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Abstract. In this work we classify the stable regions (second order minima of
perimeter under an area constraint) in tori of revolution with piecewise continu-
ous decreasing Gauss curvature from the longest parallel and with a horizontal
symmetry. Some applications to isoperimetric problems are also given.

Introduction

In a Riemannian surfaceM we may consider the isoperimetric problem consisting of
finding the least perimeter sets in M enclosing a given area a0, with a0 6 area(M). If
such a set exists, then it is called an isoperimetric region. In the last years this problem
has been of great interest, but only for certain surfaces isoperimetric regions have been
completely classified (see [BC], [P], [T], [HHM1], [HHM2], [R]). A very important
related concept is the one of stability: a stable region is a second order minimum of
perimeter under any variation preserving the area enclosed. Variational formulae for
perimeter and area imply that the boundary of a stable region is composed of curves
with the same constant geodesic curvature. Since any isoperimetric region is stable,
the characterization of the stable regions in a surface is an interesting question in this
setting. Moreover, from a physical point of view, stable regions are more realistic
models since they are just local minima of perimeter, instead of global as it is the
case for an isoperimetric region.

In this paper we deal with these problems in rotationally symmetric tori with
decreasing Gauss curvature from the longest parallel and with a horizontal symmetry.
This is a large family of surfaces, including the standard tori obtained by rotating a
circle in R3 with respect to a line contained in the same plane as the circle, and at
a certain distance, and certain round spheres to which hyperbolic annuli have been
added. We obtain all possible stable regions that may appear, checking as well if they
occur as isoperimetric.

The study of the above questions in surfaces of revolution with decreasing Gauss
curvature has been treated in different works. Benjamini and Cao [BC] proved that in
planes with total positive curvature less than or equal to 2π and with Gauss curvature
decreasing from a pole, the isoperimetric solutions are geodesic disks centered at the
pole. Later, Morgan, Hutchings and Howards [HHM2] solved the problem in the
general case of decreasing Gauss curvature for planes, and also for real projective
planes, annuli with an end of finite area and certain spheres, obtaining that the
solutions are geodesic disks or annuli.
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The proofs of the results in [BC], [P], [T] and [HHM2] involve different isoperi-
metric inequalities, which are relations between the area and the perimeter of a set.
Ritoré uses in [R] another approach, after Schmidt [S], studying the closed embedded
curves with constant geodesic curvature. Since the boundary of any isoperimetric set
consists of curves of this kind, this technique allows to solve, after classifying stable
regions, the isoperimetric problem in planes of revolution, spheres with an equatorial
symmetry and projective planes, with decreasing and also increasing curvature, and
in certain annuli with decreasing curvature.

In this paper we shall follow this second approach in order to classify the sta-
ble regions in rotationally symmetric tori with decreasing Gauss curvature from the
longest parallel and with a horizontal symmetry, and we obtain in our main classifi-
cation Theorem 3.3 disks bounded by constant geodesic curvature curves (symmetric
with respect to such parallel), annuli bounded by two circles of revolution (symmetric
or nonsymmetric with respect to the shortest parallel), unions of vertical annuli (each
one bounded by two vertical geodesics), domains whose boundary is an unduloid type
curve and a circle of revolution, and regions consisting of the union of a disk and
a symmetric annulus. We also check that all these regions appear as stable ones in
certain given surfaces.

Furthermore, we apply this classification to study the isoperimetric problem de-
scribed above. One of the most interesting consequences is that an unduloid type
curve may be part of the boundary of an isoperimetric region. This fact was un-
expected, although this kind of sets had already appeared as solution in a work by
Pedrosa and Ritoré [PR].

We remark that along this paper, we allow the Gauss curvature K to be a piecewise
continuous function on M , which enlarges the family of surfaces considered.

Although the solutions of the isoperimetric problem in a flat torus are well-known
(they are disks for small values of area, and bands, see [H] or [HHM1]), the same
question in the standard torus of revolution has remained open for a long time, as
mentioned in [CHLL], an interesting work solving the double bubble problem in
flat tori. From our classification of stable regions, the solution of the isoperimetric
problem in such surfaces is thus reduced to numerical comparison between candidates.
In Section 4 we roughly describe the isoperimetric regions in these surfaces.

We have organized this paper in several sections. In Section 1 we establish some
notation and preliminaries, show the constant geodesic curvature curves and give some
stability criteria for them. Section 2 is devoted to unduloid type curves: we mainly
prove the existence of closed embedded stable ones in certain surfaces. In Section 3 we
study the stability of regions whose boundary is composed by the curves exposed in
Section 1, describing all possible stable regions in our surfaces (Theorem 3.3). Finally
in Section 4, we make several comments and future directions of research regarding
the isoperimetric problem.

Acknowledgments. The author would like to thank Manuel Ritoré for his continuous
support and kind help during the elaboration of these notes.

1. Preliminaries

Let M be a rotationally symmetric torus, that is, a torus endowed with a one-
parameter group of intrinsic isometries. This kind of surface can be seen as the
quotient of a warped product in the following sense: consider the product S1 × I,
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where I = [−t0, t0] is a real interval, with the Riemannian metric

(1.1) ds2 = dt2 + f(t)2dθ2,

where θ ∈ S1, t ∈ I, and f is a C1 and piecewise C2 positive function defined on
I (that is, f ′′ is continuous on I, except possibly on a finite number of points). We
assume that f(t0) = f(−t0), and f ′(t0) = f ′(−t0) = 0. Then we can identify the
curves S1 × {t0} and S1 × {−t0} in order to obtain the torus M .

We will also assume that M is symmetric with respect to the curve S1 × {0}, that
is, f(t) = f(−t) for all t ∈ [−t0, t0]. And that the Gauss curvature K is a decreasing
function of the distance from S1 × {0}.

The horizontal curves S1 ×{t} have constant geodesic curvature and will be called
circles of revolution or parallels. The vertical curves {θ} × [−t0, t0] are geodesics of
the metric (1.1). They will be named vertical geodesics.

In this setting, the Gauss curvature K only depends on t, and it is given by

K(t) = −
f ′′(t)

f(t)
.

Since f is only assumed to be a piecewise C2 function, the Gauss curvature will be a
piecewise continuous function in general.

Furthermore, for a circle of revolution S1 ×{t}, the length and the geodesic curva-
ture with respect to the normal vector −∂t are given by

L(t) = 2πf(t), h(t) =
f ′(t)

f(t)
.

An important remark is that the function

(f ′)2 − ff ′′ = (2π)−2 L2(K + h2)

and K have the same monotone behavior.

Since K is a decreasing function from S1 × {0} and M is not a flat torus, we
have that K(0) > 0 and K(t0) < 0. Taking into account that (f ′)′ = −Kf , we
obtain that f ′ is strictly negative in (0, t0), so that f is strictly decreasing in (0, t0).
Hence S1 × {0} will be called the longest parallel, and S1 × {t0} will be the shortest

parallel. The symmetry ofM , with respect to S1×{0}, will be referred to as horizontal
symmetry.

We now show two examples of the surfaces considered in this work.

Example 1. The standard torus, obtained by rotating a circle of radius r, whose

center is at distance a from the axis of revolution, yields one of these surfaces, with

continuous Gauss curvature. In this case, the interval I can be taken as [−πr, πr],
and the metric (1.1) is given by the function

f(t) = a+ r cos(t/r),

for t ∈ I, where a > r.

