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Abstract In this paper we propose a new bottom-up

approach to cellular computing, in which computational

chemical processes are encapsulated within liposomes.

This ‘‘liposome logic’’ approach (also called vesicle com-

puting) makes use of supra-molecular chemistry constructs,

e.g. protocells, chells, etc. as minimal cellular platforms to

which logical functionality can be added. Modeling and

simulations feature prominently in ‘‘top-down’’ synthetic

biology, particularly in the specification, design and

implementation of logic circuits through bacterial genome

reengineering. The second contribution in this paper is the

demonstration of a novel set of tools for the specification,

modelling and analysis of ‘‘bottom-up’’ liposome logic. In

particular, simulation and modelling techniques are used to

analyse some example liposome logic designs, ranging

from relatively simple NOT gates and NAND gates to

SR-Latches, D Flip-Flops all the way to 3 bit ripple

counters. The approach we propose consists of specifying,

by means of P systems, gene regulatory network-like

systems operating inside proto-membranes. This P systems

specification can be automatically translated and executed

through a multiscaled pipeline composed of dissipative

particle dynamics (DPD) simulator and Gillespie’s sto-

chastic simulation algorithm (SSA). Finally, model selec-

tion and analysis can be performed through a model

checking phase. This is the first paper we are aware of that

brings to bear formal specifications, DPD, SSA and model

checking to the problem of modeling target computational

functionality in protocells. Potential chemical routes for the

laboratory implementation of these simulations are also

discussed thus for the first time suggesting a potentially

realistic physiochemical implementation for membrane

computing from the bottom-up.
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Dissipative particle dynamics � Stochastic simulation �
Model checking � Logic gates � Chells � Protocells

Introduction

Just as an electrical engineer can construct circuits from

modules with common inputs and outputs without con-

sideration of internal module construction, the standardi-

sation of biological components proposed by T.F. Knight,

D. Endy, R. Weiss and others (Endy 2005; Knight 2003;

Heinemann and Panke 2006; Serrano 2007), and exempli-

fied in the MIT biobricks project (Shetty et al. 2008), may

allow a bioarchitect to construct biological systems with

prespecified phenotypes in a more scalable way. One

important application within the field of Synthetic Biology

is Cellular Computing. Cellular Computing (Amos 2004)

seeks the construction of genes, signals and metabolic
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regulation networks within organisms1 which, by imple-

menting boolean logic gate circuits, can accomplish spe-

cific computational tasks (Tan et al. 2007).

In this computing paradigm, individual cells perform a

small part of a computation in a highly asynchronous

fashion with communication taking place only between

cells which are within a short distance from one another [so

called amorphous computation (Abelson et al. 2000)]. In

particular, cellular logic NOT and AND gates were first

characterised in detail by Ron Weiss et al. (Weiss and Basu

2002) in vitro and with ‘‘bioSPICE’’, an ODE based

modelling technique. Since then, several small scale

systems have been constructed, either in the lab or in

simulation (Amos 2004). Other examples of in vitro

implementations of cellular computing systems include

band detectors, coupled oscillations (Basu et al. 2004,

2005) and, more recently, a solution to the three vertices

Hamiltonian path problem (Baumgardner et al. 2009).

By creating modular logic gates that behave in well

characterised ways, it might be possible to abstract away

some of the biological detail when designing more com-

plex synthetic biology systems (Andrianantoandro et al.

2006). In doing so, the behaviour of a composite system

becomes more predictable and designs can be constructed

and prototyped in silico before attempting to implement

them in the lab.

Thus far cellular computing has only been investigated

from the ‘‘top down’’ perspective, that is, by modifying

existing organisms through the incorporation of synthetic

biological regulatory netoworks (BRNs). Little, if any,

attention has been paid to how such distributed computa-

tion might be implemented from the ‘‘bottom up’’ per-

spective, that is, by using protocells (Rasmussen et al.

2008) or ‘‘chells’’ [artificial chemical cells (Cronin et al.

2006)] rather than fully fledged biological cells. Although

highly innovative, trying to use bacteria to perform amor-

phous computation is like trying to build a glider by

knocking out parts out of a jumbo jet. The problem is, both

technically and philosophically, one of managing com-

plexity: bacterial cells have evolved for millions of years

and they carry too much evolutionary ‘‘baggage’’. Before

any useful and general computation, rather than specific as

exemplified by the above mentioned references, can be

achieved, this unwanted complexity must be tamed.

In contrast, the approach we suggest in this paper retains

all the advantages of amorphous computing at the nano-

scale (e.g., redundancy, massive parallelism, asynchronous

local processes, self-organisation, etc.) but by starting from

the bottom up with engineered components of prespecified

and limited complexity, one avoids unnecessary biological

nuisances from the start. Moreover, by turning to chemical

cellular-like constructs, compartmentalisation and orthog-

onality are maximised while crosstalk minimised, thus the

approach we propose might provide a route to, e.g., more

reliable programmable chemical comminication and drug

delivery systems (Pasparakis and Alexander 2008; Gardner

et al. 2009).

In this paper we present a bottom-up approach to cel-

lular computing, liposome logic (or vesicle computing),

which involves the encapsulation of logical functionalities

within vesicles. Liposome logic makes use of supramo-

lecular chemistry constructs, e.g. protocells, chells, etc., to

encapsulate logical functionality. The vesicle computing

approach proposed is related to the effort to build a semi-

synthetic protocell (Luisi et al. 2006), however, the goal in

this case is to create a chemical automaton that is a useful

platform for design and implementation of cellular com-

puting circuits, rather than attempting to reproduce exactly

the properties of living systems (Although there will, of

course, be some synergy between the two). Liposome logic

could then be used for designing the next generation of

medical devices going beyond of the current state of the art

(MacDiarmid et al. 2009). Constructing a cellular com-

puting device from the bottom-up, enables the designer of a

vesicle computing system to benefit from design abstrac-

tions not available in existing microbiological organims.

For example, vesicles could be used for encapsulation and

implementation hiding, as hierarchical (i.e. nested) struc-

tures of membranes could be created with clearly defined

inputs and outputs, that create boundaries around func-

tionality just as organelles contain specific functions in

eukaryotic cells. This kind of compartmentalisation will

enable interference between BRNs to be minimized, and

the need for multiple promoter sequences/transcription

factors to be reduced, which may help to overcome one of

the key problems in cellular computing and top-down

synthetic biology, that of unexpected interactions between

synthetic regulatory networks and the underlying cell

processes.

As a first step towards the realisation of vesicle com-

puters in vitro, a new simulation and modelling framework,

enabling the formal specification, multi-scale simulation

and model checking of liposome logic designs is employed

to investigate the behaviour and dynamics of systems of

example BRN-like logic gates encapsulated within lipo-

somes. The modelling approach we propose consists of

specifying by means of P systems, BRN-like systems

operating inside proto-membranes. This P system specifi-

cation can be automatically translated and executed

through a multiscaled pipeline composed of a dissipative

particle dynamics (DPD) simulator and Gillespie’s sto-

chastic simulation algorithm (SSA). Finally, model selec-

tion and analysis can be performed through a model

1 In what follows we will call these networks biological regulatory

networks (BRN).



checking phase. We analyse the behaviour of liposome

logic systems increasing in complexity from relatively

simple NOT and NAND gates to SR-Latches, D Flip-Flops

all the way to 3 bit ripple counters. This is the first paper

we are aware of that brings to bear formal specifications,

DPD, SSA and model checking into the problem of mod-

eling target functionality in chells. Potential chemical

routes for the laboratory implementation of these Liposome

logic simulations are also discussed.

Methods

In this section we describe the proposed modeling pipeline

as depicted in Fig. 1. Liposome logic modeling starts with

the specification of the logic circuitry using P systems. The

P system specification is then executed through DPD or an

advanced Gillespie’s stochastic algorithm implementation.

The decision of whether to execute the model in DPD or

directly through SSA depends on the time and lengths

scales of interest and also on whether physical volumes

should be modelled explicitly, i.e. geometrically, or

implicitly, i.e. topologically. If the length/time scales are

large and the volume is only topologically represented then

SSA is used. A further analytical level is afforded by the

use of model checking techniques. In what follows we

describe the P system specification formalism, DPD, SSA

and model checking.

P systems as a specification framework

P systems (Pǎun 2002) constitute a recently developed

specification framework bringing into systems and syn-

thetic biology methodologies from formal rewriting sys-

tems distributed over multicompartmentalised regions. Our

P systems based approach to modelling falls within the

classification of computational, rule-based, modular and

discrete stochastic modelling frameworks. In this work, we

use a variant called stochastic P systems specially suitable

for the scalable and parsimonious specification of cellular

systems exhibiting evident levels of stochasticity (Pérez-

Jiménez and Romero-Campero 2006).

The main components of a stochastic P systems are

objects, representing molecular species; compartments

defined by membranes containing multisets of objects and

rewriting rules specifically associated with each compart-

ment describing the molecular interactions taking place in

and between different compartments. The simulation

component of our framework does not currently support the

fission or fusion of the vesicle membranes, but the provi-

sion of such functionality is already included through the

formal language we used to describe liposome based log-

ical systems, namely, P systems. Indeed, the controlled

fusing and splitting of vesicles may be used for computa-

tions, and so the addition of this functionality will be added

to the simulation algorithms in the near future.

Formally, a stochastic P system is a construct

P ¼ ðO; L; l;Ml1 ;Ml2 ; . . .;Mln ;Rl1 ; . . .;RlnÞ

where

– O is a finite alphabet of objects specifying the

molecular species in the system.

