2), (25)

with ∆Ci+1/2 = −fi+1/2∆x/ (g cos θ) defined in terms of the Coulomb friction (see [4]). We set

fi+1/2 = − proj
g cos θµ(I|b )

(
−g cos θ(hi+1 + zb,i+1 − hi − zb,i)

∆x
+
ui+1/2

∆t

)
, (26)

where

proj
g cos θµ(I|b )

(X) =

 X if |X| ≤ g cos θµ(I|b);

g cos θµ(I|b)
X

|X|
if |X| > g cos θµ(I|b),

(27)

although other definitions of fi+1/2 can be used (see [4]).
Once the numerical flux for the two first components is computed, we define the third one by

(hw)n+1/3
i = (hw)ni +

∆t

∆x

(
Fhw,n
i−1/2 −Fhw,n

i+1/2

)
, (28)

where the flux for this component is

Fhw,n
i+1/2 =

[
Fn
i+1/2

]
h
wup,ni+1/2, with wupi+1/2 =

{
wi if

[
F i+1/2

]
h
> 0

wi+1 if
[
F i+1/2

]
h
< 0,

where
[
Fn
i+1/2

]
h
, that approximates (hu)i+1/2, denotes the first component of the numerical flux Fn

i+1/2.

Remark 3. It is a known fact, in the context of Shallow Water, that care has to be taken in the cases of
emerging bottom. For instance, in the lake at rest configuration with hi+1 = 0 and hi+bi < bi+1, the term
∆ηi+1/2 in (21) produces an artificial pressure term at the right cell, which makes well-balancing to fail.
A posibility to overcome this difficulty is to rewrite the bottom on the right cell to equilibrate pressure
terms (see [11]). In practice, we replace ∆ηni+1/2 in (21) by h+,ni+1/2 − h

−,n
i+1/2, where these reconstructed

states are defined by (23).
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Step 2: Coulomb friction term

In order to introduce the Coulomb friction term, we consider a semi-implicit scheme with an appropriate
stopping criteria. From the physical point of view, the friction is a force that opposes the movement of
the granular mass. When this friction is greater than the rest of the forces, then the flow must stop.
The numerical treatment is based on this idea, which will be summarized in what follows. We refer the
reader to [39, 20] for further details.

We set h
n+2/3
i = h

n+1/3
i , and define h̃ni =

(
hni−1/2 + hni+1/2

)
/2,

σnc,i = µ(In|b)
(
g cos θh̃ni + 2qni

)
, with qni =

(
qni−1/2 + qni+1/2

)
/2,

(hu)?,n+1/3
i = (hu)n+1/3

i − ∆t (hni (∂Xq
n)i + qni ∂X (2b+ hn)i)

with

(∂Xq)i =
qi+1 − qi

∆x
, (∂X (2b+ h))i =

(2b+ h)i+1 − (2b+ h)i−1
2∆x

.

Then, the new values at this second step for the horizontal and vertical discharges are
(hu)n+2/3

i = (hu)?,n+1/3
i −∆t σnc,i SGN

(
(hu)?,n+1/3

i

)
,

if ∆t σnc,i <
∣∣∣(hu)?,n+1/3

i

∣∣∣ ;
(hw)n+2/3

i = (hw)n+1/3
i + 2∆tqni ,

otherwise
(hu)n+2/3

i = 0, and (hw)n+2/3
i = 0,

where SGN is the sign function.

Step 3: Non-hydrostatic pressure correction

In the last step the non-hydrostatic effects are added using the momentum equations (16b),(16c) to-
gether with the incompressibility condition (16d).

Taking into account system (16), we set hn+1 = hn+2/3 = hn+1/3 and define

q̃ = qn+1 − qn.

Then we consider a projection method and we get

(hu)n+1 = (hu)n+2/3 −∆t
(
∂X
(
hn+1q̃

)
+ 2q̃∂Xb

)
, (29)

(hw)n+1 = (hw)n+2/3 + 2 ∆t q̃. (30)

and the depth-averaged incompressibility equation

(hw)n+1 = (hu)n+1 ∂Xb−
hn+1

2
∂X (hu)n+1 +

(hu)n+1

2
∂Xh

n+1. (31)

14



Now, putting equations (29),(30) into (31) and after some straightforward algebra, the following elliptic
equation is deduced for q̃,(

hn+1
)2
∂XX q̃ + hn+1∂Xh

n+1∂X q̃ +
(
hn+1∂XX

(
2b+ hn+1

)
−
(
∂X
(
2b+ hn+1

))2 − 4
)
q̃

=
1

∆t

(
2 (hw)n+2/3 − (hu)n+2/3 ∂X

(
2b+ hn+1

)
+ hn+1∂X (hu)n+2/3

)
. (32)

Finally, this equation is discretized in space at the interfaces xi+1/2. Let us recall that the variables (h),
(hu), and (hw) are computed as averages in the control volumes, while (q) is computed as point values
at the interfaces. Therefore, we set

hi+1/2 =
hi + hi+1

2
, (hu)i+1/2 =

(hu)i + (hu)i+1

2
, (hw)i+1/2 =

(hw)i + (hw)i+1

2
,

and we approximate of the derivative of the non-hydrostatic pressure deviation by

(∂XX q̃)i+1/2 =
q̃i+3/2 − 2q̃i+1/2 + q̃i−1/2

∆x2
(∂X q̃)i+1/2 =

q̃i+1/2 − q̃i−1/2
2∆x

.

