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Abstract. We consider the problem of providing systems of equations char-
acterizing the forms with complex coefficients that are totally decomposable,
i.e., products of linear forms. Our focus is computational. We present the
well-known solution given at the end of the nineteenth century by Brill and
Gordan and give a complete proof that their system does vanish only on the
decomposable forms. We explore an idea due to Federico Gaeta which leads
to an alternative system of equations, vanishing on the totally decomposable
forms and on the forms admitting a multiple factor. Last, we give some in-
sight on how to compute efficiently these systems of equations and point out
possible further improvements.
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1. Introduction

Consider the following problem: find “good” systems of algebraic equations that
characterize those forms with complex coefficients that are “totally decomposable”,
that is, products of linear forms. A solution of this problem was provided by Brill
and Gordan [9] at the end of the nineteenth century. Their system of equations is
obtained from a covariant (afterwards referred to as Brill’s covariant) built from
simple geometric considerations and classical constructions of the invariant theory
of their time. The overall construction is, nevertheless, quite intricate and the
systems of equations obtained this way are huge.

I met this problem several years ago when working on my thesis about the
diagonal invariants of the symmetric group (a generalization of the symmetric
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functions arising naturally in some problems related to systems of polynomial
equations). In 1999, Laureano Gonzalez Vega, one my thesis advisors, and MariEmi
Alonso introduced me to Professor Gaeta. Besides marvelling me with the elegance
of the algebraic geometry à l’italienne, he gave me some interesting suggestions.
He designed a particularly simple alternative to Brill’s covariant, another covariant
that he called the tangential. The tangential of a form f is proportional to f if and
only if f is totally decomposable or has a multiple factor. Nevertheless my work
took a different direction and I didn’t dwell on Gaeta’s suggestions.

This paper presents in detail the construction of Gaeta’s tangential and pro-
vides a formal proof of its fundamental property (Section 3). It also introduces
a slight improvement: a new covariant (called Gaeta’s covariant), built from the
tangential, and which vanishes if and only if f is totally decomposable or has a
multiple factor. The construction of Brill’s covariant is also recalled, as well as the
proof that Brill’s covariant vanishes if and only if the form f is totally decompos-
able (Section 4). Note that Gordan’s proof in [9] was not complete since it skipped
the case when f had only multiple factors. The proof given here is complete. Last,
Section 5 explains how to compute efficiently both Brill’s and Gaeta’s covariants
and suggests some further improvements.

2. Preliminaries and main results

Let K be an algebraically closed field of characteristic zero. Let n and N be positive
integers. We consider the forms of degree n with coefficients in K in the variables
x1, x2, . . . , xN :

f(x) = f(x1, . . . , xN ) =
∑

aωxω , (1)

where the sum at the right-hand side is carried over all ω ∈ NN whose terms
add to n, and xω stands for xω1

1 xω2
2 · · ·xωN

N . Among these forms, some decompose
totally, i.e., as products of linear forms. The set of the products of linear forms
is an irreducible algebraic subvariety that we denote by Dn(KN), and call the
subvariety of totally decomposable forms.

Problem. Find a system of equations defining set-theoretically Dn(KN ).

Let us motivate this problem with an application. If one considers a form with
rational, or even algebraic, coefficients, and wants to determine whether or not it
decomposes totally, the most efficient way to do it is by applying an algorithm
of absolute factorization. In this case, there is no hope that a system of equation
for Dn(KN) would provide a better solution. A different problem is the following:
given a family of forms ft1,t2,... depending polynomially on parameters t1, t2, . . . ,
determine for which values of the parameters the form is totally decomposable.
Such a problem appears for instance in [11]. A system of equations defining the
subvariety of the totally decomposable forms provides, by specialization, a system
of equations in the parameters t1, t2, . . . whose solutions are the solutions of the
original problem.



Brill [3] and Gordan [9] found a system of equations defining Dn(KN ) set-
theoretically. These equations are called Brill’s equations in [8], and the name was
used afterwards by other authors. Brill’s equations are obtained as the coefficients
of Brill’s covariant, a polynomial function B : f �→ Bf from the space of forms
of degree n over KN to the space of polynomials in the 3N variables from the
following three families:

x = (x1, . . . , xN ), y = (y1, . . . , yN ), z = (z1, . . . , zN).

So for each f , the polynomial Bf writes

Bf =
∑

bα,β,γ(f)xαyβzγ ,

where the indices α, β, γ are in NN . Its coefficients bα,β,γ(f) are polynomial
functions of f , that is polynomials in the indeterminate coefficients aω of f as
in (1). Brill’s equations are the equations:

bα,β,γ(f) = 0.

Theorem 1. Let f be a form with coefficients in K. Then f is totally decomposable
if and only if Bf vanishes identically with respect to x, y and z.