– L = { l1, ..., ln } is a finite set of labels identifying

compartment types.

– l is a membrane structure containing n C 1 membranes

defining compartments arranged in a hierarchical

manner. Each membrane is identified in a one to one

manner with a label in L which determines its type.

– Ml_i for each 1 B i B n, is the initial multiset of objects

over O placed inside the compartment defined by the

membrane with label li in the initial state of the system.

– Rli ¼ frli
1 ; . . .; rli

kli
g, for each 1 B i B n, is a finite set of

rewriting rules associated with the compartment with

label li [ L and of the following general form:

o1½o2�li �!
c

o01½o02�li ð1Þ

with o1, o2, o1
0, o2

0 multisets (potentially empty) of objects

over O representing the molecular species and the stochi-

ometries involved in the molecular interaction represented

in the rule. The label li [ L identifies the compartment

where the interaction takes place. These multiset rewriting

rules can potentially change both the inside and outside of

(proto)membranes. An application of a rule of this form

replaces simultaneously the multisets o1 outside membrane

li and o2 inside membrane li by the multisets o1
0 and o2

0,
respectively. A stochastic constant c is associated specifi-

cally with each rule in order to compute how often the rules

are applied and the time elapsed between rule applications

according to Gillespie’s theory of stochastic kinetics

(Gillespie 2007). Specifically, rewriting rules are selected

Fig. 1 Computational pipeline for liposome logic. Computing cir-

cuitry is specified through P systems that could then be interpreted

and simulated either through a DPD simulator or, if the time and

length scales are larger, through a stochastic simulation algorithm

(e.g. Gillespie’s SSA). A further analysis can be performed using

model checking



that are then further instantiated with specific values

obtained experimentally. Formally, a P system module M is

represented as M(V, C, L) where V specifies object vari-

ables, which can be instantiated using specific names of

molecular species like genes and proteins, C are variables

for the stochastic constants associated to the rewriting

rules, which can be instantiated using specific affinities

between genes and proteins, half lifes for degradation

processes, etc. and finally L are variables for the labels of

the compartments involved in the rules that might repre-

sent different cell compartments, e.g., cytoplasm, lyso-

some, cellular membrane, etc., or different (proto-)cells

altogether.

In the next section the DPD and SSA simulation tech-

niques are described in detail.

Dissipative particle dynamics

Simulations at small length and timescales were performed

using a self-developed mesoscopic modelling framework

based on the dissipative particle dynamics (DPD) tech-

nique. Our framework enables easy specification of large

scale models in DPD, and vesicles and other structures that

form over the course of the simulation can be extracted and

stored for later recombination into new initial states for

further simulations. This feature allows for the combina-

torial bootstrap of computationally expensive simulations.

For example, it is possible to (1) simulate the formation of

vesicles and (2) save these emergent structures as to then

(3) create a new initial state for a simulation containing

those vesicles with the internal volume, perhaps modified

to contain particles representing genes, proteins etc.

Dissipative Particle Dynamics is a coarse grained par-

ticle simulation technique, in which each particle repre-

sents several molecules of a given molecular species, rather

than a single atom. By dispensing with the details of

individual atoms, the short length and timescale processes

can be averaged out, allowing simulation for much larger

length and time-scales than is possible with other particle

dynamics methods2. Simulations are formed by filling a

volume with particles and integrating the equations of

motion to calculate the particle positions and velocities at

each time step. Three forces act between particles in a

symmetric pairwise fashion, the dissipative and random

forces act as the thermostat in DPD, with the dissipative

force removing energy from the system (whilst conserving

2 Note that the term ‘‘dissipative’’ refers to the fact that energy is not

conserved in a DPD simulation, and does not relate to the ‘‘dissipative

structures’’ proposed by Ilya Prigogine and others. We also note in

passing, that the name ‘‘dissipative particle dynamics’’ is the way in

which this family of algorithms is referred to in the literature, and this

predates this paper.

according to an extension of Gillespie’s well known 
stochastic simulation algorithm (SSA) (Gillespie 2007) to  
the multicompartmental structure of P system models 
(Romero-Campero et al. 2009).

The P systems are intended to describe a functional 
specification of the behaviour of computational liposomes, 
where logic gate based computation arises as a result of 
interactions between these elements. The specification 
language is deliberately general and does not reference any 
particular chemical or biological system. It is, however, 
possible to speculate on the physical interpretation of the 
processes described by rules specified as in definition 1. 
For example, a rule in which a multiset of objects (labeled 
o2 in 1) inside a compartment are replaced with the multiset 
specified by o2

0 could be interpreted as a simple chemical 
interaction, such as reaction, the binding of two transcrip-

tion factors, or the binding of a ribosome to a DNA 
sequence. Rules which specify multisets of objects external 
to the compartment (multiset o1 in Definition 1) altering the 
multiset of objects inside the compartment might be used to 
represent the diffusion of small molecules into or out of the 
vesicle accross the membrane or the action of signal 
transduction mechanisms via the expression of receptors on 
the membrane surface of the vesicle. Currently the imple-

mentations of the DPD and SSA simulation techniques 
used in this paper support simple chemical interactions 
within or outside of the membrane and the diffusion of 
objects accross the membrane.

Cellular phenotypes arise from the orchestration of the 
interactions between different molecular modules acting as 
discrete entities whose functionalities are up to certain 
point separable from one another (Hartwell et al. 1999). 
The interaction modality in cellular systems is an intense 
research field in systems and synthetic biology which is 
unraveling specific modular patterns in BRNs (Alon 2007). 
Biological modularity is thus one of the cornerstones of 
synthetic biology (Andrianantoandro et al. 2006) and its 
relevance for systems and synthetic biology has been 
recently emphasized by Mallavarapu et al. (2009). In this 
work we follow a modular modelling approach whereby 
models are incrementally, parsimoniously and hierarchi-

cally built by combining virtual parts that are available 
from a library. This library comprises a set of elementary 
modules that specify biological regulatory-like networks as 
well as modules describing the regulation of specific gene 
promoters widely used in synthetic biology.

A P system module is defined as a set of rewriting rules, 
each of the form in Eq. 1, for which some of the objects, 
stochastic constants or the labels of the compartments 
involved might be variables. This facilitates reusability and 
parsimony in the development of models. Large models 
can be specified by integrating commonly found modules



momentum) and the random force introducing energy in

the system by producing a brownian style motion between

particles, Eq. 2 shows the forces acting between two par-

ticles i and j. The conservation of momentum in the system

means that the hydrodynamics are represented correctly.

Fij ¼ FC
ij þ FD

ij þ FR
ij ð2Þ

The conservative force FC
ij simply introduces a parame-

terisable repulsion between particles types which decreases

linearly with distance and is zero at the cut-off distance

rc.

FC
ij ¼ að1� jrijj

rc
Þ ð3Þ

The a parameter sets the maximum repulsion for a given

pair of types so for example the a parameter will be set to a

high value for the interaction between an oil and water

particle, as these would be immiscible, but to a smaller

value for two water particles.

The dissipative force acts as a drag force, slowing down

particles that are approaching one another:

FD
ij ¼ �cwDðrijÞðr̂ij � vijÞr̂ij ð4Þ

where c is the dissipative force parameter which controls

the magnitude of the force, rij is the distance between

particle i and particle j, r̂ij is the unit vector point from

particle j to particle i and vij is the relative velocity between

particle i and j and wD is a weighting function described

below.

The random force introduces a random force between

each particle pair

FR
ij ¼

rwRðrijÞhij

ffiffiffi

3
p

r̂ij
ffiffiffiffi

dt
p ð5Þ

where r is the random force parameter controlling the

magnitude of the force, hij is a uniformly distributed

random number with unit variance and wR is the random

weighting function described below. Polymers can also be

represented in DPD with harmonic bonding and angle

potentials.

FS
ij ¼ kðrij � r0Þ ð6Þ

where k is the bond strength parameter, and r0 is the

preferred bond length. preferred angles between two bonds

can be included with a harmonic 3-body potential

Uh ¼
1

2
khðh� h0Þ2 ð7Þ

where kh is the angle force strength parameter, h is the

angle between the two bonds and h0 is the preferred angle.

In Español and Warren (1995) the authors investigated

the statistical mechanics of DPD and found that in order to

maintain a correct and stable temperature, the r and c force

parameters should be set according to the following

relation:

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2cKbT
p

ð8Þ

where kBT is the required particle kinetic energy.

The dissipative and random forces are coupled with

weighting functions wD(rij) and wR(rij). One of these

functions may be chosen arbitrarily, and we use the

weighting proposed by Groot and Warren (1997) for the

random force:

WRðrÞ ¼ ð1� rÞ whenðr\1Þ
0 otherwise

�

ð9Þ

The dissipative weight function is then derived from the

following relation:

WDðrÞ ¼ ½WRðrÞ�2 ð10Þ

Our implementation of DPD contains a collision based

artificial chemistry supporting first and second order

reactions. A collision is considered to have occurred if

two particles come within a parameterisable collision

radius of one another. In the simulations presented here the

collision radius is set to the force interaction radius rc. Each

reaction is assigned a rate cdpd, which is the rate at which

colliding particles will react as a result of that collision per

DPD time unit (the per collision rate is therefore cdpd * dt.

If the types of the colliding particles match the reactant

types for a reaction, then a pseudo random number is

generated, and if this number is less than the rate then the

reaction occurs and the types of the particles are changed to

represent the products of the reaction. In the case of first

order reactions, for each particle the reaction is attempted

once per timestep, with a rate cdpd*dt.