Moreover, we set

(∂Xh)i+1/2 =
hi+1 − hi

∆x
, (∂Xb)i+1/2 =

bi+1 − bi
∆x

,

and
(∂XX (2b+ h))i+1/2 = minmod

(
∆+

2b+h,∆
c
2b+h,∆

−
2b+h

)
,

where

∆+
2b+h =

∂X (2b+ h)i+3/2 − ∂X (2b+ h)i+1/2

∆x
, ∆−2b+h =

∂X (2b+ h)i+1/2 − ∂X (2b+ h)i−1/2
∆x

,

and ∆c
2b+h =

(
∆+

2b+h + ∆−2b+h
)
/2.

Then, a tridiagonal linear system is obtained for the unknown values {q̃i+1/2}i. Once this linear system

is solved, the values of
{

( (hu)n+1
i , (hw)n+1

i , qn+1
i+1/2 )

}
i∈I

are updated using (29) and (30), leading to

(hu)n+1
i = (hu)n+2/3

i − ∆t
(
hn+1
i (∂X q̃)i + q̃i∂X

(
2b+ hn+1

)
i

)
,

(hw)n+1
i = (hw)n+2/3

i + 2 ∆tq̃i,

qn+1
i+1/2 = q̃i+1/2 + qni+1/2,

with

q̃i =
q̃i−1/2 + q̃i+1/2

2
, (∂X q̃)i =

q̃i+1 − q̃i
∆x

, (∂X (2b+ h))i =
(2b+ h)i+1 − (2b+ h)i−1

2∆x
.
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Theorem 1. The scheme defined by steps 1, 2 and 3 is exactly well-balanced for steady solutions given
by

u = w = q = 0,
∣∣∣∂X (b̃+ b+ h

)∣∣∣ = tan θ, with 0 ≤ θ ≤ arctanµs.

In particular, in the limit case
∣∣∣∂X (b̃+ b+ h

)∣∣∣ = µs.

Proof. Remark that it is sufficient to prove that the steps 1 and 2 do not modify the initial state, since
from (32) the non-hydrostatic pressure is zero when the discharges are zero.

Let us focus first on the first step. From the definition of (24) and taking into account that u = 0,

it follows that Ŵ
+

i+1/2 = Ŵ
−
i+1/2. Therefore, the numerical diffusion (22) vanishes. As a consequence,

h
n+1/3
i = hni from (20). Moreover, since steps 2 and 3 do not modify the first component, we get

hn+1
i = hni . Note also that (hw)

n+1/3
i = (hw)ni = 0 thanks to (28).

Let us focus now on the second component,

(hu)
n+1/3
i = (hu)ni −

1

2
g cos θ

∆t

∆x

((
hni + hni−1

)
∆ηni−1/2 +

(
hni+1 + hni

)
∆ηni+1/2

)
.

Noticing that the profile of the free surface is linear, i.e, ∆ηni+1/2/∆x = tan θ and (hu)ni = 0, this leads
to

(hu)
n+1/3
i = −g cos θ∆t

(
hni +

1

2

(
hni−1 + hni+1

))
tan θ = −g cos θ∆th̃ni tan θ.

In the second step, since the velocity and the non-hydrostatic pressure are both zero, we have that

σnc,i = g cos θµsh̃
n
i , and (hu)?,n+1/3

i = (hu)n+1/3
i .

Then, taking into account that tan θ ≤ µs, it yields∣∣∣(hu)n+1/3
i

∣∣∣ = g cos θ∆th̃ni tan θ ≤ g cos θ∆th̃ni µs = ∆tσnc,i, (33)

obtaining then (hu)n+2/3
i = (hw)n+2/3

i = 0, and therefore (h, hu, hw)n+1
i = (h, 0, 0)ni , which concludes

the proof.

�

Corollary 1. The scheme defined by steps 1, 2 and 3 preserves the discrete steady states at rest, i.e.,
those verifying

ui = wi = qi = 0,

∣∣∣∣∣∣∣
(
b̃+ b+ h

)
i+1
−
(
b̃+ b+ h

)
i

∆x

∣∣∣∣∣∣∣ ≤ µs for all i ∈ I.

Proof. It follows from the proof of Theorem 1. �

16



Table 1: Rheological parameters considered in all the numerical tests.

ds (mm) µs µ2 I0 ϕs

0.7 tan(25.5◦) ' 0.48 tan(36◦) ' 0.73 0.279 0.62

Remark 4. When considering the continuous steady states (17) in the general case, we have that(
b̃+ b+ h

)
i+1
−
(
b̃+ b+ h

)
i

∆x
=
[
∂X

(
b̃+ b+ h

)]
i+1/2

+O
(
∆x2

)
.

If
∣∣∣∂X (b̃+ b+ h

)∣∣∣ < µs, then the hypothesis of previous corollary is true for a sufficiently small ∆x.

Otherwise, when the equality holds, one should take care with the proof of Theorem 1. In particular,

Ŵ
+

i+1/2 = Ŵ
−
i+1/2 and inequality (33) are both true up to a second order term in ∆x.