Example 2. Another example is given by the following surface: let S be a sphere of

radius a, where two identical disks, centered at each pole and at height t∗ and −t∗ from

the equator, have been removed. Paste a bounded hyperbolic annulus of curvature −b2

to each boundary component of S in an appropriate way, in order to have a C1 and

piecewise C2 surface. Finally, by identifying the two remaining boundary components

of the annuli we obtain one of our surfaces, now with piecewise continuous Gauss
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curvature. Here the interval I is [−d/b, d/b] and the metric (1.1) is provided by the

function

f(t) =
1

a
cos(a t), t ∈ [0, t∗],

in the upper spherical piece, and

f(t) = c cosh(d− b t), t ∈ [t∗, d/b],

in the upper hyperbolic piece. By the C1-differentiability of f in t∗, it turns that b
must be greater than a tan(a t∗) and then

c2 =
1

a2
cos2(a t∗)−

1

b2
sin2(a t∗),

d = b t∗ + cosh−1

(
cos(a t∗)

a c

)
.
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Figure 1. One of the surfaces described in Example 2, built from a
sphere and two hyperbolic annuli

Remark 1.1. This second example can also be considered with the function

f(t) = cos(a t), t ∈ [0, t∗]

in the upper spherical piece, obtaining other kind of surfaces. These functions are
associated to singular orbifolds with constant Gauss curvature.

1.1. Constant geodesic curvature curves. In this subsection we will describe the
closed embedded curves with constant geodesic curvature appearing in our surfaces.
In the warped product S1 × I, these curves have been well studied in [R] when f is
C2, by using a result by Osserman [O, Lemma 7]. However, such a result is also valid
when f is piecewise C2, and so we can extend most of the consequences to our case.
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Let γ(s) = (θ(s), t(s)) be a curve parametrized by arc-length s in S1 × I. Denote
by dγ/ds the tangent vector to γ, and by σ the oriented angle ∠ (∂t, dγ/ds). Consider
the unit normal vector to γ given by

N =
cosσ

f(t)
∂θ − sinσ ∂t,

and let h be the geodesic curvature of γ with respect to N .

Proposition 1.2. ([R, Prop. 1.1]) With the notation above, the curve γ satisfies the

following system of ordinary differential equations

dt

ds
= cosσ,

dθ

ds
=

sinσ

f(t)
,(1.2)

dσ

ds
= h−

f ′(t)

f(t)
sinσ.

Moreover, if h is constant then, for any c ∈ I, the function

(1.3) f(t) sinσ − h

∫ t

c

f(ξ) dξ

is constant over any solution of (1.2).

Remark 1.3. In view of the system (1.2), it can be checked that a constant geodesic
curvature curve γ in S1× I is periodic with respect to any of the critical points of t|γ .

The function (1.3) is called a first integral of (1.2), and allows, as in [R], to classify
the closed embedded curves with constant geodesic curvature in M , obtaining the
following

Theorem 1.4. Let M be a rotationally symmetric torus with decreasing Gauss cur-

vature from the longest parallel. Assume also that M has a horizontal symmetry. Let

C be a connected closed embedded curve in M with constant geodesic curvature.

Then C is a circle of revolution, a vertical geodesic, a nodoid type curve or an

unduloid type curve.

Consider a constant geodesic curvature curve C in S1 × I, with a strict maximum
t(s0) of the t-coordinate, and let s1 > s0 be the next critical point. If sin(σ(s1)) = 1,
the curve will be called unduloid type curve, and it can be checked that is a periodic
graph over θ. Otherwise, if sin(σ(s1)) = −1, the curve will be a nodoid type curve
and will present points with vertical tangent vector.

We shall summarize some properties of circles of revolution in a warped product
S1 × I.

Lemma 1.5. The geodesic curvature of circles of revolution h(t), computed with

respect to the normal vector −∂t, satisfies the following properties:

i) h(t) is an antisymmetric function on [−t0, t0].
ii) h(t) is increasing in the interval where (f ′)2 − ff ′′ 6 0, and decreasing where

(f ′)2 − ff ′′ > 0.

Remark 1.6. Note that h(0) = 0, and h(−t0) = h(t0) = 0, since f ′(t0) = 0. Moreover,
[(f ′)2 − ff ′′](−t0) = f(−t0)

2 K(−t0) < 0, and [(f ′)2 − ff ′′](0) = f(0)2 K(0) > 0.
Then, as K(t) is increasing in (−t0, 0), Lemma 1.5 gives that h(t) is increasing from
−t0 until the point in (−t0, 0) where (f ′)2 − ff ′′ vanishes, and decreasing from that
point until 0. Consequently, h(t) is positive in [−t0, 0], and negative in [0, t0].
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Figure 2. Nodoid and unduloid type curves in S1 × I

We will now treat when nodoid and unduloid type curves yield closed embedded
curves. We first define the period of an unduloid type curve as the θ-distance between
two consecutive maxima (or minima) points of the t-coordinate.

Lemma 1.7. ([R, Prop. 1.3]) Let C be a curve with constant geodesic curvature in

a warped product S1 × I.

i) If C is a nodoid type curve, it yields a closed embedded curve if and only if

the maximum and the minimum of t|C are in the same vertical line.

ii) If C is an unduloid type curve, it yields a closed embedded curve if and only

if the period of C is equal to 2π/k, with k ∈ N.

1.2. Stability and the index form. Consider a curve C with constant geodesic
curvature h, not necessarily connected, enclosing a certain area of M . Then, it is
well-known that C is a critical point for the length functional, for area-preserving
variations [BP]. We shall say that C is stable if it is a local minimum of perimeter
for any variation of C with fixed area enclosed. If C is contained in an open region
where K is continuous, then the second derivative of length is given by

(1.4) I(u) = −

∫

C

u

{
d2u

ds2
+ (K + h2)u

}
ds,

where u : C → R is the normal component of the vector field associated to the
variation. In this case, we have that the stability of C equivalent to

I(u) > 0, for any function u such that

∫

C

u ds = 0.

A set Ω ⊂ M is called a stable region if ∂Ω is an embedded stable curve with
constant geodesic curvature with respect to the inner normal. This means that the
boundary of a stable region is a second order local minimum for the perimeter when
keeping constant the area enclosed. It is clear that any isoperimetric region is stable.

Hereafter, the quadratic form of (1.4) will be called the index form, and the asso-
ciated self-adjoint operator

(1.5) J(u) =
d2u

ds2
+ (K + h2)u

will be called the Jacobi operator.

A function u : C → R satisfying J(u) = 0 is a Jacobi function. For instance, the
normal component u = 〈N, ∂θ〉 = f(t) cos σ of the Killing vector field ∂θ is always a
Jacobi function. Moreover, Jacobi functions also arise from variations of C keeping
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constant the geodesic curvature along the deformation, since for a variation with
normal component u we have (see [BGS])

dh

dt

∣∣∣∣
t=0

= u′′ + (K + h2)u = J(u).

Given a Jacobi function u, a nodal region is a connected component of the comple-
mentary in C of the set {x ∈ C : u(x) = 0}. By Courant’s Nodal Domain Theorem it
follows that stable connected curves have at most two nodal regions (see [Ch, Ch. I,
pag. 19]).

The next lemma gives a stability condition for circles of revolution.

Lemma 1.8. ([R, Lemma 1.6]) A circle of revolution S1 ×{t} is stable if and only if

(K + h2)(t) 6
4 π2

L2(t)
, or equivalently [(f ′)2 − ff ′′](t) 6 1.

Remark 1.9. Consider t̃ ∈ I such that [(f ′)2 − ff ′′](t̃) = 1. Then the Jacobi operator
for the parallel S1 × {t̃} is

J(u) = u′′ +
1

f(t̃)2
u.