Groot and Warren gave a thorough explanation of the

correct setting of the DPD parameters (Groot and Warren

1997) and described a method for parameterising the

conservative force based on the immiscibility of fluids, as

well as a new integration method more suitable to the

larger timesteps taken in DPD. The work by Groot and

Rabone (2001) showed simulations of poration in a

phospholipid membrane and described the coarse graining

procedure. These papers define the de facto standard

implementation of DPD, and our implementation of the

algorithm is based on these works.

Despite the increased simulated length and time scales

that DPD method permits, calculation of explicit particle

forces and velocities is computationally very expensive,

and so simulations are typically limited to milliseconds of

simulated time and volumes in the order of 0.1 cubic

micrometres. In order to simulate the formation of DMPC

vesicles, an implementation of DPD was created using the

general purpose GPU CUDA programming environment

from Nvidia, producing a 50x speedup over the single



are as follows: the amphiphiles initially aggregate into

small micelles, which then aggregate into larger micelles.

Once the micelles reach a critical size, they become oblate

(flattened) patches of bilayer membrane. If the bilayer

membrane is large enough, then the membrane will begin

to fold inwards into a bowl shape, which continues to curve

until fusing at the top to form the spherical vesicle.

Stochastic simulation algorithm

Simulations of cellular logic systems for longer time scales

were performed with the multicompartment stochastic

simulator (MCSS) toolkit (Romero-Campero et al. 2008,

2009). This toolkit has at its core an optimised imple-

mentation of the Gillespie SSA, and supports simulation of

stochastic P system models specified in an XML format.

Stochastic discrete simulation techniques for biological

systems have a number of advantages over ODEs at the

cellular scale. Firstly, as ODEs are continuous and the

concentrations of chemical species within cell volumes can

be very small, integration of the ODEs could result in

concentrations which represent fractions of a molecule.

Secondly, as ODEs represent the dynamics of concentra-

tions of molecules rather than individual molecules them-

selves, they do not capture the stochastic nature of the

cellular volume and thirdly ODE models are typically more

Fig. 2 The figure shows the process of vesicle formation from the

initial state of the system were amphiphiles are distributed randomly

in solvent (top left, solvent not shown). The amphiphiles are pushed

together into micelles (top right) which in turn join together to form

large planar bilayers (bottom left), these bilayers then begin to curl at

the edges and fold over into a spherical vesicle (bottom right)

processor implementation using an Nvidia Tesla C1060 
card.

Vesicles can be formed via a variety of different 
methods, including microfluidics (Tan et al. 2006), cen-

trifugation (Noireaux and Libchaber 2004), sonication and 
spontaneous formation. Regardless of the route to forma-

tion, all vesicles are composed of amphiphiles which have 
a hydrophobic section which does not dissolve in water and 
a hydrophilic section which is polar. In the presence of a 
polar solvent such as water, the hydrophobic sections of the 
molecules move together such that the disruption to the 
structure of the solvent is minimized. This hydrophobic 
effect is the cause of spontaneous formation of micelles, 
vesicles and bilayers.

Clearly there is a large difference in the time and length 
scales in which the BRN are normally simulated and the 
timescales which can be captured using the DPD method. 
However, the use of the DPD method has some clear 
advantages over other less detailed techniques. Firstly, the 
vesicle container and the emergent dynamics of the system 
are a result of the application of simple rules, e.g. the 
vesicle does not form due to any prespecified design, but as 
a result of minimization of configurational energy of the 
lipids, just as real vesicles do. If the reaction rates of BRN 
models can be scaled so that the processes occur within 
timescales that can be simulated in DPD, then this allows 
an exploration, at least in a qualitative sense, of systems 
where the BRN may produce proteins which affect the 
membrane, either by production of proteins that have 
hydrophobic moeties that could embed within the mem-

brane (such as a-hemolysin) or by producing enzymes that 
catalyse the formation of other lipids (which may form 
domains in the vesicle membrane, eventually leading to 
fission). Also, as every particle in the system has an explicit 
position, and the system is not assumed to be mixing, 
unlike what occurs with the stochastic simulation algorithm 
(see next subsection), concentration gradients can arise and 
are captured within the model.

Moreover, as suggested in Cronin et al. (2006), both the 
P systems specification of a model and its execution 
through DPD adhere to the abstraction that programmable 
living matter can be engineered through clearly identifying 
the compartment (C) that delimits the self from non-self, 
information (I) storage and processing that helps guide the 
manufacturing of the compartment’s building blocks and 
the orchestration of metabolism (M) processes as the 
arbiters of energy and waste management. That is, neither 
the P system nor the DPD simulations require that 
C, I, M be implemented in the way biology does but can 
indeed, follow a more chemical (rather than biological) 
route for liposome logic (Pasparakis et al. 2009a).

Figure 2 shows the formation of a vesicle from model 
DMPC amphiphiles in DPD. The dynamics of formation



difficult to create and understand in comparison with exe-

cutable (Fisher and Henzinger 2007) or algorithmic (Priami

2009) systems biology methodologies. Moreover, sto-

chastic models specified in, e.g., P systems are more

amenable to formal computational analysis such as model

checking.

Model checking

Model checking is a well established formal method for

analysing the behaviour of various systems. It normally

requires a computational model of the system, provided as

a high-level formalism (such as a Petri net, process algebra

or P system), and a set of properties of the same system,

expressed usually in temporal logic (LTL or CTL)

(Kwiatkowska et al. 2009). A computational model asso-

ciated to a system may consist of distinct parts, modules in

the case of the P system formalism (see section ‘‘P system

specification of liposomelogic models’’), each one with a

complex behaviour and generating many states. The model

allows to test and verify certain hypotheses by executing

the model and comparing the outcome with experimental

data (Fisher and Henzinger 2007). Knowing that some

systems are non-deterministic or probabilistic, the conclu-

sions obtained are just limited to the number of executions

performed. In order to ascertain more general properties,

model checking techniques are employed. These properties

can be validated for the entire system or for some com-

ponents of it.

In probabilistic model checking, which will be used in

this paper, the models are extended with quantitative

information regarding the likelihood that some events will

occur and the time they do so (Kwiatkowska et al. 2009).

The models referred to in this paper are continuous-time

Markov chains (CTMCs), where rates of negative expo-

nential distributions are assigned. The properties are still

expressed in temporal logic, but they show now some

quantitative aspects. So, rather than verifying that for the

NOT gate (see section ‘‘Liposome logic in DPD’’) ‘‘the

protein output always eventually reaches a certain level’’

we may check ‘‘what is the probability that the protein

output eventually reaches a certain level’’. More than this,

using rewards we can ask questions like ‘‘what is the

maximum protein output of the NOT gate’’. Such questions

will be formulated in a specific temporal logic called

continuous stochastic logic (CSL) (Kwiatkowska et al.

2009).

Model checking is very effective in verifying certain

hypotheses regarding the system when more than one

execution is possible or incomplete data is available. In this

case through the new characteristics revealed, the model

checking approach may suggest new experiment to confirm

or reject hypotheses (Fisher and Henzinger 2007).

P system specification of liposome logic models

In this section we describe the P sytems specifications for

liposome logic circuits. These specifications are the

first step in the proposed methodological pipeline shown in

Fig. 1.

A P system specification for the repressilator

Logic gates in cellular computing are constructed from

networks of gene regulation in prokaryotic genomes. In

prokaryotes, genes are arranged into operons, sequences of

DNA containing a promoter region which is recognised by

RNA polymerase enzymes, an operator region which is

recognised by gene transcription factors, and one or more

gene sequences (see Fig. 3).

The liposome logic simulations in this paper are based

on the repressilator reported by Elowitz and Leibler (2000).

The repressilator is a ring oscillator built from three genes.

Figure 4 shows a schematic diagram of the repressilator

network. The system includes three different genes, LacI,

kcI and TetR, with the protein expressed from each gene

acting as a repressor which binds to the promoter of the

next gene, and reduces the rate of transcription.

The authors present a stochastic model of the repressi-

lator, in which all three genes and promoters have identical

properties in terms of the rates of binding etc. The

repression of the gene is represented by a cooperative

binding of the repressor protein to the gene promoter,

(reactions 11, 12):

Gþ R
�����!1 nm�1 s�1

GR ð11Þ

GRþ R
�����!1 nm�1 s�1

GRR ð12Þ

where G is the NOT gate promoter and gene, R is the

repressor protein which binds to the gene operator and

represses transcription of the gene, M is transcribed mRNA

from the gene G, and O is the expressed protein from G,

translated from M.

The repressor proteins also decomplex from the gene

promoter, and these are modelled with reactions 13 and 14.

It should be noted that the rate of decomplexation when

both repressor proteins are bound to the sequence is greatly

decreased when compared with the rate when only a single

protein is bound.

Fig. 3 The operon in prokaryote genomes, the promoter region is

recognised by RNA polymerase, which binds to the promoter to initial

transcription. The operator is recognised by transcription factor

proteins which alter the rate of gene expression, the operator may

control the expression of multiple genes



GR
���!224 s�1

Gþ R ð13Þ

GRR
���!9 s�1

GRþ R ð14Þ

Reactions 15–18 represent transcription and translation.

Transcription when the gene promoter is unrepressed

occurs 1,000 times more frequently than when the gene

is repressed.

G
���!0:5 s�1

GþM ð15Þ

M
����!0:167 s�1

M þ O ð16Þ

GR
����!5 � 10�4 s�1

GRþM ð17Þ

GRR
�����!5 � 10�4 s�1

GRRþM ð18Þ

mRNA and protein degradation occurs with a half-life of

120 and 600 s, respectively (reactions 19, 20).