4 Numerical tests

In this section, we present some numerical tests in order to validate the non-hydrostatic model and the
numerical approach introduced in this paper. Comparisons with a hydrostatic version of the proposed
model (see Remark 1) will be shown.

First, we study the influence of the choice of the coordinate system (local or Cartesian) when using
the hydrostatic and the non-hydrostatic model. In a second series of tests, we compare with experimental
data of granular collapse over inclined planes described in [37]. Comparisons are carried out using both
the hydrostatic and non-hydrostatic models in local coordinates.

Notice that, in this section, whenever we speak about hydrostatic/non-hydrostatic model in local or
Cartesian coordinates, we refer to the direction along which the shallowness approximation is applied
and the depth-average procedure is performed starting from the 2D Navier-Stokes system. This direction

is normal to the reference plane b̃ for local coordinates and in the vertical z-direction for the Cartesian
coordinates.

All the simulations are carried out with a constant mesh size, ∆x, and an adaptive time step, ∆t,
computed with

CFL = max
i∈I

(
|ui|+

√
g cos θhi

) ∆t

∆x
= 0.5.

Regarding boundary conditions, a ghost cell technique is used to impose wall boundary conditions
upstream for the hyperbolic problem, and homogeneous Neumann condition for the elliptic problem.
In all the tests shown here there is a vacuum zone downstream. In addition, thanks to the fact that the
incompressibility equation (15) is multiplied by h to obtain (16d), the solution of the elliptic problem
naturally degenerates to q̄ = 0 in vacuum zones. This is done for all the presented tests. The rheological
parameters of the granular material are given in Table 1.

4.1 Well-balanced test for arbitrary bottom

Let us start by checking that the proposed scheme is well-balanced for not flat solutions given by (17).
To this aim, we consider here a computational domain [−3, 1] with 300 points, where the bottom is
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given by b̃ = 0 and

b1(x) =
2

x+ 4
− 0.5 + 0.25 RAND(x), b2 = 0.6− 6.5(x− 1.5)2, b(x) =

{
b1 + b2 if b1 < b2,
b1 otherwise,

where RAND(x) ∈ [0, 1] is a random value generated at run time. The free surface is given by (see
Figure 2)

h(x) + b(x) = max (−0.45− (x− 2)µs, b(x)) ,

where in this case µs = tan(20◦), and the discharges hu, hw are set to zero.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

x (m)

z
(m

)

|∂x(b + b̃+ h)| = µs = tan(20◦)

Figure 2: Bottom and free surface for the well-balanced test.

In this case, the L1 and L2 errors between the initial and final heights are 6.4×10−15 and 7.5×10−16

respectively. For hu and hw the errors are zero thanks to the treatment described in step 2 of the
numerical approximation. Moreover, we have checked that the previous initial condition is not stationary
if the angle of repose is lower that 20◦. Therefore, we can conclude that the scheme is well-balanced for
steady states given by (17).

4.2 Convergence test

In this test we perform a convergence test showing that the proposed scheme is indeed first order
accurate for time dependent solutions.

It is well-known that non-hydrostatic simulation for shallow water equations produces an overshoot-
ing in the presence of shock when using very fine meshes. This non-physical effect makes it difficult to
study convergence of the scheme when this situation arises. In order to avoid this problem, we consider
here a smooth initial condition for the height with no wet-dry fronts, starting from the rest, over an
slope given by b(X) = 0,

b̃(x) = (2.7− x) tan 20◦, and h(X) = 0.02 + 0.4 e−5(X−0.25)
2

,

in the computational domain [−0.5, 2.7]. The material properties are in Table 1.
We compute the L1 errors and numerical orders for the conservative variables (h, hu, hw) in an

intermediate time, before overshooting occurs. To this aim, the reference solution is computed with
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Figure 3: Height profiles at initial time (dashed green lines) and at t = 0.4 s (solid blue lines) in (a)
local and (b) Cartesian coordinates.

N. cells Error h Order h Error hu Order hu Error hw Order hw

25 2.20×10−2 2.94×10−2 1.33×10−2

50 1.62×10−2 0.45 2.00×10−2 0.55 1.07×10−2 0.32
100 1.11×10−2 0.54 1.34×10−2 0.59 7.90×10−3 0.44
200 6.66×10−3 0.74 7.66×10−3 0.80 5.74×10−3 0.46
400 3.81×10−3 0.81 4.16×10−3 0.88 3.61×10−3 0.67
800 1.88×10−3 1.02 1.94×10−3 1.10 1.84×10−3 0.98

Table 2: L1 Errors and related orders for the height (h) and the discharges (hu, hw) for the solution at time t = 0.4 s.

3200 nodes. Figure 3 shows the initial condition and the height at time t = 0.4 s, where the errors are
measured. The results can be seen in table 2, where we obtain that the proposed scheme is first order
accurate for all the variables.