It is easy to check that sin(θ(s)) and cos(θ(s)) are Jacobi functions of S1 × {t̃}.
Moreover, this parallel is the unique stable one with two independent Jacobi functions.

The following lemma treats stable nodoid type curves in M . When they are closed
embedded curves, they bound disks in the surface.

Lemma 1.10. Let C be a closed embedded stable nodoid type curve in M , not con-

tained in a region with constant Gauss curvature. Then C intersects symmetrically

S1 × {0}.

Proof. We give an sketch of the proof, see [R, Lemmata 2.3 and 3.4] for details.
As C is closed and embedded, an analytical reasoning [O, Lemma 7] will give that it
cannot be contained in a region of M with (non-constant) monotone Gauss curvature.
Therefore C will intersect S1 × {0}, or S1 × {t0}. By reflecting the curve, another
application of the same reasoning will show that C is necessarily symmetric with
respect to S

1 × {0}. Finally, if C meets S
1 × {t0}, a suitable function in the index

form yield instability. �

2. Stable unduloid type curves

In this section we will consider unduloid type curves. Our aim is to prove that
closed embedded stable ones may occur in certain rotationally symmetric tori. We
remark that these curves did not appear in any of the surfaces studied in [R]. Stability
will be obtained by using a result from [HL], which involves variations of unduloid
type curves by constant geodesic curvature, and requires the study of the eigenvalue
problem associated to the Jacobi operator.

First, existence of closed embedded unduloid type curves in some surfaces is guar-
anteed from the following result.

Lemma 2.1. Let M be a rotationally symmetric torus with a horizontal symmetry

and decreasing Gauss curvature K from the longest parallel. Assume also that there

exists a parallel S1 × {t̃} in M satisfying [(f ′)2 − ff ′′](t̃) = 1, and such that K is

smooth and strictly decreasing in a neighborhood of S1 × {t̃}.
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Then there are closed embedded unduloid type curves in M , close to S1 × {t̃}.

Proof. Recall that any unduloid type curve is a graph over θ. Then, writing t =
t(θ), σ = σ(θ), the system of ordinary differential equations obtained from (1.2)
which satisfies such a curve is

dt

dθ
= f(t) cot σ,(2.1)

dσ

dθ
= h

f(t)

sin σ
− f ′(t).

Let γ(θ, T, h) = (θ, t(θ, T, h), σ(θ, T, h)) denote the solution of (2.1), with initial
conditions t(0, T, h) = T , σ(0, T, h) = π/2 and geodesic curvature h. For T > t̃, this

means that T is the maximum value achieved by t(θ, T, h). Call h̃ = f ′(t̃)/f(t̃).

Observe that for T = t̃, h = h̃, the solution of (2.1) is (θ, t̃, π/2), the circle
of revolution S1 × {t̃}. We are going to see that for T close enough to t̃, there
exist unduloid type curves with period 2π, so by Lemma 1.7 they will be closed and
embedded.

Note that for (T, h) close enough to (t̃, h̃), the curves γ(θ, T, h) will be unduloid
type ones or circles of revolution by the first integral (1.3), since sinσ > 0.

Let us define the function F by

(2.2) F (T, h) = σ(π, T, h).

Note that if F (T, h) = π/2, the corresponding unduloid type curve γ(θ, T, h) has

period 2π. Clearly F (t̃, h̃) = π/2. We want to find functions h(T ) such that for T
close enough to t̃, F (T, h(T )) = π/2. Let us compute the partial derivatives of F at

(t̃, h̃), which coincide with the partial derivatives of σ at (π, t̃, h̃).

We shall denote by tT (θ), th(θ), (resp. σT (θ), σh(θ)), . . . , the partial derivatives

of the function t(θ, T, h) (resp. σ(θ, T, h)) at (θ, t̃, h̃). Then, Taylor developments at

(θ, t̃, h̃) give

t(θ, T, h) = t̃+ (T − t̃) tT (θ) + (h− h̃) th(θ) + (T − t̃)(h− h̃) tTh(θ)+

1

2
(T − t̃)2 tTT (θ) +

1

2
(h− h̃)2 thh(θ) +

1

6
(T − t̃)3 tTTT (θ) + . . . ,

σ(θ, T, h) = π/2 + (T − t̃)σT (θ) + (h− h̃)σh(θ) + (T − t̃)(h− h̃)σTh(θ)+

1

2
(T − t̃)2 σTT (θ) +

1

2
(h− h̃)2 σhh(θ) +

1

6
(T − t̃)3 σTTT (θ) + . . . .

Moreover, from the definitions of t(θ, T, h) and σ(θ, T, h), we have that tT (0) = 1,
th(0) = tTh(0) = tTT (0) = thh(0) = tTTT (0) = 0, σT (0) = σh(0) = σTh(0) =
σTT (0) = σhh(0) = σTTT (0) = 0.

From (2.1), considering the second equation as

dσ

dθ
= (h− h̃)

f(t)

sin σ
+ h̃

f(t)

sin σ
− f ′(t),

and Taylor developments of the involved functions, we get

dtT
dθ

= −f(t̃)σT ,

dσT

dθ
=

tT

f(t̃)
,

which gives tT (θ) = cos(θ), σT (θ) = sin(θ)/f(t̃).
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In the same way,

dth
dθ

= −f(t̃)σh,

dσh

dθ
= f(t̃) +

th

f(t̃)
,

obtaining th(θ) = f(t̃)2 (cos(θ)− 1), σh(θ) = f(t̃) sin(θ).

Therefore, the gradient of F at (t̃, h̃) is equal to

∇F (t̃, h̃) = (σT (π), σh(π)) = (0, 0).

We now compute the hessian of F at (t̃, h̃). From the equations above we obtain
the following systems.

dtTT

dθ
= −f(t̃)

(
σTT − 2 h̃ tT σT

)
,(2.3)

dσTT

dθ
= f(t̃)

(
1

f(t̃)2
tTT +K ′(t̃) t2T + h̃ σ2

T

)
,

dthh
dθ

= −f(t̃)

(
σhh + 2 h̃ th σh

)
,(2.4)

dσhh

dθ
= f(t̃)

(
2 h̃ th +

1

f(t̃)2
thh +K ′(t̃) t2h + h̃ σ2

h

)
,

dtTh

dθ
= −f(t̃)

(
σTh + h̃ (tT σh + th σT )

)
,(2.5)

dσTh

dθ
= f(t̃)

(
h̃ tT +

1

f(t̃)2
tTh +K ′(t̃) th tT + h̃ σT σh

)
.

Solving these systems, we get that σTT (π) = 0, σTh(π) = ρ/2 and σhh(π) = ρ f(t̃)2,

where ρ = π f(t̃)3 K ′(t̃), and so the hessian of F at (t̃, h̃) is given by

(2.6) ∇2F (t̃, h̃) =

(
0 ρ/2

ρ/2 ρ f(t̃)2

)
.

Therefore ∇2F (t̃, h̃) is non-degenerate, since K is a strictly decreasing function.

Then (t̃, h̃) is a non-degenerate critical point of F . By applying Morse’s Lemma

[Mi, Lemma 2.2] we obtain two planar curves αc, αo with αc(0) = αo(0) = (t̃, h̃)

and such that, for any point (T, h) close to (t̃, h̃) satisfying F (T, h) = π/2, it follows
that (T, h) lies on the trace of αc ∪ αo. Let us study the tangent vectors of both
curves at the origin. Denoting by α one of those curves, we know that F ◦ α = π/2.
Differentiating such an equality we obtain 〈∇Fα, α

′〉 = 0. Differentiating once again
and evaluating at the origin, we have

α′
〈
∇F(t̃,h̃), α

′
〉
= ∇2F(t̃,h̃) (α

′, α′) = 0.