O
����!0:0012 s�1

ð19Þ

M
����!0:0058 s�1

ð20Þ

which must bind together before being able to bind to the

gene. As we are interested in the modular assembly of

variable depth logic circuits, we define a P system module

(see formal definition in section ‘‘P systems as a

specification framework’’) that, by using the repressilator

circuitry, encodes a NOT gate module:

NOTGate

fc1; c2; c3; c4; c5; c6; c7; c8; c9; c10gÞ ¼

½Gþ R��!c1 ½GR�; ½GRþ R��!c2 ½GRR�;

½GR��!c3 ½Gþ R�; ½GRR��!c4 ½GRþ R�;

½GR��!c5 ½GRþM�; ½G��!c6 ½GþM�;

½GRR��!c7 ½GRRþM�; ½M��!c8 ½M þ O�;

½M��!c9 ½�; ½O��!c10 ½�
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;

The module’s variables {R, G, M, O}, including the

continuous ones {c1, ..., c10}, can be instantiated with

different promoters, genes, proteins and kinetic constants

as to represent specific systems. Also note that the square

brackets indicate that the reactions take place inside a

specific (proto) membrane or compartment. Indeed to

simplify the notation we have taken out the compartment

name variables as we use only one compartment in this

study.

To construct the P system module representing the re-

pressilator, we start by deriving from the NOTGate module

a specific instantiation named NG, as to avoid specifying

the stochastic rate constants each time (which are the same

unless otherwise specified):

NGðfR;G;M;OgÞ ¼
NOTGate fR;G;M;Og;ð

1; 1; 224; 9; 5 � 10�4; 0:5; 5 � 10�4; 0:167;
�

0:0058; 0:0012gÞ

8

>

<

>

:

9

>

=

>

;

Three or more NG modules can be connected together in

sequence, with the output of the last connected as the input

of the first gate, to produce a ring oscillator.

Ring oscillators made from N gates can be constructed

as follows, for any odd integer N greater than or equal to

three:

RONðfG1; . . .;GN ;M1; . . .;MN ;O1; . . .;ONgÞ ¼
NGðON ;G1;M1;O1Þ;
NGðO1;G2;M2;O2Þ;
� � �
NGðON�1;GN ;MN ;ONÞ
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>

>
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>

>

:

9

>

>

=

>

>

;

Therefore when N = 3 the original Repressilator model,

named RO3, is reproduced.

Fig. 4 The repressilator, the

system is composed of three

different genes, LacI, k cI and

TetR. The protein expressed

from each gene inhibits the

next, so for example the LacI

proteins inhibit TetR

expression, and TetR proteins

inhibit k cI expression

These reactions specify a stochastic model of the 
behaviour of one gene in the repressilator. If the repress-

ing protein is considered as the input to the system, and the 
expressed protein the output, then the behaviour of the 
model mimics that of a NOT logic gate, which outputs a 
high signal when the input is low, and a low signal when the 
input is high. The gene operon has two operator regions. A 
repressor protein can then bind to these regions and repress 
the gene. When only one operator is occupied by a repressor 
protein, the repressor is more likely to decomplex from the 
gene than when both promoters are occupied, and it is this 
cooperative binding which causes a ‘‘switch-like’’ transition 
between the high and low output states of the logic gate 
(Amos 2004), as a certain threshold of repressor 
concentration must be reached within the cell volume 
before both operators become occupied. The effect can be 
magnified by increasing the number of operators which 
cooperatively bind repressors, or by using oligomer proteins



A NAND gate

By creating two copies of the same gene, with different

promoter regions, a NAND gate can be created (Fig. 6).

The NAND gate is defined by the following module,

note that the gene, mRNA and output protein are the same

for both NG modules, but the input repressor is different

(R1 for one gene and R2 for the other).

NANDðfR1;R2;G1;M1;O1g ¼
NGðfR1;G1;M1;O1gÞ
NGðfR2;G1;M1;O1gÞ

� �

It should be noted that constructing a NAND gate in this

way produces two distinct output levels when the gate

output is high, in the first case when neither input to the

gate is present, both genes are transcribed. However, when

the gate is presented with a single input one gene is

repressed and the gate output, whilst still representing a

logic value of True or high, produces roughly half the

amount of protein than it does when no input is present.

A set-reset latch

Two NAND gates can then be connected to create a Set-

Reset Latch (Fig. 7), the output of each gate is connected to

the input of the other, and the state of the latch can be

switched by holding the remaining set or reset inputs high

for a short period. The Latch acts as a simple one bit

memory which can be set or reset by expressing the

appropriate protein that represses the gene of the relevant

NAND gate. The Latch module is built from two NAND

gates

SR� LatchðfR1;R2;G1;G2;O1;O2gÞ ¼
NANDðfR1;O2;G1;M1;O1gÞ
NANDðfR2;O1;G2;M2;O2gÞ

� �

A D type flip-flop

Latches can then be connected to NAND and NOT gates to

construct a D type flip-flop, as shown in Fig. 8.

A D Flip-Flop takes a data input, indicating whether the

flip-flop should be set or reset, and a clock input. The

output of the flip-flop will be the last active input when

the clock was still high, and so the output is fixed when the

clock input goes from high to low. Each flip-flop stores a

single bit, and can be coupled in sequence to make larger

memories. The D-Flip Flop can also be converted to a

toggle flip-flop by connecting the �Q output to the D input.

Therefore each time a clock pulse occurs, the gate will

toggle between the Set and Reset states. The module

configuration for the D flip flop is shown below:

DFlipFlopðfG1; . . .;G9;
DInput;ClockInput;M1; . . .;M8;O1;O2gÞ ¼

NGðfClockInput;G9;M9;O9gÞ
NANDðfDinput;ClockInput;
G5;M5;O5gÞ
NANDðfO5;ClockInput;
G6;M6;O6gÞ
SR� LatchðfO5;O6;G1;G2;
O1;O2gÞ
NANDðfO1;O9;G7;M7;O7gÞ
NANDðfO9;O2;G8;M8;O8gÞ
SR� LatchðfO7;O8;G3;G4;
O3;O4gÞ
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A 3 bit ripple counter

A toggle flip-flop can in turn be used to build ripple

counters, simple counters in which the the Q output of one

flip flop is connected to the clock input of the next flip flop.

Figure 9 shows a diagram of three flip flops connected

together to form a 3 bit ripple counter, with a 5 NOT gate

ring oscillator acting as the system clock, when the clock is

high, the state of the first flip-flop is toggled to produce a

high output, connected to the clock input of the next flip-

flop, which is then also toggled. The first flip-flop remains

in the logic high state until the next clock pulse, upon

which it toggles to the low state, causing the state of theFig. 5 Ring oscillator built from three not gates

Fig. 6 A Nand Gate built from

two NOT gates. The inputs to

the gate are two repressor pro-

teins labelled X and Y, and the

output protein is labelled Z

Fig. 7 Set Reset Latch con-

structed from two NAND gates

Fig. 8 The D Flip-Flop built from two latches, four NAND gates and

a NOT gate



second flip-flop to be fixed high. As the output of each flip

flop toggles at half the rate of it’s clock input, the output of

the first flip flop is high for one clock cycle, and then low

for one clock cycle. the second bit high for two cycles and

low for two cycles, and the third bit high for four cycles

and low for four cycles.

The counter module is constructed from the following

modules:

Counter � 3bitðfG1; . . .;G28;
M1; . . .;M35;O1; . . .;O8gÞ ¼

DFlipFlopðfG1; . . .;G9;
ClockInput;O2;M1; . . .;M9;O1;O2gÞ
DFlipFlopðfG10; . . .;G18;
O1;O4;M10; . . .;M18;O3;O4gÞ
DFlipFlopðfG19; . . .;G27;
O3;O6;M19; . . .;M27;O5;O6gÞ
5GateClockðfG28; . . .;G35;
O5;O8;M28; . . .;M35;O7;O8gÞ
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Experimental results

The liposome logic circuits specified in the previous sec-

tion were simulated under various different conditions

using DPD, SSA or both (see Fig. 10) which shows a

diagram of the relationship between the different modules

and indicates which were simulated with DPD and which

were simulated using SSA. The results of these simulations

are presented below.

Dissipative particles dynamic results

Forming the vesicles

Our model amphiphiles in DPD are based on parameters

from Kranenberg et al. (2004) in which the authors

investigate a number of different coarse grainings of

DMPC like amphiphiles. Figure 11 shows the structure of

the model amphiphiles. Each amphiphile has two hydro-

phobic tails and a hydrophilic headgroup of three particles.

Angle forces maintain a rigidity in the tail chains with a

preferred angle of 180� and a force strength of 6KbT, and

hold the tail particles apart with a preferred angle of 90�
and force strength of 3KbT.

The alpha parameter matrix for the hydrophobic,

hydrophilic and water particles is shown in Table 1.

The physical length and timescales in the DPD simu-

lation can be ascertained by performing the mapping

described by Groot and Rabone. The unit length in the

simulation is set to the force interaction radius, and all

beads have the same mass in the simulation and occupy

the same volume, equivalent to three water molecules

(*90 Å3). Since the unit cube density parameter q is set to

3, meaning on average there will be three particles in

each unit cube, the side length of each cube, and there-

fore the physical interpretation of the unit length is
ffiffi

½
p

3�270 Å
3 ¼ 6:4633 Å. The physical interpretation of the

time step is based on calculation of the self-diffusion

constant of the simulated DPD fluid, which is then mapped

to the same value for water at room temperature resulting

in a time unit length s of *88 ps. Typical simulated times

are 2,500 s (220 ns) to 100,000 s (8.8 ls) in volumes of

*34 nm3.