4.3 Influence of the coordinate system

In this test, we first propose to analyze how much the use of local coordinates is important. To do so,
let us compare the results obtained when one uses local or Cartesian coordinates. The simulations will
be performed using the non-hydrostatic model presented here as well as its hydrostatic counterpart.
For the sake of simplicity, we consider that the bottom is defined by the reference slope plane. In order

to compute the simulation corresponding to system (16) in local coordinates we must set b̃loc(x) =
− tan θ (x− xend) and bloc = 0. Conversely, in Cartesian coordinates we have to define bCart(x) =

− tan θ (x− xend), b̃Cart = 0, and write g instead of g cos θ everywhere in system (16).
Let us remark that in this case the term 2q∂Xb in the non-hydrostatic model (16b) vanishes when

the model is written in local coordinates, whereas it is equal to −2q tan θ in the Cartesian version of
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the model. This behavior is very different if we compare with the hydrostatic model, where this term
is always zero.

We shall analyze the influence of the choice of coordinates by considering a numerical test where the
initial condition is well defined in both coordinate systems. We consider a computational domain given
by the interval [X0, Xend]. The initial condition is shown in Figure 4. We shall denote by hloc(X) and
hCart(x) the initial height function in local and Cartesian coordinates respectively. The initial height
in Cartesian coordinates is given by

hCart(x) = max (ηref + tan θ (x− xend) , 0) , for x < xlim,

where ηref is a reference level, xend is the right boundary of the computational domain and xlim is the
initial front position.

In order to define the initial condition using local coordinates we use that x = X cos θ. Then,
Xlim = xlim/ cos θ is the initial position of the front position in local coordinates. We also use that the
distance from Yb(Xlim) to the reference level (vertically measured) is

H = ηref + sin θ (Xlim −Xend) ,

which is the maximum height of the flow when considering Cartesian coordinates. Then, the maximum

height of the initial condition defined in local coordinates is Ĥ = H cos θ, located in X̂ = Xlim−Ĥ tan θ
(see figure 4b). Using this notation we can define the initial condition in local coordinates as follows:

hloc(X) = max(h1(X), 0), with h1(X) =


y1(X) = max

(
Ĥ + tan θ

(
X − X̂

)
, 0
)
, if X ≤ X̂,

y2(X) = max

(
1

tan θ
(Xlim −X) , 0

)
, if X > X̂.

In practice, we set the slope θ = 22◦ and the computational domain (in local coordinates) X ∈
[−0.5, 2.7], with 600 nodes. At initial time, the considered granular mass is at rest, the position of the
front is assumed to be at X = 0, i.e. Xlim = 0, and the maximum (local) height is assumed to be

Ĥ = 0.14 m. This is equivalent to consider a reference level ηref = 0.14/ cos θ + xend tan θ m.

Figure 4: Sketch of the initial condition in Cartesian (blue) and local (red) coordinates.
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Figure 5 shows the time evolution of hydrostatic (H) and non-hydrostatic (NH) local models in a
local view, i.e. the flow thickness h is represented in the direction normal to the slope. The spreading of
the granular mass simulated with the non-hydrostatic model is slower than with the hydrostatic model.
As a result the front position is always located further downslope with the hydrostatic model, leading
to significantly longer runout distance. Concretely, it is 11.8% bigger using the hydrostatic model. The
maximum thickness of the flowing mass and of the deposit is also lower with the hydrostatic model,
except at the very beginning of the flow. In Figure 6 we show the evolution of the flowing mass obtained
with the hydrostatic and the non-hydrostatic models, in both coordinate systems. The simulations
obtained with the hydrostatic model, both in local and Cartesian coordinates, are faster during the first
instants than non-hydrostatic models. The non-hydrostatic model in Cartesian coordinates generate
faster flows than the hydrostatic model in local coordinates for t > 0.22 s, approximately, leading to
larger travelling distances of the granular front and consequently larger runout distance. From that
time, the two models in Cartesian coordinates go further than the models in local coordinates. One
of the outcome of this comparison is that the non-hydrostatic Cartesian model does not give the same
results as the local hydrostatic model, contrary to what was assumed in [16]. This is also shown in
Figure 7, where we see the time evolution of the granular front position. In the inset figure we see that
the front position simulated with the non-hydrostatic (NH) model in Cartesian coordinates is slightly
smaller than the one computed with the hydrostatic (H) model in local coordinates at short times while
it is higher later on, as commented before. The final runout distance using the NH Cartesian model and
the H local model are however similar as also assumed in [16]. Note also that the time change of the
front position simulated with the NH local model exhibit a curvature change during the first instants as
observed in laboratory experiments (Figure 9a of [37]) while is is not the case with hydrostatic models.

It is well-known that models in local coordinates are more appropriate than model in Cartesian
coordinates, since local models compute the velocity in the direction tangent to the topography, which
is the relevant direction for these dense granular flows. As a result, we will calculate the error made
when using Cartesian coordinates instead of local coordinates. In the same way, we will chose as a
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0.2
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h
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)

 

 

t = 0, 0.05, 0.25, 0.50, 3 s

Initial height hloc(X )
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Bottom topography

Figure 5: Deposits at different times of the hydrostatic (red lines) and the non-hydrostatic (blue lines)
models computed in local coordinates. Dashed green line corresponds to the initial height.
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Figure 6: Thickness profiles of the granular mass flowing on a plane of inclination θ = 22o at different
times. Blue lines correspond to local models with hydrostatic (dashed) and non-hydrostatic (solid)
pressure, while red lines are the solutions of Cartesian models with hydrostatic (dashed) and non-
hydrostatic (solid) pressures. Inset figures show zooms of the front position.

reference the NH local model for which the shallow approximation and depth-integration is performed
in the good direction and that includes some non-hydrostatic contribution.