Otherwise stated, Brill’s equations define Dn(KN ) set-theoretically.

The name Brill’s covariant refers to the following equivariance property of the
map B. Let V = KN . The target space and source space of B are representations
of SL(V ): the source space, the space of forms of degree n on V , is the symmetric
power SnV ∗. The target space K[x,y, z] is the symmetric algebra S•(V ∗⊕V ∗⊕V ∗)
on three copies of the dual of V . This space can be identified with the space of
polynomial functions on V ⊕ V ⊕ V . The group SL(V ) acts diagonally on this
direct sum. This means that for all M ∈ SL(V ) and u, v, w in V ,

M(u,v,w) = (M(u), M(v), M(w)).

With this interpretation, we have for all f ∈ SnV ∗ and all M ∈ SL(V ):

Bf◦M = Bf ◦M.

Brill’s covariant has another property of invariance, with respect to the group
SL2, that acts on the first two copies of V in the direct sum V ⊕ V ⊕ V :

V ⊕ V ⊕ V ∼= (V ⊕ V )⊕ V ∼= (V ⊗K2)⊕ V.

The action of SL2 is as follows: for all u, v, w in V and all θ =
[

a b
c d

]
∈ SL2,

θ(u,v,w) = (au+ bv, cu+ dv,w). (2)

We have for all f ∈ SnV ∗ and all θ ∈ SL2:

Bf ◦ θ = Bf .

The invariance property with respect to SL2 implies that for all form f , the poly-
nomial Bf can be written as a polynomial in the variables z and in the brackets
[i, j] = xiyj − xjyi for 1 ≤ i < j ≤ N . See Section 5.



Let A be the ring of the SL(V )-equivariant polynomial maps from SnV ∗ to
S•(V ⊕V ⊕V )∗ that are invariant under SL2 for the above action (2). After what
precedes, the map B belongs to A. The ring A is endowed with a grading with
values in N3:

A ∼= (S• (SnV )⊗ S•(V ⊕ V ⊕ V )∗)SL(V )×SL2

∼=
⊕

(d,j,k)∈N3

(
SdSnV ⊗

(
SjV ∗ ⊗ SjV ∗

)SL2 ⊗ SkV ∗
)SL(V )

.

We will refer to this grading as multidegree. The homogeneous elements of A of
multidegree (d, j, k) are the elements of A that are homogeneous of degree d in
the coefficients of f , homogeneous of degree j in the variables x as well as in the
variables y, and homogeneous of degree k in the variables z.
It turns out that Brill’s covariant is homogeneous of multidegree (n+1, n, n2−n).

Gaeta designed another homogeneous element of A, the tangential, T : f �→
Tf with the following properties.

Theorem 2 (Gaeta). Let f be a form of degree n on V . Then:
• For all u and v in V , the form Tf (u,v, z) (in the variables z) is either 0 or

totally decomposable.
• The form f is totally decomposable or admits a multiple factor if and only if

Tf is a multiple of f(z) in the ring of polynomials in x, y and z.
• The form f admits a multiple factor if and only if Tf vanishes identically.

That the form f has a multiple factor means that it factorizes into gh2 with
g and h forms and h non-constant.

Gaeta’s tangential is provided by a simple formula:Gf (x,y, z) is the Sylvester
resultant of two binary forms in (λ, μ): the form f evaluated at λx+ μy, and the
directional derivative Dzf of f in the direction z, taken at the point λx+μy. The
tangential T is a homogeneous element of A with multidegree (2n− 1, n2 − n, n).

In this paper we improve Gaeta’s construction as follows: we build from T a
new map G ∈ A (homogeneous of the same multidegree as T ) with the property:

Theorem 3. Let f be a form of degree n on V . Then f is totally decomposable or
admits a multiple factor if and only if Gf vanishes identically with respect to x, y
and z.

We refer to the new polynomial Gf as Gaeta’s covariant. Its construction,
which is simpler than the construction of Brill’s covariant, is presented in Section
3. The construction of Brill’s covariant is also recalled in Section 4.

3. Gaeta’s tangential and Gaeta’s covariant

In this section we introduce Gaeta’s tangential and Gaeta’s covariant. A prelimi-
nary about classical objects from invariant theory, the polars of a form, is needed.



3.1. The polars of a form f

Let f be a form of degree n in N variables. Let x = (x1, . . . , xN ) and y =
(y1, . . . , yN) be two families of variables. Consider the decomposition:

f(x+ y) =
n∑

i=0

f (i)(x;y),

where f (i)(x; y) is the component of degree i in the x-variables (and thus equiva-
lently: of degree n− i in the y-variables). The bihomogeneous forms f (i)(x;y) are
the polars1 of f .