All DPD simulations in this work were performed with

r = 3,c = 4.5 and q = 3 and the Groot Warren intergrator

was used with k = 0.65 and the timestep length dt = 0.05

For the vesicle computation simulations in this work a

vesicle was formed which was composed of 5,825 DMPC

molecules, encapsulating a core of 58,550 solvent particles.

Fig. 9 A 3 bit counter connected to a 5 gate ring oscillator

Fig. 10 The diagram indicates which modules were simulated using

which simulation technique (e.g. DPD or SSA), and the relationship

between the different models simulated using the pipeline, an arrow
pointing from one module to another indicates that the module at the

arrow’s source is used by the other module

Fig. 11 Schematic diagram of the DMPC amphiphile. The particles

in the hydrophobic tail chains of the amphiphile are held together by

Hookean spring forces with a preferred distance of 0.7 units, and a

bond angle force maintaining the angle between bonds are 180�. The

tail chains are held in close proximity by a bond angle force with a

preferred angle of 90�. The Hydrophilic head particles (righthand

side) also have a preferred bond distance of 0.7 units, but no bond

angle force is imposed between head particles



The vesicle was then placed within a simulation space of

50r3
c , and the volume which was external to the vesicle

membrane was filled with solvent particles such that the

correct density (3 particles per r3
c ) was achieved. For each

NOT gate in the module a solvent particle within the

vesicle core was chosen at random and replaced with a

particle representing the gene.

Liposome logic in DPD

The NOT gate model can be implemented in DPD as a

set of first and second order reactions. However, the rates

in the original model are specified over timescales of the

order of seconds, with the dynamics of the system only

observable over minutes/hours. In order to observe the

model dynamics within DPD timescales, the reaction rates

are rescaled to occur within the DPD timescale. For the

first order reactions this is a straightforward process, as

long as all the first order reaction rates are scaled

equivalently. However, for the second order reactions, the

situation is more complex, as the stochastic rate constant

is the rate at which a reactant pair will collide and react.

This rate is determined by the physical properties of the

system (e.g. temperature, reactant mass etc.) and the

probability that the colliding particles will be in the cor-

rect orientation for the reaction to occur. Therefore to

scale the second order reactions correctly, it is necessary

to determine the rate at which particle pairs collide within

the vesicle. The collision rate was determined directly

from simulation (data not shown) and was found to be

0.0002 collisions per DPD time unit. Thus the NOT gate

model is instantiated as

NOTGateðfP;R;G;M;Og;
f1s�1; 1s�1; 1s�1; 0:0402s�1; 5 � 10�4s�1;

0:5s�1; 5 � 10�4s�1; 0:167s�1; 0:0012s�1;

0:0058s�1gÞ

For the other reactions, the rate constants were rescaled

by changing the unit of time from seconds to DPD time

units (s). The consequence of this for the second order

reactions representing binding of repressor to gene, is that

the rate of collisions is reduced as the number of collisions

per time unit is much smaller in DPD. Therefore the actual

reaction rate in DPD is shown below.

½R�½G� � 0:0002 ð21Þ

where [R] and [G] indicates the number of repressors and

genes in the simulation respectively. The consequence of

this is that the rate at which repressors bind to the gene is

reduced by a factor of 5,000 in comparison with the other

scaled rates. Note that the rates of the decomplexation rules

which represent the repressor protein unbinding from the

gene have been rescaled to 1s-1 and 0.0402s-1 (the rates in

the original model were 224 and 9 s-1, respectively), as the

original rates were too fast to be represented in the

rescaling, and so were reduced by a factor of 224.

The effect of this alteration somewhat mitigates the

reduction of the complexation rate, and the reduction of the

binding rate relative to the adjusted decomplexation rate is

reduced by a factor of 22.3. The effect of these changes

will be that the repression of the gene occurs more slowly,

and both the decomplexation and complexation reactions

occur more slowly in comparison to the first order reac-

tions, but the qualitative structure of the model should be

maintained.

The effect of encapsulation on logic gate dynamics

The first experiment involved placing the NOT gate inside

the vesicle membrane, and comparing the results of sim-

ulation in which the NOT gate was not encapsulated within

the membrane (e.g. allowed to diffuse freely within the full

50rc volume.) to show the effect that the encapsulation has

on the second order reaction rates.

The result of simulating the NOT gate within a vesicle

with no input signal connected to the gate, for 5,000 s is

shown in Fig. 12. The NOT gate gene is expressed when

the gate has no input and the amount of protein rises until

an equilibrium between expression and degradation is

reached, at an output level of *10,000 proteins.

Figure 13 shows the results of simulating the NOT gate

with a high input signal (i.e. a gene producing the NOT

gate input repressor protein was added to the system) the

gate and input gene particles were encapsulated within a

vesicle and the number of expressed proteins recorded each

time unit to produce a time series (continuous black line).

Simulations were also performed in which the NOT gate

and input gene particles were not placed within the vesicle,

but instead were able to diffuse freely within the entire

simulated volume (dotted black line).

At the start of the simulation the NOT gate gene is

initially expressed, until the amount of repressor (which is

concurrently expressed from the input gene) reaches the

threshold required to fully repress the NOT gate gene,

causing the amount of output protein to drop as the protein

Table 1 The alpha parameters type matrix for the DMPC polymer

Water Head Tail

Water 78 75.8 110

Head 75.8 78 110

Tail 110 110 78

A value of 78 produces the correct compressibility for water at room

temperature, larger values indicate a repulsion between particle types



transition of the NOT gate (module NG) from the high to

low output state occurred more slowly. The mean time

series for the input repressor protein in the encapsulated

and unencapsulated NOT gate simulations are shown by

the grey continuous and grey dotted lines, respectively.

Once the repressor protein levels have reached an equi-

librium, there is a difference of over *1,000 proteins

between the encapsulated and unencapsulated equilibrium

value. Correspondingly there is a difference between the

levels of outputted mRNA when the NOT gate was and

was not encapsulated. Figure 14 shows that the mean

mRNA output when the gate was not encapsulated peaked

at slightly less than 60 molecules, whereas the mRNA

output for the encapsulated gate peaked at around 43

molecules. As the collisions occur more frequently in the

vesicle volume, the gene becomes fully repressed more

quickly, and so the peak level of mRNA output is reduced.

Figure 15 shows the output protein levels from the

NAND gate model built from two NOT gates (model

NAND in section ‘‘A NAND gate’’). Four time series are

shown, one for each possible combination of signal inputs

to the gate. The continuous line shows the output for the

gate when both of the genes for the input signals (labelled

X and Y in the figure) were present, the output level rises

initially until enough of the input proteins is present to fully

repress both genes in the NAND gate, at which point the

output signal drops to zero. The dotted line shows the case

where there was no input signal to the NAND gate, the

level of output protein reaches an equilibrium value of

around 17,500 proteins. The dashed and dot-dashed lines

show the case where one of the input signal genes was

Fig. 12 Time series of the protein output from a gene representing a

NOT gate, encapsulated within a vesicle showing the mean number of

proteins present in the volume over the course of the simulation, with

the error bars showing the estimated standard error

Fig. 14 The time series for the transcribed mRNA from the NOT

gate gene, averaged over 10 runs. The continuous black line shows

the output level of transcribed mRNA when the NOT gate was

encapsulated within the vesicle, whereas the dashed line shows the

mRNA time series when the NOT gate was diffusing freely

throughout the entire volume

Fig. 13 Output protein levels for simulation of NOT gate placed 
within a vesicle and diffusing freely in the simulated volume, 
averaged over 10 runs (error bars indicate estimated standard error). 
The continuous grey and black lines show the time series for the input 
and output proteins for the NOT gate placed within a vesicle. The 
dotted grey and black lines show the input and output proteins of the 
NOT gate with an input present when system is not encapsulated 
within a vesicle

and mRNA degrade and are not replenished, so that typi-

cally less than 50 proteins remained by the end of the

simulation.

The dotted line in Fig. 13 shows the result of simulating

the high input model for the case were the input and NOT

gate genes were not encapsulated within the vesicle. The

mean number of proteins expressed at the peak of expres-

sion was greater by *1,000 particles when compared to 
the output time series for the encapsulated gate, and the

peak was reached later in the simulation, indicating the



present, in both of these cases, one of two NOT gates

which make up the NAND is repressed, and so the output

protein levels reaches an equilibrium value of around 8,000

proteins, which is roughly half the output level when nei-

ther input was present.

The encapsulated repressilator

The second experiment involved the encapsulation of the

repressilator (module RO3) within the core of a self

assembled vesicle. Time series from simulations of the

increased decomplexation rate repressilator model, encap-

sulated within a vesicle are shown in Fig. 16, the expressed

protein levels for each of the three NOT gates in the re-

pressilator (shown for for three runs of the simulation) can

be seen to oscillate. The increased decomplexation rate of

the repressors from the gene when compared to the original

repressilator model means that the period of oscillation is

not quite long enough to allow all of the transcription factor

to degrade, and so the amount of each transcription factor

drops to around 1,000 proteins.. Figure 17 shows the

results of simulating the model where the decomplexation

rates were only scaled, and not increased. The decom-

plexation of repressor from gene occurs less frequently in

this model and so the oscillations have a longer period,

allowing the transcription factors to degrade completely

before the next cycle of the oscillation and the period of the

oscillation is increased. Figure 18 shows the images from

the inner volume of vesicle, with the particles representing

the different output proteins from each of the three NOT

gates given different colours, each of the images are cap-

tured at the point in the simulation were the respective

protein is being expressed.