In Figure 8 we show the relative error of the front position between the results obtained in Cartesian
coordinates compared to the local coordinates for both the hydrostatic and non-hydrostatic models. We
can observe that hydrostatic models are more dependent on the coordinate system. That is an expected
behavior as fully 3D non-hydrostatic results are independent of the choice of the coordinate system. In
Figure 9a and 9b we show relative errors on the front position and height along the domain computed
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Figure 7: Time evolution of the granular front position xf computed with the hydrostatic and the
non-hydrostatic models in local coordinates (dashed and solid blue line, respectively), and the hydro-
static and the non-hydrostatic models in Cartesian coordinates (dot-dashed brown and dotted red line,
respectively). Inset figure shows a zoom at short times.
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system. Dashed red line is the comparison for hydrostatic models, and solid blue line for non-hydrostatic
models.

with the different models compared to the reference solution obtained with the NH local model with a

finer mesh computed with 1200 nodes, i.e., ∆̃x = ∆x/2. As expected, the errors corresponding to the
solution of the Cartesian hydrostatic model are the biggest one, reaching 400% during the first instants
up to 28% on the runout distance. These errors are lower when looking at the height along the domain.
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Figure 9: Time evolution of the relative errors computed with the local non-hydrostatic (NH) and
the hydrostatic (H) models (solid and dashed blue lines respectively), the Cartesian NH and the H
models (dotted red line and dot-dashed brown line respectively), taking as reference the results of the
NH model in local coordinates with a finer mesh for (a) the front position xf and (b) the granular mass
thickness computed with L2 norm.

This error is greater also for the H Cartesian model, being approximately 23% at final time, whereas it
is 14% and 11%, approximately, for the NH Cartesian and H local models, respectively. This behavior
is also seen in Figure 7. Finally, these figures show also the errors between the NH model with the
coarse and finer meshes. We see a peak of this error at a very short time, but it is lower than 1%
for t > 0.22 s, being zero (approximately 10−6) for the runout distance. When looking at the height
along the domain, this error is always lower than 3.5%, being approximately 1.5% at final time. We can
conclude that hydrostatic models in Cartesian coordinates predict a much too long runout distance.
Nevertheless, and interestingly, the Cartesian non-hydrostatic model and the local hydrostatic model
give similar deposits even though the dynamics is different, as shown in figures 9 and 7. This partly
supports the assumption of [16] but only for the deposit. Indeed, these authors proposed a hydrostatic
model in Cartesian coordinates with a correction of the pressure accounting for an approximation of
the vertical acceleration. They showed that their model produces similar results to the ones obtained
with the hydrostatic local model for the analytical solution of a dam break problem (see their Figure
4b).

This last result motivates the next test, where these two models (H-local and NH-Cartesian) are
compared in a more general case, with a more complex topography.

4.4 Hydrostatic local model vs Non-hydrostatic Cartesian model

The goal of this test is to show a qualitative comparison of the hydrostatic local and the non-hydrostatic
Cartesian model for flows on a complex topography. We consider here a granular mass, with the same
rheological properties (see Table 1) as in previous test, in the computational domain [−3, 3]. In this
case we take 640 nodes for the horizontal discretization. The topography, in Cartesian coordinates, is
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given by b̃Cart = 0 and

bCart(x) = 1− tanh(x) + 0.3e−10(x−1)
2

+ 0.5e−10(x−3)
2

, (34)

and the initial height is

hCart(x) = max(η(x)− bCart(x), 0), with η(x) =

{
y0 − 1 + e−0.5(x−x0)

8
, if x ≤ 0,

0, otherwise,

with x0 = −1.53 m and y0 = 1.91 m.

Figure 10: Initial height (solid red line), bottom topography (solid black line) and reference plane with
the mean slope used for the local model (dashed gray line).

Defining this initial configuration in local coordinates is not a simple task. First, a reference plane

b̃loc(x), whose slope is the mean slope of the topography, is defined. In our case, b̃loc(x) = −0.7 −
tan(25◦)(x−3). Then, the topography bloc(X) is defined as the distance from b̃loc(x) to bloc(X), measured

in the normal direction to the reference plane b̃loc (see Figure 10). Analogously, the height hloc(X) is
the distance from bloc(X) to hloc(X). The granular mass is supposed to be initially at rest. After some
time the grains stop, leading to three separate regions of material at rest.

Figure 11 shows the height at times 0.5, 1.5, 2.5 s and the final deposit. We show the results of the
non-hydrostatic local, the hydrostatic local, the hydrostatic Cartesian and the non-hydrostatic Cartesian
models. We see that the hydrostatic Cartesian model is the fastest one, and the non-hydrostatic local
model is the slowest one as observed previously. We also see that the results of the hydrostatic local
model and the non-hydrostatic Cartesian models are close for t > 2.3 s. Actually, the final deposits
computed with both models are similar even though the dynamics differ. Moreover, the solution of the
hydrostatic Cartesian model widely differs from the other models.