Let u and v in V with v non-zero. Then f (1)(v;u) is the directional derivative
of f at u, in the direction v:

f (1)(v;u) = Dvf(u).

In particular, for u non-zero, the equation f (1)(z,u) = 0 is an equation (in z) of
the tangent space at [u] for the hypersurface f = 0 of P(V ).

We conclude with an observation about the polars of a decomposable form.
Let e1, e2, . . . , en be the elementary symmetric polynomials in n variables.

Lemma 4. Let f be a form of degree n. Assume that f is totally decomposable:
f = �1�2 · · · �n with �1, �2, . . . , �n linear.

Then for all i between 0 and n, the polar f (i)(x;y) is the following homoge-
nized elementary symmetric polynomial:

f (i)(x;y) = ei

(
�1(x)
�1(y)

,
�2(x)
�2(y)

, . . . ,
�n(x)
�n(y)

)
· f(y) =

∑
I⊂[n],#I=i

∏
k∈I

�k(x)
∏
k �∈I

�k(y).

3.2. Gaeta’s tangential

Gaeta [7] proposed the following geometric construction to detect totally decom-
posable forms. Its setting is the projective space P(V ) (recall that V = KN ). Given
a non-zero vector u ∈ V , the corresponding point in P(V ) will be denoted with [u].

Let f be a form of degree n on V . Assume that f has no multiple factor. A
generic line L in P(V ) meets the hypersurface Hf of P(V ) defined by f = 0 at n
distinct points, all non-singular on Hf . Then f is totally decomposable if and only
if Hf coincides with the union U(L, f) of the tangent hyperplanes of Hf at these
n intersections.

If u and v are non-zero vectors such that [u] and [v] span L, then U(L, f) is
the zero locus of ∏

(λ:μ)∈P1|f(λu+μv)=0

f (1)(z;λu+ μv). (3)

One recognizes in this expression the Sylvester resultant of f(λu + μv) and
f (1)(z;λu+ μv), as binary forms in (λ, μ).

1Some scalar factor may be needed to fit in with the classical notations.



For any f ∈ SnV ∗, Gaeta’s tangential Tf is defined as the following polyno-
mial in x, y and z:

Tf = Resultant(λ,μ)

(
f(λx+ μy), f (1)(z;λx + μy)

)
. (4)

Observe that T is a homogeneous element of A of multidegree (2n− 1, n2− n, n).

Example 1. Consider the case of quadratic forms. Let f be a quadratic form in N
variables. We have:

f(λx + μy) = λ2 f(x) + λμ f (1)(x;y) + μ2 f(y),

f (1)(z;λx + μy) = λ f (1)(x; z) + μ f (1)(y; z).

Therefore,

Tf =

∣∣∣∣∣∣
f(x) f (1)(x;y) f(y)

f (1)(x; z) f (1)(y; z) 0
0 f (1)(x; z) f (1)(y; z)

∣∣∣∣∣∣
We now proceed to the proof of Theorem 2.

Proof of Theorem 2. Let f be a form of degree n on V .
That Tf(u,v, z) is either 0 or totally decomposable for any choice of u and

v follows from the factorization (3) up to a factor depending only on u and v.
Consider the assertions:

(i) The form f has a multiple factor.
(ii) The form Tf vanishes identically.
(iii) The form f is totally decomposable or admits a multiple factor.
(iv) The form Tf is a multiple of f(z).
We should establish on the one hand, the equivalence of (i) and (ii), and, on the
other hand, the equivalence of (iii) and (iv).

Let us first establish that (i) and (ii) are equivalent.
Suppose that (i) holds: f = gh with g non-constant and g divides h. After

the interpretation of the first polar as a directional derivative (see Section 3.1) and
Leibnitz’ rule for the derivative of a product, we have:

f (1)(z,x) = g(x)h(1)(z;x) + h(x) g(1)(z;x).

In particular g(x) divides also f (1)(z;x). Therefore the binary form g(λx+ μy) is
a non-trivial common factor of f(λx+μy) and f (1)(z;λx+μy). We conclude that
Tf = 0 after (4), i.e., (ii) holds.

Suppose now that (i) does not hold. Then there exists a line L cutting Hf

at n distinct points. Let u and v be non-zero vectors of V such that L is the
line joining [u] and [v], and [u] does not belong to Hf . Then Tf (u,v,u) is, up to
a non-zero scalar, the discriminant of the binary form f(λu + μv), which has n
distinct roots. Therefore this discriminant is non-zero. Since Tf does not vanish at
(u,v,u), it does not vanish identically, i.e., (ii) does not hold.

Let us now establish the equivalence of (iii) and (iv).