Immiscible repressors

The third vesicle computing experiment involved the same

initial configuration as the previous repressilator experi-

ment (module RO3), but the alpha parameters for the

proteins were modified slightly to examine the case where

the output protein is slightly hydrophobic, and also less

miscible with other proteins. The effect of this should be to

create three distinct protein phases, which may mean the

dynamics of the repressilator will be altered due to the non-

uniform concentrations of repressors. Table 2 shows the

alpha parameter vector for each repressor protein in the

system.

Fig. 15 The time series of protein output levels from the simulation

of the NAND gate, the output of the gate is shown in response to 4

different combinations of inputs labelled X and Y

Fig. 16 The result of three simulations of the repressilator model

with increased rate constants for the decomplexation of repressors

from the promoter, each plot shows the time-series for the three NOT

gate output proteins

Fig. 17 The result of three simulations of the repressilator model

within a vesicle in DPD, the parameters are rescaled versions of those

from the elowitz model such that the dynamics can be examined

within DPD timescales, each plot shows the time-series for the three

NOT gate output proteins



The results from simulations of the repressilator with

increased a parameters between the repressor proteins

expressed from each NOT gate gene are shown in Fig. 19.

Because the transcription factors are now hydrophobic and

do not mix with the solvent, the volume is no longer

homogeneous, causing the dynamics of the repressilator to

be altered. The period of the oscillations is no longer steady

as the gene might not diffuse into an area that contains a

high concentration of proteins that repress it. The repressor

proteins also form distinct phases which tend to move

towards the boundary between the vesicle membrane and

the solvent, so that contact between hydrophobic repressor

and solvent is minimised. The result of this movement was

a bulging deformation of the normally spherical vesicle

shape, this effect is shown in Fig. 20. Deformation of the

membrane may be interesting to those working on the

problem of causing vesicle fusion, as the deformation of

the membrane will create areas of increased tension due to

the elasticity of the membrane, which may increase the

likelihood of fusion if two such vesicles were to come into

close contact (Shillcock and Lipowsky 2005). This result

also illustrates the sort of system dynamics that can be

observed in DPD rather than in other less detailed simu-

lation techniques.

Stochastic simulation algorithm results

If more complex logical circuits need to be simulated, or

simulations for long length/timescales are required, we can

abstract away the molecular and three dimensional detail of

DPD and use instead a stochastic simulation algorithm to

simulate deeper logic circuits that capture compartments’

topologies but ignores their detailed geometries. The

results of the SSA experiments are now described.

Oscillator frequency

We extended the Elowitz models with increasing num-

bers of NOT gates, to investigate whether increasing

clock periods would match the theoretical estimates for

silicon gates, and if there are limits to the number of

gates which can be connected together in this way. The

oscillator models were constructed from

5,7,9,11,21,31,41 and 51 gates modules (RO3, RO5, etc.)

and simulation of each oscillator was performed for 2

days of simulated time.

The formula for calculating the frequency of a electronic

ring oscillators built from any odd number of NOT gates is

shown in Eq. 22:

1

2nTp
ð22Þ

where n is the number of logic gates, and Tp is the prop-

agation delay of each gate. We determine if this formula

accurately calculates the frequency of the oscillators built

from logic gates by calculating the propagation delay for

the gates, and calculating the oscillator frequency from the

output data, and then compare with the value from the

formula.

The propogation delay of the NOT gate was determined

to be 766.46 ± 1.95 s, by simulating an NOT gate with the

initial number of input repressor proteins set to the mean

equilibrium output for the gate (11,983 ± 47.29), with a

constant input of repressor protein also present. The

propogation delay was determined as the mean number of

seconds for the NOT gate output to fall to half of it’s

original level.

The results from simulation of oscillators with 1,3,

5,7,9,11,21,31,41 and 51 NOT gates are shown in Fig. 21,

Table 2 a parameters for immiscible repressors

Solvent Gene R1 R2 R3

Solvent 78 78 85 85 85

Gene 78 78 78 78 78

mRNA 78 78 78 78 78

R1 85 78 78 85 85

R2 85 78 85 78 85

R3 85 78 85 85 78

particles are not shown). The images show (from left to right) the

initial vesicle condition, high concentrations of the output protein

expressed from the first NOT gate, the second NOT gate, and the third

NOT gate (note the concentration gradient visible in the last image)

Fig. 18 Snapshots from a simulation of the repressilator within a 
vesicle were taken every 2,500 s, a small micelle was trapped within 
the vesicle when it formed and is visible in each image. The vesicle 
was sliced so that the inner volume is visible (note that solvent



the figure shows that the relationship between the number

of NOT gates and oscillator frequency is similar to Eq. 22

until the number of NOT gates is 11 although the frequency

is reduced by between 0.3 and 1 microhertz. For oscillators

with more than 11 NOT gates the standard deviation of the

frequency is increased, and the shape of the curve no

longer follows the predictions from Eq. 22. Looking at the

data for each individual run showed that for 21 NOT gates

and above, the oscillator was decreasingly likely to settle

into a stable oscillation.

Table 3 shows the number of oscillators in the 10 runs

which were unstable for the different numbers of NOT

gates.

The effect of RNAP and ribosomes

The behaviour of the RO51 oscillator was also examined in

a more detailed model where the transcription and trans-

lation explicitly included polymerase and ribosomes, The

number of polymersomes and ribosomes were at realistic

levels for a bacterial or large vesicle volume.

When RNAP and ribosome interactions are included

explicitly in the model, the effect is that there is a global

constraint on the rate of transcription and translation.

Figure 22 shows the levels of free RNAP and ribosomes

for a simulation of the 51 gate oscillator model modified to

include RNAP and ribosome interactions explicitly, the

model was initialised with 35 RNAP and 350 ribosomes.

The result shows that when the oscillator is functioning the

average number of RNAP in use is slightly less than one,

Fig. 19 The result of three simulations of the repressilator model

with hydrophobic repressor proteins. In each run, the time series

indicate the expression levels of the different NOT gate output

proteins

Fig. 20 Hydrophobic repressor domains form within the vesicle, and

deform the membrane: The image on the left shows the surface of a

vesicle which has been deformed by the formation of phases within it.

The image on the right shows a slice through the same vesicle, the

output proteins have formed phases in the vesicle core and are

pressing against the membrane (the darker and lighter coloured

particles between the vesicle core and the membrane)

µ

Fig. 21 The figure shows the frequency of oscillation in lhz for

oscillators constructed from 1,3,5,7,9,11,21,31,41 and 51 NOT gates.

The observed frequency line shows the the oscillator frequencies

observed in simulation, each point is the mean frequency of 10

simulations of the oscillator, the error bars show the standard

deviation. The theoretical frequency line shows the frequency

calculated from equation 22 for the different numbers of gates

Table 3 The number of unsta-

ble oscillations observed during

10 runs of oscillators composed

of different numbers of NOT

gates

Number

of NOT gates

Unstable

count

3 0

5 0

7 0

9 0

11 0

21 1

31 5

41 7

51 9



and the average number of ribosomes in use is around 25.

However, the inclusion of the RNAP and Ribosomes did

not alter the transcription rate significantly.

The 3-bit ripple counter

The counter models were simulated in MCSS for simulated

time periods of either 2 or 3 days, with the number of

molecules of each chemical species recorded at every

3 min of simulated time to produce a time series for each

chemical species in the simulation.

Figure 23 shows the time series for the simulation of the

3-bit counter with a 3 gate ring oscillator as the clock, and

Fig. 24 shows the results of simulating the same counter

with a 5 gate ring oscillator.

The time series show the output protein levels for each

bit of the 3-bit counter. In the case of the counter connected

to a 3-gate clock, it is likely that the propagation delay of

the flip flops is greater than the time between clock pulses,

and so the output of the first counter bit (proteinG18) does

not always indicate that the flip flop was correctly toggled

by the clock input. When the counter is connected to a

lower frequency clock (constructed from 5 NOT gates), the

dynamics of the output of the first counter bit have a much

more consistent period and number of period of high output

is roughly 1/2 the number of input clocks as expected.

Figure 25 shows the clock input and first bit output over-

layed for the 5 gate clock model.

The figures shows that there is a clear correspondence in

each case between the high level of each bit and the trig-

gering of the output of the next bit, the counter is therefore

functioning as intended. Note that when the counter

reaches its limit (7 in this case) it simply overflows and the

counter starts from zero again.

Model checking

We focus our analysis on two of the simplest parts in our

study, namely the NOT gate and the NAND gate, that are

subsequently used to construct the rest of the models. In

order to asses their perfomances we applied formal analysis

on their dynamics using simulative probabilistic model

checking. More specifically, the behaviour of our P system

models were translated into CTMCs and then analysed

using the PRISM probabilistic model checker (Kwiat-

kowska et al. 2002). Due to the complexity of the models

under study the complete state space was not constructed,

Fig. 22 Time series for free RNA polymerase (RNAP) and Ribosome

(Rib) proteins in a simulation of the 51 gate oscillator model

Fig. 24 Time series for 3-bit counter model with 5-gate clock as

input, proteinout4 is the clock signal, proteinG8 is the output of the

first counter bit, proteinG18 the output of the second bit of the

counter and proteinG26 the output of the third bit

Fig. 23 Time series for 3-bit counter model with 3-gate clock as 
input, proteinout2 is the clock signal, proteinG8 is the output of the 
first bit of the counter, proteinG18 the output of the second bit of the 
counter and proteinG26 is the output of the third bit



but, instead, ensembles of multiple simulations or trajec-

tories in the state space were generated and the corre-

sponding properties, expressed in the temporal logic CSL

(Kwiatkowska et al. 2002), were checked against them.