From (2.6), we get α′
c(0) = (1,−1/f(t̃)2) and α′

o(0) = (1, 0). Hence both curves can
be written in terms of T near t̃, because the tangent vectors are not vertical. So there
exist two functions hc(T ), ho(T ) defined in a neighborhood of t̃ such that {(T, hc(T ))}
is the trace of the curve αc, and {(T, ho(T ))} is the trace of αo. Initial conditions
(T, hc(T )) in (2.1) yield circles of revolution, and (T, ho(T )) give unduloid type curves
as solutions (note that h′

c(t̃) = −1/f(t̃)2 and h′
o(t̃) = 0).



10 A. CAÑETE

Since

(2.7) F (T, ho(T )) = (F ◦ αo)(s) = π/2,

we conclude that the unduloid type curves γ(θ, T, ho(T )) have period 2π, and so they
are closed and embedded. �

We now focus on the stability of closed embedded unduloid type curves. A first
remark is that stable ones will present a unique maximum point (and therefore a
unique minimum point) for the t-coordinate. Otherwise, the normal component of
the rotations vector field will have more than two nodal regions, yielding instability
by applying Courant’s Nodal Domain Theorem. In view of Lemma 1.7, this fact is
equivalent to that the period of closed embedded stable unduloid type curves equals
2π.

0 2

t

q?

Figure 3. A closed embedded stable unduloid type curve in S1 × I

The following lemma states another necessary condition for stability.

Lemma 2.2. Let C be a closed embedded stable unduloid type curve in M , not

contained in the region {(f ′)2 − ff ′′ = 1}. Then there are points of C satisfying

(f ′)2 − ff ′′ > 1, and other ones satifying (f ′)2 − ff ′′ < 1.

Proof. Suppose first that C lies in a region where (f ′)2 − ff ′′ 6 1. Then, by [R,
Lemma 2.3], its period is greater than 2π, and so it is not a closed embedded curve
by Lemma 1.7. Assume now that C lies in a region where (f ′)2 − ff ′′ > 1. Then its
period is less than 2π (see [R, Lemma 2.13] for details), and so C will present more
than one maximum point for the t-coordinate, contradicting stability. �

In view of the Jacobi operator (1.5), we can consider the eigenvalue problem asso-
ciated to a closed embedded unduloid type curve C in M :

(2.8) J(u) + λu = 0,

with u : C → R a C2 function.

We will call eigenvalues to the real numbers λ for which there exist functions satisfying
(2.8). Such functions will be named eigenfunctions associated to λ. We recall some
well-known general facts about this problem.

Lemma 2.3. ([CL, Chapter 8, Theorem 2.1],[Ch]) Given a curve C, the eigenvalues

associated to the Jacobi operator form an increasing sequence {λi}i>1. Furthermore,

the space of eigenfunctions Vλi
associated to λi, when considering an eigenvalue prob-

lem with boundary conditions, is one-dimensional and each φi ∈ Vλi
has exactly i− 1

zeros.

We will now show some results regarding the eigenvalue problem (2.8), necessary
for our purposes.
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Lemma 2.4. Let C be a closed embedded unduloid type curve in M . Then the first

eigenvalue for the Jacobi operator associated to C is negative, and the second eigen-

value is non-positive.

Proof. Consider the normal component u of the rotations vector field on M , which
is a Jacobi function. Therefore the restriction of u to C is an eigenfunction for the
associated eigenvalue problem (2.8) with zero eigenvalue.

It is easy to check that u gives at least two nodal regions in C, since the period of
C must be 2π/k, for some k ∈ N, by Lemma 1.7. Therefore, by applying Courant’s
Nodal Domain Theorem, the statement follows. �

Remark 2.5. Closed embedded stable curves have non-negative second eigenvalue
λ2 for the above eigenvalue problem (2.8). From Lemma 2.4 it follows that closed
embedded stable unduloid type curves in M verify λ2 = 0.

Remark 2.6. Given C a nodoid type curve in M , the same reasoning as above shows
that Lemma 2.4 also holds when C is closed and embedded.

Let λ be an eigenvalue of (2.8) for a given closed embedded unduloid type curve
C, with associated eigenfunction u. Call fundamental piece of C to any region of
C delimited by a maximum point of the t-coordinate, and the consecutive minimum
point. By considering the vertical reflection with respect to a maximum point of the
t-coordinate of C, we can express u = us+ua, where us is a symmetric eigenfunction
satisfying the Neumann boundary condition in any fundamental piece C′ of C, and ua

is an antisymmetric eigenfunction satisfying the Dirichlet boundary condition in C′,
both of them with eigenvalue λ. We will also name λN

i (C′), λD
i (C′) to the eigenvalues

associated to C′ for the Neumann and Dirichlet eigenvalue problem, respectively.

Recall that λ1 < 0 by Lemma 2.4. Therefore, the above reasoning leads to a
negative Dirichlet eigenvalue in C′, which is not possible since λD

1 (C′) = 0. Then
ua = 0, and so u = us. Consequently, λ1 coincides with λN

1 (C′).

Now consider the second eigenvalue λ2 in C. If it is negative, then the curve is
unstable, and moreover, an analogous treatment will give λ2 = λN

2 (C′) [BB]. On the
other hand, if λ2 > 0, then necessarily λ2 = 0 by Lemma 2.4.

We will now study the period of unduloid type curves, not necessarily closed and
embedded. For γ(θ, T0, h), such a period is defined as the θ-distance between two
consecutive maximum points (or minimum points) for the t-coordinate. If we move
slightly the maximum point T , keeping constant the geodesic curvature, the period
of γ(θ, T, h) only depends on T , and then the derivative of the period with respect to
T , at T = T0, can be considered.

Lemma 2.7. ([PR, Corollary 2.8]) Consider an unduloid type curve C in M, close

enough to S1 × {t̃}. Let C′ be a fundamental piece of C. Then the second eigenvalue

λN
2 (C′) of the Neumann problem for the Jacobi operator in C′ is positive if and only

if the derivative of the period with respect to the maximum point is positive.

Proof. Call C = γ(θ, T0, h) and consider the variation by unduloid type curves given
by γ(θ, T, h), with T close to T0 and h fixed. It can be checked that the associated
variational function u is a Jacobi function satisfying u(0) = 1, u′(0) = 0 and u′′(0) < 0,
and so u′(ε) < 0 for positive ε close to 0.

Assume first that the derivative is positive, and let us find a convenient expression
of it. Let θ2 > 0 be the first instant where the t-coordinate of C achieves a minimum.
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Therefore σ′(θ2) < 0, and [0, θ2] yields a fundamental piece of C, say C′. By applying
Implicit Function Theorem to σ(θ, T ) at (θ2, T0), we obtain a function θ(T ) such that
σ(θ(T ), T ) = π/2, and so θ(T ) gives (half) the period of γ(θ, T, h). Straightforward
calculations for computing θ′(T ) show that the desired derivative equals

2 u′(θ2)

f(t(θ2, T0)) σ′(θ2)
.

Since we are assuming that such a value is positive, then we have u′(θ2) < 0.

We will focus now on the interval (0, θ2). Observe that u will have at most one
zero on such interval. Otherwise, by considering two consecutive zeroes θ3, θ4, it
turns that the first eigenvalue of the Dirichlet problem in (θ3, θ4) is zero (recall that
u is a Jacobi function), and then λD

1 (C′) will be strictly negative, by the monotone
property of eigenvalues [Ch], which is contradictory.