Suppose that (iii) holds. If f admits a multiple factor, then Tf = 0, which
is a multiple of f(z). In this case (iv) holds. It remains to show that (iv) also
holds when f has no multiple factor and is totally decomposable. This is implied
straightforwardly by the following property:

(v) If � is a linear factor of f , then �(z) is also a factor of Tf .

Let us prove (v). Assume that f = � h with � linear. After Leibnitz’ rule:

f (1)(z;x) = �(x)h(1)(z;x) + �(z)h(x).

Let w be a vector of V such that �(w) = 0. Then the binary forms f(λx + μy)
and f (1)(w;λx + μy) have the common factor �(λx + μy). It follows that their
resultant Tf (x,y,w) is zero. This shows that the zero locus of �(z) is contained in
the zero locus of Tf (x,y, z). Since �(z) is irreducible, we conclude that it divides
Tf(x,y, z), as required.

Assume now that (iv) holds: there exists a polynomial R(x,y, z) such that
Tf(x,y, z) = R(x,y, z) · f(z). Since Tf and f(z) are both homogeneous of degree
n in z, the polynomial R has degree 0 in z and we can write R = R(x,y). If R = 0
then Tf = 0. Then f admits a multiple factor. If R �= 0 then there exist vectors u
and v in V such that R(u,v) �= 0. We have:

Tf(u,v, z) = R(u,v) · f(z).
Since Tf(u,v, z) is totally decomposable, so is f(z), i.e., (iii) holds. �

The properties of invariance with respect to SL2 and covariance with respect
to SL(V ) of Tf follow easily from (4).

That Tf is proportional to f(z) could provide a system of equations charac-
terizing the totally decomposable forms (among the forms with no multiple factor)
as follows. Decompose:

f(z) =
∑
ω

aωzω , Tf =
∑
ω

tω(f,x,y)zω .

The forms are proportional (as forms in z) if and only if all determinants
∣∣ aα aβ

tα tβ

∣∣
vanish identically with respect to x and y.

We present in what follows how to obtain equations of smaller degree.

3.3. Gaeta’s covariant

Let us consider the ratio δf = Tf/f(z). When f is totally decomposable, this ratio
δf admits a simple expression in term of the linear factors of f . We will first derive
this expression and next exhibit a polynomial covariant continuation Δ for δ.

Remember that for any homogeneous binary form ψ(λ, μ) and any family of
numbers a1, b1, a2, b2, . . . , an, bn:

Resultant(λ,μ)

(
n∏

i=1

(aiλ+ biμ); ψ(λ, μ)

)
=

n∏
i=1

ψ(−bi, ai).



This shows that when f decomposes totally as �1�2 · · · �n,

Tf =
n∏

i=1

f (1)(z; −�i(y)x + �i(x)y)

=
n∏

i=1

n∑
ki=1

�ki(z)
∏
j �=ki

(�i(x)�j(y) − �i(y)�j(x))

=
n∏

i=1

�i(z)
∏
j �=i

(�i(x)�j(y) − �i(y)�j(x))

= f(z)
∏

(i,j) | i�=j

∣∣∣∣�i(x) �j(x)
�i(y) �j(y)

∣∣∣∣ .
Therefore,

δf =
∏

(i,j) | i�=j

∣∣∣∣�i(x) �j(x)
�i(y) �j(y)

∣∣∣∣ .
We recognize a discriminant. Given a binary form φ of degree n in the variables
(λ, μ):

φ(λ, μ) = cnλn + cn−1λ
n−1μ+ · · · =

n∏
i=1

(λai + μbi),

its discriminant is defined as:

Disc(λ,μ)(φ) = Resultant(λ,μ)

(
φ;

∂φ

dλ

)
/cn.

(Note that the sign may differ from other definitions.) It fulfills:

Disc(λ,μ)(φ) =
∏

(i,j) | i�=j

∣∣∣∣ai aj

bi bj

∣∣∣∣ .
Therefore, for f totally decomposable,

δf = Disc(λ,μ) (f(λx+ μy)) .

We now set Δf for Disc(λ,μ)(f(λx + μy)) and we define:

Gf = Tf −Δf · f(z). (5)

The polynomial map Δ is clearly equivariant under SL(V ) and invariant under
SL2. So is G, after the above equality (5). Theorem 3 follows from the above
computations and Theorem 2.

We conclude this section with a remark: for φ(λ, μ) = f(λx+ μy), we have
∂φ

dλ
= f (1)(x;λx + μy).

Moreover, the coefficient of λn in φ is f(x). Therefore

Δf =
1

f(x)
Resultant(λ,μ)

(
f(λx+ μy); f (1)(x;λx+ μy)

)
.



Comparing with (4) we obtain that:

Δf = Tf (x,y,x)/f(x).