These results confirm that the hydrostatic local model and the non-hydrostatic Cartesian model
produce similar deposits even though the dynamics is different, but not too different in this test. More-
over, in view of the results, the non-hydrostatic Cartesian model proposed here is an improvement of
the model introduced in [16], in the sense that our model computes the vertical acceleration while their
model uses an estimate of this acceleration by taking the average of the vertical velocity deduced from
the free surface and bottom boundary condition.

In the rest of the paper, we shall only use local models.
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Figure 11: Height of the flowing mass at different times. Blue lines correspond to local models with
non-hydrostatic (solid) and hydrostatic (dashed) pressure, while red lines are the solutions of Cartesian
models with hydrostatic (dashed) and non-hydrostatic (solid) pressures. Inset figures show zooms of
the front position.

4.5 Comparison with experimental granular collapses

In this section we compare the results of the hydrostatic and the non-hydrostatic models with exper-
imental data detailed in [37]. In these experiments, we have a granular column of height h0 = 14 cm
and length L = 20 cm, which is initially confined in a tank. The gate is opened so that the material
is released from rest and flows over an inclined plane with slope θ ≥ 0. We consider here five different
slopes, θ = 0◦, 9.78◦, 16◦, 19◦ and 22◦. The bed is made of the same particles glued on it.

The computational domain is [−0.2, 3] m with 640 points and the initial height is given by

h0(x) =

{
0.14 if x ≤ 0;
0 otherwise.
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Figure 12: Time evolution of the granular mass with slope θ = 0◦, for the laboratory experiments
(solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid
green line) and the non-hydrostatic model with gate effect (dashed black line).

Let us remark that the gate removal induces a vertical velocity to the material that is located near
the front, in contact with the gate. This cannot be reproduced by hydrostatic models, but using non-
hydrostatic models we can impose the initial vertical velocity induced by the gate removal. This is an
advantage of the non-hydrostatic model.

To do that, we consider an initial vertical velocity defined by

Wb(x) =

{
Vb if − 0.025 < x < 0;
0 otherwise,

(35)

where Vb, is the estimated velocity at which the gate is removed. In the experiment it is estimated
that Vb = 2.3 m/s (see [27]). Imposing this velocity to the grains is different to what was done in [27]
where they prescribed this velocity to a friction-free moving wall confining the domain and not directly
to the grains. What we do here lead to overestimate the grain velocity because their motion should be
slower than the uplifting velocity of the gate. This, together with the fact that they solved the full 2D
Navier-Stokes system, allows them to obtain better results. However, the computational effort is much
bigger. In order to show how the non-hydrostatic model could be used to study the effect of the gate,
we also have performed these numerical tests using this initial vertical velocity, which will be analyzed
later.

Figures 12, 13, 14, 15 and 16 show the thickness of the granular mass at different times, and the final
deposit obtained with the hydrostatic and the non-hydrostatic model for slopes θ = 0◦, 9.78◦, 16◦, 19◦

and 22◦. We shall in particular focus on the solutions at short times. The reason is that when the gate
is opened and the material starts to flow, the non-hydrostatic effects are strong because the mass is not
shallow, involving strong gradients of the free surface. The non-hydrostatic effects decrease as the mass
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Figure 13: Time evolution of the granular mass over a plane with slope θ = 9.78◦, for the laboratory
experiments (solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic
model (solid green line) and the non-hydrostatic model with gate effect (dashed black line).
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Figure 14: Time evolution of the granular mass over a plane with slope θ = 16◦, for the laboratory
experiments (solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic
model (solid green line) and the non-hydrostatic model with gate effect (dashed black line).
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Figure 15: Time evolution of the granular mass over a plane with slope θ = 19◦, for the laboratory
experiments (solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic
model (solid green line) and the non-hydrostatic model with gate effect (dashed black line).

spreads and gets closer to a shallow layer. One of the known consequences of these non-hydrostatic
effects is that the granular mass does not start moving as fast as when using models based on the
hydrostatic assumption (see e.g. [38], [22]).

We indeed observe that the solution of the non-hydrostatic model is slower and more accurate than
the solution obtained with the hydrostatic model in all the studied configurations, as detailed below.
The final deposits obtained with the non-hydrostatic model are in good agreement with the experiments,
in particular for θ = 9.78◦, 16◦ (see figures 13, 14).

We see this behavior even more clearly in Figure 17, where the position of the front at different
times is represented. It is observed that the front position computed with the non-hydrostatic model is
closer to the one obtained in the laboratory experiments up to a certain time, even though at the final
instants the front position simulated with the NH model may be less accurate than with the H model
as also observed on Figure 17a, showing the final runout rf as function of the slope. Indeed in figures
17a,17c,17e the experimental runouts for θ = 9.78◦ and θ = 19◦ are closer to the hydrostatic model than
to the non-hydrostatic one. Nevertheless, for θ = 9.78◦, looking at the final deposit in Figure 13, we see
that the experimental front has a very small thickness. If we do not consider these very small thicknesses,
the observed runout distance gets closer to the NH results than to the H simulations. For θ = 19◦,
even though the runout distance is underestimated with the NH model, the whole granular thickness
is better approximated with the NH model (see Figure 15), as explained below and as represented in
Figure 18.