On the other hand, u′ does not vanish in (0, θ2). Since u′(ε) < 0 for ε > 0, and
u′(θ2) < 0, if u′ has a zero then u′′ will have two zeroes. As u′′ + (K + h2)u = 0, it
follows that u will vanish twice in (0, θ2), and we would proceed as above.

Let θ3 be the first zero of u′ greater than θ2. As u′ is strictly negative in (0, θ3)
and vanishes at the extremes, then u′′ changes its sign in (0, θ3). It follows that
u is strictly decreasing and vanishes only once in (0, θ3). By Lemma 2.3, u is the
second eigenfunction of the Neumann problem in C|(0,θ3), and the associated second
Neumann eigenvalue is zero. By the monotone property of eigenvalues we conclude
that λN

2 (C′) > 0.

Assume now that λN
2 (C′) > 0. If the derivative of the period is negative, by

applying directly [PR, Cor. 2.8] we obtain that λN
2 (C′) < 0, a contradiction. If the

derivative of the period is zero, same reasoning as above leads to λN
2 (C′) = 0, again

a contradiction. So the derivative must be positive and the statement follows. �

The next lemma determines the sign of the derivative of the period of closed em-
bedded unduloid type curves (close enough to S1 × {t̃}) by means of the following
intrinsic condition on the surface.

Lemma 2.8. Consider a surface S1 × I under the conditions of Lemma 2.1.

Then, the derivative of the period of closed embedded unduloid type curves with

respect to T is strictly positive, for T > t̃ close enough, if and only if

(2.9) 3K(t̃) (1 − f(t̃)) + 3 f(t̃)2 (h̃ K ′(t̃)−K ′′(t̃)) + 5 f(t̃)4 K ′(t̃)2 > 0.

Proof. Fix T0 > t̃ close enough, and ho(T0) as geodesic curvature in order to compute
the desired derivative at T = T0. It is clear that such a derivative will be strictly
positive if and only if the derivative of the period at T = t̃ is strictly positive, for
constant geodesic curvature h̃ = h(t̃) (note that the derivative will preserve the same

sign in an approppiate neighborhood of (t̃, h̃)).

Denote by t(θ, T ), σ(θ, T ) to the solutions of (2.1) with initial conditions t(0, T ) =

T , σ(0, T ) = π/2, and geodesic curvature h̃.

We search a function θ : R → R verifying σ(θ(T ), T ) = π/2. If such a function

exists, θ(T ) will give the (half) period of γ(θ, T, h̃).

Consider the auxiliar function F given by

(2.10) σ(θ, T )− π/2 = (T − t̃)F (θ, T ),
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and extended continuously in (θ, t̃). That is,

F (θ, t̃) = σT (θ, t̃) =
sin(θ)

f(t̃)
.

Observe that F (π, t̃) = 0. Moreover, for T 6= t̃, we have that F (θ, T ) = 0 if and only
if σ(θ, T ) = π/2.

From Taylor development of σ(θ, T ) of Lemma 2.1 we have

(2.11) F (θ, T ) = σT (θ) +
1

2
σTT (θ) (T − t̃) +

1

6
σTTT (θ) (T − t̃)2 +O((T − t̃)3).

By differentiating (2.11),

∂F

∂θ
(π, t̃) = σ′

T (π) =
−1

f(t̃)
6= 0.

By applying the Implicit Function Theorem, there exists θ(T ), for T close to t̃, such
that θ(t̃) = π, and

(2.12) F (θ(T ), T ) = 0,

equivalently σ(θ(T ), T ) = π/2. So this function θ(T ) gives the period of the unduloid

type curve γ(θ, T, h̃).

We now compute the derivative of θ(T ). Since

θ(T ) = θ(t̃) + θ′(t̃) (T − t̃) +
1

2
θ′′(t̃) (T − t̃)2 +O((T − t̃)3),

we have

(2.13) θ′(T ) = θ′(t̃) + θ′′(t̃) (T − t̃) +O((T − t̃)2).

From (2.12) it follows that

θ′(T ) = −
∂F/∂T

∂F/∂θ
(θ(T ), T ).

Evaluating in T = t̃, and taking into account (2.11), we have

θ′(t̃) =
−σTT (π)

2 σT (π)
=

1

2
f(t̃)σTT (π).

From (2.6), σTT (π) = 0, and hence θ′(t̃) = 0.

Differentiating once again (2.11) and evaluating at T = t̃, since θ′(t̃) = 0 we get

θ′′(t̃) =
−∂2F/∂T 2

∂F/∂θ
(π, t̃) =

−σTTT (π)

3 σ′
T (π)

=
1

3
f(t̃)σTTT (π).

In view of (2.13), the sign of θ′(T ), for T > t̃, depends on σTTT (π). In order to
compute this value, we first have to solve the system of differential equations for tTTT

and σTTT , which can be obtained as in Lemma 2.1. Straightforwards calculations
give

σTTT (π) =
π

8 f(t̃)

{
3K(t̃) (1− f(t̃))+(2.14)

3 f(t̃)2 (h̃ K ′(t̃)−K ′′(t̃)) + 5 f(t̃)4 K ′(t̃)2
}
,

which finishes the proof. �
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We finally state the key result in order to prove the existence of closed embedded
unduloid type curves which are stable. We will apply the results appearing in [HL]
(see also [K]). Consider a torus of revolution under the conditions of Lemma 2.1, and
let γT0

= γ(θ, T0, ho(T0)) be a closed embedded unduloid type curve, with T0 close
enough to t̃, T0 > t̃. We know that γ(θ, T, ho(T )) is a family of closed embedded
unduloid type curves, for T close to T0. Then we have

Lemma 2.9. ([HL, Lemma 2], [K, Theorem 1.3]) Assume λ1 < 0 6 λ2 for the Jacobi

operator in γT0
, with the notation above. Then γT0

is stable if and only if

dho

dT

da

dT
< 0,

at T = T0, where
da
dT is the change of area induced by the variation γ(θ, T, ho(T )).

2.1. Standard tori of revolution. We now focus on standard tori of revolution of
Example 1, given by f(t) = a+ r cos(t/r) and t̃ = πr/2. We will see that there exist
closed embedded unduloid type curves which are stable in some of these surfaces.

Firstly observe that the assumptions of Lemma 2.1 are verified on any standard
torus, and so there will exist a family of closed embedded unduloid type curves
parametrized by the maximum point of the t-coordinate.

We also point out that the condition shown in Lemma 2.8 is satisfied, since the left
term in (2.9) is equal to

5 a2 + 9 r2

r4
,

which is strictly positive. Therefore the derivative of the period of unduloid type
curves with respect to the maximum point will be positive, for T > t̃. This allows to
compute the second eigenvalue for the Jacobi operator associated to these curves.

Lemma 2.10. Let C be a closed embedded unduloid type curve in a standard torus

of revolution, close enough to S1 × {t̃}. Then the second eigenvalue λ2 for the Jacobi

operator in C is equal to zero.

Proof. From Lemma 2.4 we know that λ2 6 0. Assume that λ2 < 0. Hence, reasonings
of this Section give that, for any fundamental piece C′ of C, λN

2 (C′) = λ2 < 0. This
fact yields a contradiction with Lemma 2.7, and so λ2 = 0. �

Lemma 2.11. Let M be a standard torus of revolution of Example 1 with r < a < 3 r.
Then, there exist closed embedded unduloid type curves which are stable.