Example 2 (Continuation of Example 1). For f quadratic we have:

Tf =

∣∣∣∣∣∣
f(x) f (1)(x;y) f(y)

f (1)(x; z) f (1)(y; z) 0
0 f (1)(x; z) f (1)(y; z)

∣∣∣∣∣∣
The covariant Δf is obtained by replacing z with x in Tf , and dividing by f(x).
For f quadratic we have f (1)(x;x) = 2 f(x). We obtain:

Δf = 4 f(x)f(y) −
(
f (1)(x;y)

)2

.

Expanding Tf −Δf · f(z) we get:

Gf = f(x)
(
f (1)(y; z)

)2

+ f(y)
(
f (1)(x; z)

)2

− f (1)(x;y) f (1)(x; z) f (1)(y; z)

− 4 f(x)f(y)f(z) + f(z)
(
f (1)(x;y)

)2

.

This can be presented as follows:

Gf = −4

∣∣∣∣∣∣
f(x) f (1)(x;y)/2 f (1)(x; z)/2

f (1)(x;y)/2 f(y) f (1)(y; z)/2
f (1)(x; z)/2 f (1)(y; z)/2 f(z)

∣∣∣∣∣∣
4. Brill’s covariant

In this section we report on Gordan’s geometric presentation [9] of Brill’s covariant.
Such a presentation is already provided by the monograph [8], and of course by
Gordan’s original text [9], but in neither case the proof of Theorem 1 is complete.

As a preliminary, a classical construction in invariant theory, needed in the
sequel, is presented.

4.1. The apolar covariant

Consider a pair of binary forms of degree n:

φ(λ, μ) =
∑

φi,jλ
iμj , ψ(λ, μ) =

∑
ψi,jλ

iμj .

Their apolar form is the scalar:

Apo(λ,μ) (φ, ψ) = φ

(
− ∂

dμ
,

∂

d λ

)
ψ(λ, μ),

=
∑

i+j=n

(−1)ii!j!φi,jψj,i.

One says that φ and ψ are apolar to each other if their apolar form is zero. The
apolar form is a combinant. This means that it is an invariant under the two
actions of SL2:



• Under change of variables: for all θ ∈ SL2 and all binary forms φ and ψ of
degree n,

Apo(λ,μ) (φ ◦ θ, ψ ◦ θ) = Apo(λ,μ) (φ, ψ) .

• Under linear combinations of the two quadratic forms: for all θ =
(

a b
c d

)
∈ SL2

and all binary forms φ and ψ of degree n,

Apo(λ,μ) (aφ+ bψ, cφ+ dψ) = Apo(λ,μ) (φ, ψ) .

The apolar form was very well known at the end of the nineteenth century. The
following properties were familiar at the time.

Lemma 5. Let φ be a binary form of degree n.
• Let �1�2 · · · �n be a factorization of φ as a product of linear forms. Then all

the linear combinations of �n
1 , �n

2 , . . . , �n
n are apolar to φ.

• Let � be a linear form. Assume that �n is apolar to φ. Then � divides φ.

Clebsch’s transfer principle is a classical method to produce from each in-
variant I(λ,μ) of pairs of binary forms in (λ, μ) of degree n a covariant CI,x of pairs
of forms in x = (x1, x2, . . . , xN ) of degree n:

CI,x(f, g)(x,y) = I(λ,μ)(f(λx + μy), g(λx + μy)).

If I(λ,μ) is a combinant then CI,x is not only invariant under SLN acting by changes
of variables, but also under SL2 acting by linear combination of the families of
variables x and y. That is, CI,x belongs to the algebra A introduced in Section 2.

Applying Clebsch’s transfer principle to the apolar form produces the apolar
covariant of pairs (f, g) of N -ary forms of degree n:

CApo,x(f, g)(x,y) =
n∑

k=0

(−1)kk!(n− k)!f (k)(x;y)g(n−k)(x;y).

As in the case of binary forms, we will say that the N -ary forms f and g are apolar
when their apolar covariant vanishes.

In the proof of Proposition 2.10 of [8], the apolar covariant is interpreted
in the language of modern representation theory. It corresponds, up to a scalar
factor, to the projection from Sn(V ∗)⊗Sn(V ∗) to the Weyl module S(n,n)(V ∗) in
the decomposition

Sn(V ∗)⊗ Sn(V ∗) =
n⊕

k=0

S(n+k,n−k)(V ∗).

and is called there Young’s vertical multiplication.
Suppose that f and g are forms of degree n on V = KN and u and v are

non-proportional vectors in V . Then f and g restrict to binary forms on the plane
spanned by u and v. That CApo,x(f, g)(u,v) vanishes means that these restrictions
are apolar. The following properties of the apolar covariant are straightforwardly
deduced from this remark and the corresponding properties of the apolar form
(Lemma 5).



Lemma 6. Let f be a form of degree n on V .