In order to quantify how accurately the models reproduce laboratory experiments when including
non-hydrostatic terms, we represent in Figure 18 the relative error on the mass thickness between the
simulation and the experiments averaged over all the domain at a given time. This error is computed
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Figure 16: Time evolution of the granular mass over a plane with slope θ = 22◦, for the laboratory
experiments (solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic
model (solid green line) and the non-hydrostatic model with gate effect (dashed black line).

at a given short time tini (chosen as a time for which the flow is initialized and we have experimental
data) and at the final time tf . We see that the error obtained with the non-hydrostatic model is smaller
than the one obtained with the hydrostatic model for all slopes and for both the short and the final
times. In particular, for θ = 9.78◦ at final time, the error computed with the non-hydrostatic model
is 7% approximately, whereas this error is greater than 15% with the hydrostatic model. Figure 18
also shows that the error is smaller at the final time than at the short time. One of the source of the
error is related to the depth-averaged process as shown in [22, 23]. In particular the rounded shape
of the front obtained in the simulations disappears when multi-layer models are used, i. e. when no
depth-averaging is performed (compare e. g. Figure 16 of the present paper to Figure 14 of [22]). Note
that the error seems to increase with increasing slope. This may be due to wall effects that are more
and more important as the slope angle increases as shown in [40].

In the figures, we see a small peak in the experiments at very short times. This results from the
gate opening when releasing the granular material. Figures 12, 13, 14, 15, 16 and 17 also show the
results obtained when imposing an initial vertical velocity w0(x) at the front position where the gate
is located. We see that the results obtained with w0(x) 6= 0 are similar to the non-hydrostatic model
starting from rest (w0(x) = 0) at large times, whereas they differ for short times. We also see in Figure
17 that the evolution of the front position improves for short times when including the vertical velocity
mimicking the gate removal, while this has almost no effect at final times. Moreover, we see that the
influence of the gate is stronger for small slopes (θ = 0◦, 9.78◦) than for larger slopes (θ = 16◦, 19◦, 22◦).
The results obtained here differ from those of [27], which used the full 2D Navier-Stokes equations (i. e.
fully non-hydrostatic pressure) and described the gate as a moving boundary without friction. Indeed,
in their simulation, gate effects make the front propagate more slowly at the beginning as observed
here. However, their runout distance is independent of the gate, in contrary to what is obtained here
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Figure 17: (a) Normalized runout for all the slopes; (b)-(f) time evolution of the normalized position of
the front computed with the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid
green line), the non-hydrostatic model with the effect of the gate at initial times (dashed black line),

and experimental data (solid-circle blue lines). h0 = 0.14 m and τc =
√
h0/(g cos θ) s.

for θ = 0◦ and θ = 9.78◦ (see figures 12 and 13, respectively).
Figure 19 shows the velocity of the front for all the slopes. In the experiments we see that the

velocity grows up at the beginning, and it decreases after an intermediate time, describing thus a

31



0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

θ (◦)

||
h
−

h
e
x
p|
|/
||
h
e
x
p|
|

 

 tini - H model
tini - NH model
tf - H model

tf - NH model

Figure 18: Relative errors of the height along the domain computed with the hydrostatic (dot-dashed
lines) and non-hydrostatic (solid lines) models. Filled-symbols lines correspond to the errors at final
times tf = 1.06 (0◦), 1.32 (9.78◦), 1.62 (16◦), 1.5 (19◦), 2.3 (22◦) s, while empty-symbols lines are the
errors at time tini = 0.24 (0◦, 9.78◦), 0.36 (16◦), 0.32 (19◦, 22◦) s.

parabolic profile. This behavior is reproduced with the non-hydrostatic model. On the contrary, the
front velocity computed with the hydrostatic model starts from its maximum value and then decreases.
This is an important improvement of NH models. Indeed, despite of being a simple model which neglects
the first order contribution of the non-hydrostatic pressure (11), the shape of the front velocity is much
better reproduced than with hydrostatic models.

In Figure 19 we also see that the front velocity is smaller during the first instants for the model
including an initial vertical velocity w0 6= 0. Next, its growth is faster and the maximum velocity of the
front is larger than the one computed with w0 = 0. Interestingly, the maximum velocity is reached at
similar times for both models.

Figure 20 shows the time evolution of the maximum vertical velocity, which is reached close to
the front, for the smallest and biggest studied slopes θ = 0◦, 22◦. This velocity, when computed with
the hydrostatic model, is bigger than with the non-hydrostatic model. This figure also shows the
differences of estimated potential energy (gh) and kinetic energy (V 2) between the hydrostatic and the
non-hydrostatic model, for all the slopes. In order to approximate the kinetic energy (V 2) we use the
downslope velocity u or the velocity vector (u,w). For each case, we take the maximum on time, and
the maximum or the average on space of V 2. Next, we compute the (relative) difference between the
values computed with the hydrostatic and the non-hydrostatic model for a fixed slope. We see that,
for small slopes, the difference between the models is significantly greater for the kinetic energy than
for the potential one (which also represents the differences on the height), and these are of the same
order of magnitude for all the slopes. However, the difference of the kinetic energy are greater for small
values of the slope. We could conclude that the difference between the two models is bigger for small
slopes.
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Figure 19: Time evolution of the normalized velocity of the front computed with the hydrostatic model
(dot-dashed red line), the non-hydrostatic model (solid green line), the non-hydrostatic model with the
effect of the gate at initial times (dashed black line), and experimental data (solid-circle blue lines).

h0 = 0.14 m, v0 =
√
h0g cos θ m/s and τc =

√
h0/(g cos θ) s.