Proof. Consider the family γ(θ, T, ho(T )) of closed embedded unduloid type curves
given in Lemma 2.1, with T > t̃ close enough. Fix C one of these curves. By
Lemmae 2.4 and 2.10, we can apply Lemma 2.9 to study the stability of C.

By differentiating (2.7), it follows that

FT + Fh h
′
o = 0

and

FTT + 2FTh h
′
o + Fhh (h

′
o)

2 + Fh h
′′
o = 0.

Differentiating once again and evaluating at T = t̃, taking into account that h′
o(t̃) =

0 and Fh(t̃, h̃) = σh(π) = 0, we obtain

FTTT (t̃, h̃) + 3FTh(t̃, h̃)h
′′
o(t̃) = 0,



STABLE REGIONS IN ROTATIONALLY SYMMETRIC TORI 15

and so

(2.15) h′′
o(t̃) =

−FTTT (t̃, h̃)

3FTh(t̃, h̃)
=

−σTTT (π)

3 σTh(π)
=

−σTTT (π)

3 ρ/2
,

with ρ as defined in (2.6). Since M is a standard torus of revolution, by (2.14) we
conclude that

h′′
o(t̃) =

9 r2 + 5 a2

12 a3 r2
> 0,

so h′
o(T ) is strictly increasing in T = t̃, and then positive for T > t̃.

On the other hand, since the associated vector field induced by the variation
γ(θ, T, ho(T )) is (tT + h′

o th) ∂t, we have that the derivative of the area along this
deformation is equal to

∫ 2π

0

f(T )

(
tT (θ) + h′

o(T ) th(θ)

)
dθ,

which vanishes when evaluated at T = t̃.

Moreover, the second derivative of the area at T = t̃ is given by
∫ 2π

0

(f ′(t̃) tT (θ)
2 + f(t̃) (tTT (θ) + h′′

o (t̃) th(θ))) dθ,

which equals
(a2 − 9 r2)π

6 r2
< 0,

since a < 3 r. Hence, the derivative of the area is strictly decreasing in T = t̃, and so,
strictly negative for T > t̃. By applying Lemma 2.9, we conclude that C is stable. �

3. Stable regions

In this section we will describe the different stable regions that can appear in our
surfaces. As we know which are the stable constant geodesic curvature curves by the
previous Section, we will check which combinations of them bound stable regions.

Lemma 3.1. ([R, Lemma 1.7]) Consider an annulus S1× [t1, t2] in M . Its boundary

is stable if and only if each component S1 × {ti} is stable (i = 1, 2) and

(3.1)
K + h2

L
(t1) +

K + h2

L
(t2) 6 0.

In the case of a symmetric annulus S1 × [−t, t], above conditions are equivalent to

(K + h2)(t) 6 0.

The above result completely characterizes the stable annuli bounded by parallels.
It yields that S1 × [t,−t] is stable for t ∈ (−t0, tc), with tc the supremum of the
points in [−t0, 0] where K+h2 (or equivalently (f ′)2−ff ′′) is nonpositive. Moreover,
S1× [tc,−tc] is stable if and only if (K+h2)(tc) = 0 (recall the possible discontinuities
of K). As h′ = −(K+h2), it is clear that h(t) is increasing in (−t0, tc) and decreasing
in (tc, 0). Let t̃ ∈ [tc, 0] be the infimum ot the points where L2(K + h2) > 4 π2

(equivalently (f ′)2−ff ′′ > 1). Then, taking into account Lemma 1.8 and Remark 1.6,
it follows that for any t′ ∈ (tc, t̃), S

1 × {t′} is stable and there exists a unique t′′ ∈
(−tc, t0) satisfying that S1 × [t′, t′′] is a nonsymmetric annulus whose boundary has
constant geodesic curvature.
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In the light of Lemma 2.2, stable domains bounded by an unduloid type curve and
a circle of revolution will appear if all nonsymmetric annuli S1× [t′, t′′], for t′ ∈ (tc, t̃),
are stable, and the first of such domains will arise from the annulus corresponding to
t′ = t̃.

A vertical annulus is a set bounded by two vertical geodesics. The following result
proves that the union of vertical annuli is always stable.

Lemma 3.2. Any union of finite disjoint vertical annuli is a stable region.

Proof. Given a vertical geodesic C, we shall first prove that its length is less than
or equal to the length of any other closed embedded curve D, with the same type of
homothopy and near enough to C.

Let N denote the unit normal vector field to the set of all vertical geodesics,
which can be properly extended to M . In fact, N = 1

f ∂θ. Then, div (N) = 0. We

can assume without loss of generality that D intersects C, consider two consecutive
intersection points p1, p2, and call Σ to one of the domains bounded by the pieces of
C and D between p1 and p2. By applying the Divergence Theorem to N in Σ, we
easily conclude that the length of C is less than or equal to the length of D.

Now it is clear that for a vertical annulus Ω, any variation of ∂Ω preserving the
area enclosed will give more perimeter at each instant, so ∂Ω will be a local minimum
for the length while keeping constant the area. Therefore Ω is stable. Notice that the
same argument holds for an arbitrary union of disjoint vertical annuli. �

Now we can state our Main Theorem, describing all possible stable regions in our
surfaces.

Theorem 3.3. Let M be a rotationally symmetric torus with a horizontal symmetry

and with possibly discontinuous, decreasing Gauss curvature from the longest parallel.

Then the stable regions in M may be:

i) disks bounded by constant geodesic curvature curves, which are symmetric with

respect to the longest parallel, or contained in a region with constant Gauss

curvature, and their complements,

ii) annuli symmetric with respect to the shortest parallel, bounded by circles of

revolution contained in the region K + h2 6 0, and their complements,

iii) nonsymmetric annuli bounded by circles of revolution contained in the region

K + h2 6 4 π2

L2 and verifying condition (3.1), and their complements,

iv) unions of vertical annuli bounded by vertical geodesics,

v) annuli bounded by an unduloid type curve satisfying Lemma 2.2, and a circle

of revolution contained in K + h2 < 0, and their complements,

vi) unions of a disk and a symmetric annulus with the same geodesic curvature,

in the above conditions, and their complements.

Proof. Let Ω be a stable region in M . Then ∂Ω is an embedded stable curve (not
necessarily connected) with constant geodesic curvature with respect to the inner
normal. By Theorem 1.4, ∂Ω will consist of a union of circles of revolution, vertical
geodesics, nodoid type curves and unduloid type curves.

First observe that no more than two circles of revolution can appear in ∂Ω, because
the geodesic curvatures will not coincide in view of Remark 1.6.
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Let C1, C2 denote two closed embedded curves with constant geodesic curvature.
Assume that the first eigenvalues for the Jacobi operator (1.5) satisfy λ1(C1) 6 0 and
λ1(C2) < 0. We will see that C1 ∪ C2 is an unstable curve.

Fix φ1 (resp. φ2) an eigenfunction associated to λ1(C1) (resp. λ1(C2)). Then we
have J(φ1) + λ1(C1)φ1 = 0. Take α ∈ R such that

α

∫

C1

φ1 +

∫

C2

φ2 = 0.

Hence the function

u =

{
αφ1, in C1,
φ2, in C2

has mean zero and gives

I(u) = α2 λ1(C1)

∫

C1

φ2
1 + λ1(C2)

∫

C2

φ2
2 < 0,

so C1 ∪ C2 is not stable.

We know that the first eigenvalue for the Jacobi operator is negative in unduloid
type curves, by Lemma 2.4, and in nodoid type curves, by Remark 2.6. Moreover, for
a parallel S1 × {t}, it is easy to check that

λ1(t) = −
(f ′)2 − ff ′′

f2
(t) = −(K + h2)(t).