• Assume that f is totally decomposable, factorizing in a product of linear forms
as f = �1�2 · · · �n. Then, for all linear combinations g of �n

1 , �n
2 , . . . , �n

n, the
apolar covariant CApo,x(f, g) vanished identically.

• Let � be a linear form on V . If CApo,x(f, �n) vanishes identically then � di-
vides f .

4.2. Gordan’s presentation

Let f be a totally decomposable form of degree n that decomposes as a product
of linear forms as f = �1�2 · · · �n. The polars of f , after suitable normalization,
will be interpreted as the elementary symmetric polynomials in scalar multiples
of �1(x), �2(x), . . . , �n(x). We will be able to compute the corresponding nth
symmetric power sum, which, after Lemma 6, will be apolar to f . The vanishing
of the apolar covariant of f and the nth symmetric power sum will therefore be a
necessary condition for total decomposability. This condition will be shown to be
also sufficient.

After Lemma 4, for all i between 0 and n we have:

f (i)(x; z) = f(z) · ei

(
�1(x)
�1(z)

; · · · ; �n(x)
�n(z)

)
.

Let us clear all denominators by multiplying with f(z)i−1:

f(z)i−1f (i)(x; z) = ei

(
f(z)
�1(z)

�1(x); · · · ;
f(z)
�n(z)

�n(x)
)

.

The polynomials f(z)i−1f (i)(x; z) are therefore the elementary symmetric polyno-
mials in the roots of

n∑
i=0

f (i)(x; z)f(z)i−1(−1)itn−i = f (t z− f(z)x) /f(z). (6)

The nth symmetric power sum pn in n variables has a unique representa-
tion as a polynomial in the elementary symmetric polynomials. Let Pn be the
polynomial such that

pn = Pn(e1, e2, . . . , en).

For any form f of degree d ≤ n define:

Qn(f) = Pn

(
f (1)(x; z), f(z)f (2)(x; z), . . . , f(z)d−1f (d)(x; z), 0, . . . , 0

)
.

Then Qn(f) is a covariant of the forms f . As a consequence, so is the apolar
covariant of f and Qn(f). Brill’s covariant is this polynomial:

Bf = CApo,x(f, Qn(f)).

Example 3. For f quadratic we have:

p2 = e2
1 − 2 e2.



Therefore,

Q2(f) =
(
f (1)(x; z)

)2

− 2 f(x)f(z).

Setting g for Q2(f) we have g(0)(x;y) = g(y), g(2)(x;y) = g(x) and:

g(1)(x;y) = 2
(
f (1)(x; z)f (1)(y; z) − f (1)(x;y)f(z)

)
.

Therefore,

Bf = 2 f(x)
((

f (1)(y; z)
)2

− 2 f(y)f(z)
)

− 2 f (1)(x;y)
(
f (1)(x; z)f (1)(y; z) − f (1)(x;y)f(z)

)
+ 2 f(y)

((
f (1)(x; z)

)2

− 2 f(x)f(z)
)

This can be presented as:

Bf = −

∣∣∣∣∣∣
2 f(x) f (1)(x;y) f (1)(x; z)

f (1)(x;y) 2 f(y) f (1)(y; z)
f (1)(x; z) f (1)(y; z) 2 f(z)

∣∣∣∣∣∣
The covariantQn is a homogeneous element of the ring A (see Section 2) with

multidegree (n, n, n2 − n). As a consequence, B is homogeneous of multidegree
(n+ 1, n, n2 − n).

By construction, the identical vanishing of Bf is a necessary condition for
total decomposability of f . Let us show now that the identical vanishing of Bf is
also a sufficient condition for total decomposability of f . The proof rests on the
following lemma.

Lemma 7. Let f be a form of degree n on V whose Brill covariant vanishes iden-
tically. Let [w] be a smooth point on the reduced hypersurface Hf of P(V ) defined
by f = 0. Then the irreducible component of Hf containing [w] is a hyperplane.

Observe that, under the hypotheses of the Lemma, there is a unique irre-
ducible factor g of f such that g(w) = 0, and the linear form g(x;w) is non-zero.

Admit the lemma for now. Suppose that Bf vanishes identically. Any irre-
ducible component Γ of Hf has a smooth point [w] not contained in any other
irreducible component. After the lemma, Γ is necessarily an hyperplane. Therefore
f is totally decomposable.

Theorem 1 will therefore be proved, as soon as we have proved Lemma 7.

Proof of Lemma 7. Let g = 0 be an equation for the irreducible component of Hf

containing [w].
Consider first the simplest case: the factor g of f is not multiple. Since Bf

vanishes identically, in particular Bf (x,y,w) vanishes identically with respect to
x and y. The evaluation at z = w of the polynomial defined in (6) is:

tn − tn−1f (1)(x,w).