5 Conclusions

In this work a non-hydrostatic depth-averaged model for dry granular flows has been proposed. The
model considers a friction term based on the µ(I) rheology, where the friction coefficient depends on
both the pressure (hydrostatic and non-hydrostatic) and the velocity. For the sake of simplicity, we
assume that the non-hydrostatic pressure has a linear profile. For other profiles, the system would have
extra unknowns and equations resulting in more complexity from the computational point of view (see
e.g. [24]).

The proposed model notably improves the results of hydrostatic models, in particular when com-
paring our results with dam break laboratory experiments. The model can be seen as a correction of
classical Savage-Hutter type models with a µ(I) friction law. Its numerical discretization can also be
adapted for any existing hydrostatic code by adding two additional steps to the numerical scheme. In
addition, we have proven that the proposed scheme is well-balanced in the sense that it preserves discrete
steady states whose slope is lower than the angle of repose. In particular, it is exactly well-balanced for
solution with constant slope verifying that.

We performed numerical tests to study the order of convergence and the well-balanced properties
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Figure 20: (a) Time evolution of the maximum of the vertical velocity for θ = 0◦, 22◦ computed with
the hydrostatic (dot-dashed red lines) and the non-hydrostatic (solid green lines) model. h0 = 0.14 m,
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of the energy between hydrostatic and non-hydrostatic models for all the slopes. max(·) = maxt,x(·)
and (̂·) = maxt

(∑
1≤i≤N(·)/N

)
.

of the numerical scheme. We have also analyzed the influence of the coordinate system (Cartesian or
local) for the hydrostatic and non-hydrostatic model. The non-hydrostatic models (both Cartesian and
local) predict a slower motion of the granular front at the beginning. However, the front positions
computed with both Cartesian models are longer after some time, as expected. It is due to the fact
that Cartesian model use the horizontal velocity instead of the velocity tangent to the topography. The
biggest differences between the NH local model with a finer mesh and the H local, NH Cartesian, and
H Cartesian models are found for short times (see Figure 9a). Namely, the maximum of this difference
is around 400% for the H Cartesian and 170% for the NH Cartesian models at time t = 0.03 s, whereas
it is 72% for the H local model at t = 0.04 s.

In addition, the deposits obtained with the local hydrostatic model and the Cartesian non-hydrostatic
models are similar even though the dynamics differs. These results partly support the assumption made
by [16] where a hydrostatic Cartesian model with a correction of the pressure based on an approximation
of the vertical acceleration is proposed with the aim to avoid working in local curvilinear coordinates.
In that sense, our non-hydrostatic Cartesian model is an improvement of the one proposed in [16],
since the vertical acceleration is computed and not estimated. This has been studied in test 4.4, where
a complex topography has been used, obtaining similar conclusions. We have also observed that the
non-hydrostatic models are less dependent on the coordinate system than the hydrostatic models, which
is also an expected result.

Comparisons have been made with laboratory experiments, and also with a hydrostatic model
(Savage-Hutter model with a µ(I) friction coefficient). The non-hydrostatic model improves the results
of the hydrostatic one, in particular at short times, which is clear by looking at the time evolution
of the position of the front. The shape of the flowing mass and of the deposit is also always closer
to the experiments when using non-hydrostatic models. The importance of non-hydrostatic terms is
higher for smaller slopes, as expected. The approximation of the front position is also improved when
using the non-hydrostatic model, making it possible to slow down the too fast propagation of the front
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observed in hydrostatic models ([38], and figure 9 of [37]. Moreover, we have shown that the thickness
distribution is always better reproduced by the NH model compared to the H model, both at short
and final times. For example, as shown in Figure 18, for θ ≤ 16◦ (θ = 22◦, respectively) the relative
error between simulated and observed thickness distribution is around 15% for the H model while it is
approximately 7% for the NH model (27% and 17%, respectively).

By using this non-hydrostatic model we may impose a vertical velocity at initial time, which mimics
the effect of the gate opening. The gate opening has a strong influence on the dynamics at short times.
However, this has almost no effect on the final deposit as shown by [27], where they use the full Navier-
Stokes equations and impose the movement of the gate as a moving wall boundary condition. With
the model proposed here, we also obtain this gate effect at initial time for small slopes (θ = 0◦, 9.78◦),
whereas the results are almost identical for large slopes (θ = 16◦, 19◦, 22◦).

An important result is the fact that our non-hydrostatic model predicts the parabolic shape of the
velocity of the front as a function of time, as observed in the experiments. This is not reproduced at all
by hydrostatic models where the velocity of the front starts from its maximum. Such improvement is
obtained even though our model is only weakly non-hydrostatic, in the sense that we do not take into
account the contribution of the stress tensor in the non-hydrostatic pressure. In the future it would be
interesting to include viscous terms, as well as the extension of the presented model using a vertical
discretization such as the multilayer approach, which gave promising results for hydrostatic granular
flows (see [22, 23]) and also for non-hydrostatic inviscid fluids [24]. A further study on how to implement
a breaking mechanism for the model studied here will be interesting as well.
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