In the analysis that follows 1,000 simulations were used

to produce an estimate p̂ of the answer p to a query. This

resulted in a precision of 0.1 with a confidence of 0.01

which determines the accuracy of the estimate according to

the following formula.

P½ jp� p̂j[ precision �\ confidence

NOT gate

In the case of our molecular NOT gate we studied the

accuracy of its behaviour with respect to the general

specification of a NOT gate and the speed of its reponse

when provided with some input molecules.

Expected number of output proteins in the long run

for different values of input proteins

We examine whether or not this basic building block

behaves as expected. That is, in the presence of low values

of input proteins, high levels of output proteins should be

produced and viceversa, when high amounts of input pro-

teins are provided, no output protein should be synthesized.

In order to investigate this, the following instantaneous

reward formula was formulated and a reward correspond-

ing to the number of output proteins was associated to each

state in the corresponding continuous-time Markov chain.

R ¼ ?½I ¼ 6; 000�

The property was analysed at the time instant I = 6,000

seconds. Figure 26 shows that for low numbers of CI

proteins the number of output proteins in the long run is

high. Whereas an increase in the number of input proteins

produces a sharp decrease to zero in the number of output

proteins. The transition from high to low output occurs at

Fig. 25 Overlayed time series for protein output levels, the top figure
shows the clock input level overlayed with the bit-0 output for the

counter, the middle figure shows the bit-0 output overlayed with the

bit-1 output, and the bottom figure shows the bit-1 output overlayed

with the bit-2 output
Fig. 26 Expected number of output proteins for different number of

initial input proteins in the NOT gate (logarithmic scale)



around 150 input proteins. These results are in agreement

with the general specification of a NOT gate.

Expected propagation time or response time

We analyse how fast our molecular device responds to its

input by determining the time expected to reach half way

between the initial and the final state once input proteins

are introduced in the system. This property is normally

termed propagation time or response time.

The following reachability reward formula was con-

sidered in order to investigate the propagation time of the

NOT gate.

R ¼ ?½F proteinOut\5; 000�

This type of query accumulates, over a trajectory, the

rewards associated with each state times the time spent in

that state until a state fulfilling the corresponding formula

is reached. Since we want to accumulate the time spent in

each state over a given trajectory a reward equal to one is

associated to each state in the corresponding CTMC.

The property whose reachability needs to be analysed is

the output protein descending below the threshold of 5,000

molecules, which is half of the the initial number of output

proteins, 104 molecules. In Fig. 27 we can observe that a

low number of input proteins leads to a very slow response,

whereas an increase in the number of input molecules

produces a fast decay in the propagation time. Interest-

ingly, our study shows the existence of a threshold for the

input proteins around 150 for which any further increase

does not produce an acceleration in the response.

From these two properties we can conclude that for our

NOT gate there exists a threshold of around 150 input

proteins. Below this number our molecular device produces

a high number of output proteins. By contrast, if a number

of input proteins above this threshold is provided to the

system, then no output proteins are synthesised. Moreover,

this threshold of 150 proteins provides the optimal input

value with respect to the propagation time, as an increase in

the input beyond this level does not produce a faster

response.

NAND gate

Similar to the previous case for the NOT gate we study

properties that determine the accuracy of the behaviour of

our genetic design when compare to the general specifi-

cation of a NAND gate.

Expected behaviour of the NAND gate

In the presence of both inputs our molecular device should

synthesise no output proteins whereas in any other case,

that is, presence of only one input or absence of both

inputs, output proteins should be detectable.

The following instantaneous reward property is used to

determine the number of output proteins in the long run,

time instant I = 6,000, for different values of the two input

proteins.

R ¼ ? ½ I ¼ 6; 000 �

Note that since the NAND gate is a composition of two

identical NOT gates with the same parameters as the one

analysed above the threshold of 150 input molecules is also

evident in the behaviour of this gate, Fig. 28. This

determines four different regimes in the behaviour of the

gate. When INPUT1 and INPUT2 are less than 150 the

output is maximal. When INPUT1 is less than 150 and

INPUT2 is greater than 150 (similarly when INPUT2 is less

than 150 and INPUT1 is greater than 150) the output is

produced at a half maximal level. Finally, no output

proteins are synthesised when both INPUT1 and INPUT2

are greater than 150.

Probability of the absence of a detectable level

of output proteins

In order to get a more detailed intuition of the behaviour of

the NAND gate we estimated the probability of a non-

detectable level of output proteins in the long run for dif-

ferent values of the two input proteins. The detectable level

Fig. 27 Expected propagation time for the NOT gate with different

number of initial input proteins

Fig. 28 Expected number of output proteins in the long run for the

NAND gate with different numbers of input proteins



was fixed to 500 output proteins. For this we used the

following transient probability formula.

P ¼ ? ½ true U½6; 000; 6; 000� proteinOut\ 500 �

Figure 29 shows the sharp transition around the thresh-

old of 150 input proteins from a detectable level of output

proteins to an undetectable one.

Potential routes to a chemical implementation

The potential power of the vesicle computation method and

the use of compartmentalisation in the DPD simulations

offer intriguing possibilities within a chemical context. The

‘‘bottom-up’’ approach allows for many further molecular

systems to be invoked than those currently used in biology,

sophisticated though these already are. For example, logic

gates have been constructed from a variety of non-bio-

logical systems and have used inputs/processes ranging

from photoelectron transfer and fluorescence through to gel

swelling and electrical signals (Asoh and Akashi 2009; de

Silva and Uchiyama 2007; Gunnlaugsson et al. 2000;

Yoshida and Yokobayashi 2007; Magri 2009; Pischel

2007). Abiotic small molecule systems generally rely for

their logic processing on binding events such as host-guest

interactions, which lead to a perturbation in the electronic

or conformational state of the molecule, which in turn are

converted to signals. Combinations of different inputs (e.g.

pH, ion binding) on to molecules with more than one

potential host-guest interaction or conformational change

lead to multiple logic operations and functions such as

Adders and Subtractors built from AND, XOR, INH and

OR gates. Small molecule logic systems of this type can

also be coupled to ‘‘non-chemical’’ inputs, such as light,

enabling their use in energy interconversion and signal

transduction. In this way, a number of processor elements

in the size range of a few nm have been developed, with

obvious advantages in miniaturisation compared to ‘‘top-

down’’ machining or lithographic fabrication methods.

However, potentially much more powerful operations

are possible when multicomponent cooperative or inter-

fering interactions are used. Introduction of multiple

binding or reporter elements onto polymer chains enables a

further level of sophistication in processing information.

This is because each interaction, for example at a receptor

site, on a polymer chain is inherently coupled to its nearest

neighbour on the chain. This can be positive or negative in

terms of the next interaction, and thus enhancement or

thresholding effects can become apparent. Natural logic

systems such as DNA, RNA already exploit these effects in

binding or repression of binding as described above, but

recent studies have also shown simple logic circuits can be

derived from host-guest interactions in synthetic polymers

(Pasparakis et al. 2009b). Conformational changes in these

polymers resulting from temperature-driven phase transi-

tions cause changes in functional group accessibility which

result in ‘‘switching’’ of signalling. The system can be reset

with pH or temperature, leading to AND and INH func-

tions. The cooperativity of hydrogen-bonding solvent

interactions drives the phase transition, and this is a

property related to the balance of entropic and enthalpic

factors governing polymer solubility and is fundamentally

‘‘polymeric’’ in origin. These factors combine to produce

the overall effect, i.e. switching of binding ‘‘on’’ or ‘‘off’’,

but because the phase transition is tuneable through the

choice of chemistries in the polymer, other ‘‘states’’ of

switching are possible. For example, by connecting poly-

mer chains together in such a way that one component

undergoes a phase transition while another does not, a

simple ‘‘on–off’’ solubility change can become a unimer-to

micelle or unimer-to vesicle switch (Sundararaman et al.

2008). This can be considered as an alteration in the

symmetry of the system, as chemical species able to

interact with the unimers in isotropic solution become

distinct from each other dependent on whether they are

inside or outside the micellar or vesicular compartments

which form during the polymer phase transition. Func-

tionality that before the transition was identical becomes

strongly directional on the inner and outer surfaces of the

vesicle, while concentration and diffusion gradients are

generated.

In our previous work, a prototype version of the P sys-

tems and DPD based simulation and modelling framework

was used to investigate the effect of poration on the rate of

diffusion of encapsulants through vesicle membranes

(Smaldon et al. 2008). The results from simulation indi-

cated a linear relationship between the number of pores

present in the membrane and the rate of diffusion. As a step

towards a physical implementation of the liposome logic

approach, vesicles were prepared which encapsulated a

flourescent reporter. Prior literature has shown that several

amphiphilic moieties can be employed for encapsulation of
Fig. 29 Probability of the absence of a detectable level of output

proteins from the NAND gate for different levels of both inputs



nucleic acids and proteins, some of which have proven

useful as bioreactors, drug delivery vehicles or as early-

stage protocells (Noireaux and Libchaber 2004; Meng

et al. 2009; Roodbeen and van Hest 2009; van Dongen

et al. 2009). For instance, some of the amphiphiles

employed for the encapsulation of DNA show interesting

properties such as the ability to respond to an external

stimuli, such as pH (Lomas et al. 2007; Kim et al. 2009).