Remember that f (1)(x,w) = 0 is an equation (in x) for the tangent space of f at
[w]. In particular, since [w] is non-singular on Hf and cancels no multiple factor of
f , the linear form f (1)(x,w) is non-zero. Therefore, the roots of f (tw − f(w)x)
are 0 (with multiplicity n − 1) and f (1)(x,w) (with multiplicity 1). Thus the
corresponding nth symmetric power sum is Qn(f)(x,w) =

(
f (1)(x,w)

)n
. It is

apolar to f since Bf (x,y,w) is zero. This implies by Lemma 6 that the linear form
f (1)(x,w) divides f . Therefore the hyperplane H with equation f (1)(x,w) = 0 is
an irreducible component of Hf containing [w]. Note that since [w] is smooth on
Hf it cannot belong to any other component.

The case when the irreducible factor g of f is multiple is more complicated2.
First one establishes the identity:

Qn(f) = f1(z)n Qn(f2) + f2(z)n Qn(f1) (7)

for f = f1 f2. This follows from:

f (t z− f(z)x) /f(z)

= f1 (t z− f1(z) (f2(z)x)) /f1(z) · f2 (t z− f2(z) (f1(z)x)) /f2(z).

From (7) one deduces that for any two forms f1 and f2:

Qn(fk
1 f2) = f1(z)n(k−1) (k f2(z)nQn(f1) + f1(z)nQn(f2)) .

Assume that f = gkh, where g does not divide h, and, as before, g is the unique
irreducible factor of f vanishing at w. Then:

Bf = CApo,x(f, Qn(f))

= g(z)n(k−1) (k h(z)nCApo,x (f, Qn(g)) + g(z)nCApo,x (f, Qn(h))) .

Since Bf vanishes identically, so does

k h(z)nCApo,x (f, Qn(g)) + g(z)nCApo,x (f, Qn(h)) .

Evaluating at z = w we get:

0 = k h(w)nCApo,x (f(x), Qn(g)(x,w)) .

We have h(w) �= 0. Therefore

0 = CApo,x (f(x), Qn(g)(x,w)) .

We can conclude as in the first case that g(1)(x;w) divides f . �

2This difficulty has been ignored by Gordan [9] as well as in the account of the construction of
Brill’s covariant given in [8]. The proof given in these texts for Theorem 1 is incomplete, since it

does not rule out the possibility that Brill’s covariant vanish for non-totally decomposable forms
whose factors are all multiples.



5. Computations in the ring A
Let C be either Gaeta’s covariant G or Brill’s covariant B for forms of degree n in
N variables. We have an expansion:

C =
∑

α,β,γ

cα,β,γxαyβzγ .

The functions cα,β,γ are homogeneous polynomials of the same degree in the coef-
ficients aω of f . The system of all equations cα,β,γ(f) = 0 defines set-theoretically:
• Dn(KN ) for C = B
• the union of Dn(KN ) with the set of forms admitting a multiple factor for

C = G.
Consider the following problem:

Problem. Compute a linear basis for the linear span L(C, n, N) of the polynomials
cα,β,γ.

Computing directly the covariant C and next extracting the coefficients, one
will meet two difficulties:
• size: we are computing the huge object C, to extract from it smaller ob-
jects (its coefficients). We will recall in 5.1 how to compute sequentially the
coefficients without computing the whole covariant C.

• redundancy: many coefficients cα,β,γ are linear combinations of the others.
This is partly explained by the invariance of C under SL2 combining the
variables x and y. See 5.2 and 5.5.

5.1. Computing sequentially the coefficients from the source

Write for each exponent γ of the variables z in C:

Cγ =
∑
α,β

cα,β,γxαyβ .

We have C =
∑

γ Cγzγ . As explained in [2], the coefficients Cγ can be computed
sequentially from only one of them (the source of C). This is the consequence of
the SLN -equivariance property of C. We recall the formulas presented in [2].

For each i between 1 and N , let ξi ∈ NN be the vector whose all coordinates
are zero, except the one in position i, being equal to 1:

ξ1 = (1, 0, 0, . . . , 0), ξ2 = (0, 1, 0, . . . , 0), . . .

For j between 2 and N let Δj be the following operator, acting on the polynomials
in the coefficients aω of f as defined in (1):

Δj =
∑

ω s.t. ω1>0

(1 + ωj) aω+ξj−ξ1

∂

daω
.

Then the following relation holds for the covariant C (see [2]):

ΔjC = x1
∂C

dxj
+ y1

∂C

dyj
+ z1

∂C

dzj
.



Extracting the coefficient of zγ+ξj−ξ1 we get:

ΔjCγ−ξj+ξ1 = x1

∂Cγ−ξj+ξ1

dxj
+ y1

∂Cγ−ξj+ξ1

dyj
+ γj Cα,β,γ .