Hence λ1(t) is negative if (K + h2)(t) > 0, and vanishes if (K + h2)(t) = 0. Finally,
for any vertical geodesic C, f |C is a positive eigenfunction with zero eigenvalue, and
so λ1(C) = 0.

In case an unduloid type curve belongs to ∂Ω, it follows from the above arguments
that necessarily Ω is a set bounded by such a curve and a circle of revolution S

1×{t}
with positive first eigenvalue, equivalently (K + h2)(t) < 0, and then Ω is a region of
type v).

In case a nodoid type curve belongs to ∂Ω, an analogous reasoning will give that
Ω is a region of type i) (by Lemma 1.10) or of type vi).

Assume now that the boundary of Ω does not contain neither an unduloid type
curve nor a nodoid type curve. By Lemma 3.2, any region of type iv) is stable, and if
circles of revolution appear in ∂Ω, the remaining possibilities are regions of type ii),
by Lemma 3.1, and of type iii), by Lemma 1.8 and the first observation above in the
proof. �

Remark 3.4. We will now check that sets of type v), annuli bounded by an unduloid
type curve and a circle of revolution, appear as stable regions in some surfaces. Con-
sider a standard torus of revolution of Example 1, with r < a < 3 r. Denote by γT
the unduloid type curve γ(θ, T, ho(T )), with initial condition T close to t̃ = πr/2. By
Lemma 2.11, these curves are stable. Let ΩT be the annulus bounded by γT , and the
corresponding circle of revolution S1 × {t(T )}, with positive first eigenvalue (that is,
contained in K + h2 < 0) and with the same geodesic curvature with respect to the
inner normal. Let us prove that ΩT is stable.

Consider u any mean zero function defined on ∂ΩT , normalized so that
∫
∂Ω u2 = 1,

and let u1, u2 be the restrictions of u to γT and S1×{t(T )}, respectively. It is possible
to express ui = ci+vi, with ci a real constant and vi a mean zero function, for i = 1, 2.
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We have

I(u) = I(u1) + I(u2) =

− c21

∫

γT

(K + h2) − 2 c1

∫

γT

v1 (K + h2)− c22 L(t(T )) (K + h2)(t(T ))+

I(v1, v1) + I(v2, v2).

Observe that I(vi, vi) > 0 by the stability of each boundary curve. Moreover, the
mean zero condition on u gives c1 L(γT ) = −c2 L(t(T )), where L(γT ) denotes the
lenght of γT , and so

I(u) >− c21 L(γT )
2

(∫
γT

(K + h2)

L(γT )2
+

(K + h2)(t(T ))

L(t(T ))

)
−(3.2)

2 c1

∫

γT

v1 (K + h2).

When T is close to t̃, it follows that γT is close to S1 × {t̃} and, consequently,
ΩT is close to the nonsymmetric annulus associated to t̃, namely S1 × [t′, t̃]. Since
this annulus satisfies strictly the stability condition (3.1), we conclude that the first
summand in (3.2) is positive for T close enough to t̃.

On the other hand, denoting by v+1 = max{v1, 0} and v−1 = −min{v1, 0} we have
that v1 = v+1 − v−1 , and so

∫

γT

v1 (K + h2) =

∫

γT

v1 K =

∫

γT

v+1 K −

∫

γT

v−1 K 6

K(s1)

∫

γT

v+1 −K(s2)

∫

γT

v−1 ,

where K(s1) = maxγT
K and K(s2) = minγT

K. Since γT lies in a narrow band
around S1 × {t̃}, we have K(s1)−K(s2) = εT , so that K(s1) = K(s2) + εT and so

∫

γT

v1 (K + h2) 6 εT

∫

γT

v+1 .

q

t

t̃

= T

1
s

2
s

0

Figure 4. The unduloid type curve γT and the circle of revolution
S1 × {t̃}

Hence
∣∣∣∣
∫

γT

v1 (K + h2)

∣∣∣∣ 6 εT

∣∣∣∣
∫

γT

v+1

∣∣∣∣ 6 εT

(∫

γT

(v+1 )
2

) 1

2

L(γT )
1

2 .
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Since ∫

γT

(v+1 )
2 6

∫

γT

v21 6

∫

γT

u2
1 =

∫

γT

u2 6 1,

we obtain ∣∣∣∣
∫

γT

v1 (K + h2)

∣∣∣∣ 6 εT L(γT )
1

2 ,

so that the second summand in (3.2) is negligible, when T is close enough to t̃. We
conclude that I(u) is positive and hence ΩT is stable, for T close to t̃.

Remark 3.5. We will now show that sets of type vi), unions of a disk and a symmetric

annulus, actually occur as stable regions in some surfaces. Let M̃ be one of the surfaces
of the family described in Example 2, obtained from a sphere and two hyperbolic
annuli.

Given a disk D ⊂ M̃ , bounded by a closed embedded nodoid type curve, and

a symmetric annulus B ⊂ M̃ with h(∂D) = h(∂B) = h with respect to the inner
normal, following lemma states the stability condition for Ω = D ∪B.

Lemma 3.6. In the above conditions, Ω = D∪B ⊂ M̃ is stable if and only if D and

B are stable sets, and

(3.3)
(a2 + h2)3/2

2π
−

(b2 − h2)3/2

4πbc
6 0,

where a2 and − b2 are respectively the Gauss curvatures of the initial sphere and

hyperbolic annuli, and 2πc is the minimum length of a circle of revolution contained

in the hyperbolic piece.

Proof. Suppose first that D and B are stable and (3.3) holds. Let u be a mean zero
function defined on ∂Ω, and name u1, u2 the restrictions of u to ∂D, ∂B, respectively.
It is possible to express ui = ci + vi, with c1, c2 real constants and v1, v2 mean zero
functions on ∂D and ∂B. These decompositions easily allows to check that

I(u) = I(u1) + I(u2) > I(c1) + I(c2)

= −L(∂D) c21 (a
2 + h2)− L(∂B) c22 (−b2 + h2),

since vi has mean zero and D and B are stable, and where L denotes the length. The
mean zero value condition of u gives c1 L(∂D) = −c2 L(∂B), and then

I(u) > −L2(∂D) c21

(
a2 + h2

L(∂D)
+

−b2 + h2

L(∂B)

)
.

By Lemma 3.1 we know that B = S1 × [−t, t] will be contained in the hyperbolic
piece since it is stable. Then

L(∂B) = 2L(t) = 4πc cosh(d− bt) = 4πbc (b2 − h2)−1/2,

where in the last equality we have used that h(t) = h. Straightforward calculations
give that L(∂D) = 2π (a2 + h2)−1/2. Therefore

(3.4) I(u) > −L2(∂D) c21

(
(a2 + h2)3/2

2 π
−

(b2 − h2)3/2

4πbc

)
.

As we are assuming that (3.3) is verified, then (3.4) is nonnegative, and so Ω is stable.

Assume now that Ω is a stable region. Then clearly D and B are also stable.
Consider the mean zero function

(3.5) u =

{
L(∂D), ∂B,
−L(∂B), ∂D.



20 A. CAÑETE

Using this function in the index form, we will have I(u) > 0 by the stability of Ω,
which trivially gives (3.3). �

The above lemma gives us the existence of surfaces where sets of type vi) are stable.

For instance, consider the surface M̃ given by a = 1, t∗ = π/6, with b = 0.578 and
c = 0.0410512. Then it can be checked that, for geodesic curvature h = 0.4, there
exists a stable union of a disk and a symmetric annulus.