Among those, we have focussed attention on the PEG-PLA

system developed by Discher et al. (Kim et al. 2009). for

which, the vesicle cargo can be gradually released as a

function of the pH, due to the formation of pores in the

vesicle membrane, as a result of the hydrolysis of the

polyester block (Ahmed and Discher 2004). To this end, an

EO50-b-LA50 copolymer was synthesized in our laborato-

ries, and EO50-b-LA50-LMVs of approximately 125 nm in

size could be synthesized (Fig. 30).

The vesicle formation experiments were performed as

follows: Poly(ethylene glycol) monomethyl ether [MW

1,900] was purchased from Polysciences Inc. DL-Lactide

(3,6-Dimethyl-1,4-dioxane-2,5-dione) and Tin(II) 2-ethyl-

hexanoate were purchased from Sigma–Aldrich. EO50-

b-LA50 was prepared from these chemicals according to the

procedure described by Discher et al. (Ahmed and Discher

2004). Block composition, purity and final molecular

weight were confirmed by nuclear magnetic resonance

(NMR) spectra and Gel Permeation Chromatography

(GPC). EO50-b-LA50 large multilamellar vesicles (EO50-b-

LA50-LMVs) were prepared by suspending EO50-b-LA50

(2 mg) in H2O (2 mL) and the suspension stirred overnight

at room temperature. Dynamic light scattering (DLS)

analysis of these EO50-b-LA50-LMVs was measured using

a Viscotek Model 802 instrument equipped with an internal

laser (825–832 nm) with a maximum radiation power of 60

mW. At least five measurements of each sample were

taken. The mean and standard deviation were calculated.

Data processing was performed with the software program

OmniSize2. Cryo-TEM analysis of the EO50-b-LA50-LMVs

was performed using a JEOL JEM-2100F transmission

electron microscope with a Gatan Orius 4K camera and

Digital Micrograph imaging software. Frozen hydrated

samples were prepared by plunging into liquid ethane

using a Gatan Cryoplunge3 plunge freezing system.

5(6)-carboxyfluorescein (CF), 4-(2-Hydroxyethyl)piperazine-

1-ethanesulfonic acid, N-(2-Hydroxyethyl)piperazine-N0-(2-

ethanesulfonic acid) (HEPES) and NaCl were purchased

from Sigma-Aldrich. EO50-b-LA50 large unilamelar vesi-

cles containing CF (EO50-b-LA50-LUVs , CF) were pre-

pared as follows: A thin lipid film was prepared by

evaporating a solution of EO50-b-LA50 (10 mg) in CHCl3

(1 ml) on a rotary evaporator (30�C, 180 mBar) and then

overnight in high vacuo. After hydration ([30 min) with

buffer (1 ml; 10 mM HEPES, 10 mM NaCl, 50 mM CF,

pH 7.4), the resulting suspension was subjected to 7 freeze-

thaw cycles (liquid N2; 30�C, water bath), and 20 times

extruded through a polycarbonate membrane (pore size

100 nm). Extravesicular components were removed by size

exclusion chromatography (Sephadex G-50) with 10 mM

HEPES, 100 mM NaCl, pH 7.4. Fluorescence spectra were

recorded on a Cary Eclipse fluorimeter. EO50-b-LA50-

LUVs , CF (25 ll, inside: 10 mM HEPES, 10 mM NaCl,

50 mM CF, pH 7.0) were added to 1,975 ll gently stirred,

thermostated buffer (10 mM HEPES, 100 mM NaCl,

pH 12) in a disposable plastic cuvette. The time-dependent

changes in fluorescence intensity It (kexc = 492 nm, kem =

517 nm) were monitored for 290 min.

Preliminary data has shown that these systems can be

used to trigger a response as a function of pH, EO50-b-LA50

LUVs loaded with 5(6)-Carboxyfluorescein as a fluorescent

reporter were prepared, diluted into pH 12 HEPES buffer

and heated to 45�C. Evaluation of the fluorescence as a

function of time showed that the vesicle cargo was slowly

released, indicating a measurable response to an external

stimulus. These results can be compared with those from

simulations presented in our previous work (Smaldon et al.

2008), in which the diffusion rate of encapsulated particles

within vesicles containing different numbers of membrane

pores was determined in simulation. The results are pre-

sented in Fig. 31, and relative intensity of the flourescent

reporter can be seen to be qualitatively similar to the
Fig. 30 Cryogenic transmission electron microscope Images of

EO50-b-LA50 LMVs



change in concentration of encapsulated particle within the

simulated vesicle, although occuring over a much longer

time-scale.

Ultimately then, it is possible to envisage sophisticated

information processing circuits that could be formed using

synthetic polymer vesicles in exactly analogous ways to the

repressilators described in section ‘‘The encapsulated

repressilator’’ for proteins and gene circuits inside lipo-

somes. Interactions of a synthetic polymer with a ligand

(a ‘‘repressor’’) in the aqueous interior of a vesicle could

lead to a change in solubility of the polymer which drives it

towards the hydrophobic interior of the vesicular mem-

brane. Incorporation in the membrane of a reagent capable

of, for example, reacting with or sequestering the ligand,

will return the polymer back into the vesicle interior, but

only in the case where the ligand remains accessible. This

can be a function of the degree of binding as the interaction

of multiple weakly hydrophobic ligands will, eventually,

lead to an overall change in solubility of the polymer-

ligand complexes. If the synthetic polymer solubility is

tuned such that at a certain binding threshold it then

becomes membrane-inserting or membrane-traversing, a

‘‘flip-flop’’ operation becomes possible, dependent on

starting concentrations. These in turn will be set by the

conversion of unimers to vesicles, generating multiple

feedback loops. Thus even for quite simple synthetic

polymer constructs, it is theoretically feasible, if not yet

fully experimentally tractable, to put in place chemical

implementations of the computational simulations and

molecular logic operations described earlier.

In the above discussions, we have focussed on water as

the solvent in which the chemistries take place. It is also

possible to consider other solvents in which micelle, ves-

icles and other containers form, thus the metabolism and

information processing could be far removed from existing

biological entities. If the rules of macromolecular phase

transitions, vesicle formation and molecular association/

dissociation can be derived for other solvent systems, there

is no reason why sophisticated logics and synthetic biolo-

gies should not emerge in non-aqueous environments.

Conclusions

In this paper we have presented our investigations of ves-

icle and cellular computing which were performed using a

novel simulation pipeline. The input to this pipeline is a

formal specification of the vesicle computing model in

stochastic P systems. This formal specification language is

independent of the simulation paradigm used to study the

dynamics of the model. Specifically, in this work we have

used DPD and SSA to simulate the behaviour of our

models. Moreover, our P system specifications enable

automatic reasoning, with model checking, of systems and

synthetic biology designs at a high level of abstraction.

Modularity in P system models allowed us to develop

our models in a parsimonious manner. We started by

designing a model of a NOT logic gate, based on the rates

and reactions specified in Elowitz’s stochastic model of the

repressilator. The expressive power of the P systems

specification was then illustrated by combining NOT gate

modules to make NAND gates, which were in turn used to

create a Set-Reset latch, which formed the basic compo-

nent required to create more complicated flip-flop and

counter modules.

In principle any applicable simulation technique could

then be chosen to investigate the models, in this paper we

focused our analysis of the logic gate models at a very high

level of detail in DPD, enabling qualitative understanding

to be gained about the behaviour of the model logic gates

when encapsulated within a self-assembled liposome,

simulations of these models indicated that encapsulation

within the liposome had the effect of increasing the rate of

Fig. 31 The top image shows the release of CF from EO50-b-LA50-

LUVS as a function of time, measured at 45�C, and two different pH

values. The bottom image shows the diffusion of encapsulated

particles from inside vesicles with 1,2,4,7,11 and 14 pores included in

the membrane. The increase in acidity results in a greater number of

pores in the membrane which increases the rate at which the

flourescent reporter diffuses out of the vesicle. The bottom image
shows the result of modelling this effect by varying the number of

pores in a self-assembled vesicle in DPD



reaction. The SSA method was chosen to explore the

behaviour of models which would be too computationally

expensive to investigate with DPD, and simulations using

this technique showed that complicated logic designs such

as a 3-bit counter functioned correctly for several days of

simulated time.

Designing a BRN using our pipeline might involve

several iterations of the model specification and simulation

phases, with non-working prototypes reworked after each

iteration. Once the simulations indicate a working design,

the designer can move to the next stage in the pipeline, and

perform a more robust analysis into the behaviour of the

design using model checking. For our liposome logic

designs, model checking was performed on the NOT and

NAND gates, and temporal logic CSL queries used to

determine the propogation delay and minimum input for

the gates.

We used the proposed simulation pipeline to illustrate

and investigate the concept of performing simple compu-

tation in liposomes or vesicles rather than biological cells.

The benefit of this approach is that starting from the bottom

up and creating systems containing only the required

functionality will likely make the system more predictable.

The vesicle membranes could also act as a barrier between

the implementation of a logic component and the external

environment. This provides a second level of modularity as

computing systems could be built as a collection of vesicles

encapsulating modules that only interact through a well

defined interface, the membranes. Potential viable routes

for a chemical implementation of vesicle computing have

been discussed, but important challenges remain, such as

the incorporation of a rudamentanty metabolism to provide

the raw materials required to keep the encapsulated logic

components functioning. It is our hope that protocell

research in synthetic biology may provide some possible

solutions to these problems.
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