4. Isoperimetric regions

Since we are studying compact surfaces, well-known results from geometric mea-
sure theory [M] ensure the existence of isoperimetric solutions for any value of the
area. Moreover, as any isoperimetric region is stable, the candidates are given by
Theorem 3.3. We first discard sets of tipe iv) composed by several vertical annuli.

Lemma 4.1. The union of two or more vertical annuli is not an isoperimetric region.

Proof. Simply rotate a vertical annulus until meeting another one and, after elimi-
nating the duplicated vertical geodesic, we get a less-perimeter region enclosing the
same area. �

The following lemma shows that when the boundary of an isoperimetric region is
an unduloid type curve and a circle of revolution, some restrictions appear. Call lower
half of M to S1 × [−t0, 0] and upper half to S1 × [0, t0].

Lemma 4.2. Let Ω be an isoperimetric region in the warped product S1 × [−t0, t0]
bounded by an unduloid type curve C and a circle of revolution S1 × {t}. Then

i) C and S1 × {t} are not contained in the same half.

ii) C does not intersect S1 × {−t}.

Proof. Without loss of generality we can assume that t ∈ [−t0, 0]. Since Ω has to be
stable, by Theorem 3.3 we have (K + h2)(t) < 0. Consequently, t ∈ [−t0, tc].

i) Suppose both curves lie in the half S1 × [−t0, 0]. Call tm, tM the minimun and
the maximum of t|C , respectively. If t = −t0, it can be checked by using (1.3) that
f(tm) = f(tM ), and then C intersects symmetrically S

1 × {0}. This contradicts the
fact that C is contained in the lower half. Hence t 6= −t0. Since C has to intersect
(f ′)2 − ff ′′ = 1, it will be necessarily contained in S1 × [t, 0]. But then we can
construct a new set enclosing the same area with strictly less perimeter: consider a
parallel S1×{t∗} intersecting C, with t∗ close to tM , and replace the piece of C above
the parallel by the corresponding segment of parallel. Also replace S×{t} by S×{t}
with t < t. There exist appropriate t∗ and t for which the new set encloses the same
area and it can be checked that it has less perimeter, which is contradictory since Ω
is isoperimetric.

ii) Suppose C intersects S1 × {−t}. Replace the piece of C above the parallel
S1 × {−t} by the corresponding segment of the parallel. By reflecting the replaced
piece with respect to S1 × {0} and removing a segment of S1 × {t}, we obtain a new
set with the same perimeter and enclosing the same area that Ω, but with no regular
boundary, which is a contradiction. �

Remark 4.3. Assume that a disk with constant geodesic boundary, and contained in
a region with constant Gauss curvature, is a component of an isoperimetric region.



STABLE REGIONS IN ROTATIONALLY SYMMETRIC TORI 21

Then, by using a comparison argument ([R], Lemma 2.7), it can be checked that such
a constant is precisely the maximum of the Gauss curvature.

4.1. Isoperimetric regions in standard tori. We will now focus on standard tori
described in Example 1. Denote by β the total area of a given torus. Fixing the value
of a, we have studied the isoperimetric solutions for the different values of r.

Theorem 4.4. Consider a standard torus, parametrized by r and a, with r 6 a/2.
Then the isoperimetric regions are disks with constant geodesic curvature, and vertical

annuli, and their complements.

Proof. Since r 6 a/2, it is easy to see that the length of any circle of revolution,
and therefore of any unduloid type curve, is greater than or equal to the length of a
vertical geodesic. This fact reduces the candidates to disks and vertical annuli, which
actually appear as isoperimetric. �

When r > a/2 we have observed, with numerical computations, different behaviors
as r increases. For values of r close to a/2, it happens as in Theorem 4.4; there are also
values of r for which disks (or complements of them) are solutions for any quantity of
the area; then, there exists an interval for r where the isoperimetric regions are disks,
symmetric annuli afterwards, and finally disks for values of the area near β/2; and for
r close enough to a, we get disks, symmetric annuli, nonsymmetric annuli and disks
again as solutions.

The perimeter of the isoperimetric candidates, as a function of the area enclosed,
is depicted in two different standard tori of revolution in Figure 5. In each graph,
the curve starting from the origin corresponds to the perimeter of disks, and the
above one not touching the vertical axis corresponds to the perimeter of unions of
a disk and a symemtric annulus. In the first graph, we observe that the perimeter
of disks is less than any other set, for any quantity of area. However, in the second
one, symmetric and nonsymmetric annuli are also solutions (the black dots show the
transition between symmetric and nonsymetric annuli, and between nonsymmetric
annuli and sets of type v)).
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(a) r = 0.77 a
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(b) r = 0.9 a

Figure 5. Graphs showing the perimeter of each candidate in two
different standard tori

Remark 4.5. We have not found any stardard torus where a domain bounded by an
unduloid type curve and a circle of revolution is an isoperimetric region.
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Remark 4.6. We have observed numerically that for any standard torus, the isoperi-
metric region for area β/2 is either a disk with constant geodesic boundary, or a
vertical annulus. We will see that this fact does not hold in others surfaces.

4.2. Isoperimetric regions in M̃ . Consider now the surfaces M̃ introduced in Ex-
ample 2 and call as above β the total area of the surface. We have studied carefully
the isoperimetric problem in this case, specially when vertical annuli have too much
perimeter (that is, when hyperbolic annuli are long enough), and hence they are
not isoperimetric solutions. In this setting, we have seen that isoperimetric regions
are disks bounded by constant geodesic curvature curves for small areas (entirely
contained in the spherical piece, where the Gauss curvature achieves constantly its
maximum), and afterwards symmetric annuli (with its boundary contained in the
hyperbolic piece); or disks, all symmetric annuli which are stable, and finally non-
symmetric annuli for quantities of area near β/2 (with a circle of revolution of its
boundary in the spherical piece, and another one in the hyperbolic part).

Annuli bounded by an unduloid type curve and a circle of revolution also appear as
isoperimetric regions in these surfaces. Consider a nonsymmetric annulus which is an

isoperimetric region in M̃ . By rotating slightly the spherical piece, keeping unchanged
the hyperbolic annuli, we will obtain another isoperimetric region, since area and
perimeter are preserved. This new region is now bounded by an unduloid type curve
(contained in the spherical part) and a circle of revolution (in the hyperbolic one).

Then we have

Theorem 4.7. Let M̃ be one of the surfaces described in Example 2, obtained from

a sphere and a hyperbolic annulus. Then the isoperimetric regions may be disks with

constant geodesic boundary, symmetric or nonsymmetric annuli, annuli bounded by

an unduloid type curve and a circle of revolution, unions of a disk and a symmetric

annulus, vertical annuli or the complement of one of these sets.

Remark 4.8. In [PR, Prop. 3.4.] it is proved that in high dimensions, there are
isoperimetric domains bounded by hypersurfaces of revolution generated by unduloid
type curves. Up to our knowledge, this kind of curves had not appear as part of the
boundary of an isoperimetric solution in any surface. The above result shows that
this fact may occur.

Remark 4.9. Note that for a surface M̃ of Example 2, symmetric annuli, nonsymmetric
annuli and annuli bounded by an unduloid type curve and a circle of revolution may
be isoperimetric solutions for area β/2.

Remark 4.10. Although a set consisting of a disk and a symmetric annulus can be
stable (Lemma 3.6), we have not found any surface where such a region is isoperimet-

ric. For instance, this kind of sets does not appear in most of the surfaces M̃ , since
the constant geodesic curvature condition is hardly verified. However, it seems that
only a length comparison argument might discard them as isoperimetric.
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