Isolate Cγ :

γj Cγ = ΔjCγ−ξj+ξ1 − x1

∂Cγ−ξj+ξ1

dxj
− y1

∂Cγ−ξj+ξ1

dyj
. (8)

One uses this relation to compute the coefficients Cγ according to decreasing
values of γ with respect to lexicographical ordering on NN . Let k be the degree
of C in the variables z. As initial values only the coefficient C(k,0,0,...,0) is needed.
We call this coefficient the source3 of the covariant and denote it with Source(C).
Note that Source(C) is the evaluation of C at z = (1, 0, 0, . . . , 0). For C equal to
B, T or G, it is a much smaller object than the whole covariant.

Since we are not interested in the precise value of the covariant C, but only in
the space L(C, n, N), we do not need to take into account the term−x1

∂Cγ

dxj
−y1

∂Cγ

dyj

in (8). Indeed,

Proposition 8. Let C be an element of A, homogeneous of degree d in the variables
z. Then L(C, n, N) is equal to the linear span of the coefficients (with respect to
the variables x and y) of the polynomials:

ΔωN

N ΔωN−1
N−1 · · ·Δω2

2 Source (C) (9)

for all (ω2, . . . , ωN−1, ωN) ∈ NN such that ω2 + · · ·+ ωN−1 + ωN ≤ d.

Proof. For all k ≥ 0 let Ak be the linear span of the coefficients of Cγ (with respect
to the variables x and y) for all γ ∈ NN such that γ1 ≥ k.

Then (8) simplifies into:

γjCγ ≡ ΔjCγ−ξj+ξ1 mod Ak+1K[x,y, z]. (10)

Thanks to this formula, we can prove by induction on d−k, starting with d−k = 0,
that the following assertion is true for all k between 0 and d:

The vector space Ak is equal to the linear span of the coefficients of the
polynomials (9) for all (ω2, . . . , ωN−1, ωN ) ∈ NN such that ω2 + · · · +
ωN−1 + ωN ≤ d− k.

This assertion for d− k = d is the assertion of the proposition. �
5.2. Removing redundancies: expression in the brackets

Let C be a homogeneous element of A of multidegree (d, j, k). That is, C belongs
to (

SdSnV ⊗
(
SjV ∗ ⊗ SjV ∗

)SL2 ⊗ SkV ∗
)SL(V )

.

As representations of SL(V ) there is(
SjV ∗ ⊗ SjV ∗

)SL2 ∼= S(j,j)(V ∗),

3After Hilbert [10] this term was coined by Sylvester.



the Weyl module on V ∗ indexed by the partition (j, j) (see [6]). This is the set of
forms in the variables x and y that can be expressed as a homogeneous polynomials
of degree j in the N(N − 1)/2 brackets [ij] = xiyj − xjyi with i < j. When
computing an element C of A we should obtain such an expression, to avoid
redundancy.

The brackets are not algebraically independent (except for N ≤ 3). A linear
basis for S(d,d)(V ∗) are the products of brackets indexed by semi-standard tableaux.
A product of brackets [i1j1][i2j2] · · · [idjd] (where for each k we have ik < jk) is
indexed by the unique 2× d array of integers[

j1 j2 · · · jd

i1 i2 · · · id

]
whose columns are weakly increasing from left to right in lexicographic order. The
array is a semi-standard tableau if each of its rows is weakly increasing from left
to right.

An algorithm to express any SL2-invariant polynomial as a linear combina-
tion of the products of brackets indexed by semi-standard tableaux is provided
by [12].

5.3. Method

We propose the following strategy for computing a small generating set for the
linear span of the coefficients of C where C is Brill’s covariant B or Gaeta’s co-
variant G:
• Compute Source(C) by applying the construction of Section 4 or Section 3
with z specialized at (1, 0, 0, . . . , 0).

• Express Source(C) as a linear combination of the products of brackets in-
dexed by standard tableaux. (There might exist a better way to compute the
decomposition of Source(C) in the brackets. For instance, for Brill’s covariant,
by means of the symbolic expression for the apolar covariant.).

• Apply the recurrent formulas presented in 5.1.

5.4. A toy example: ternary quadratic forms

It is well known, from the theory of quadratic forms, that a complex ternary qua-
dratic form is totally decomposable if and only if the determinant of its matrix
vanishes. We compute here Brill’s covariant for the ternary quadratic forms to il-
lustrate the methods presented in this section. We will obtain that Brill’s equations
are all proportional to the determinant of the matrix of the quadratic form.

The ternary quadratic form is:

f(z) = a200z
2
1 + a020z

2
2 + a002z

2
3 + a110z1z2 + a101z1z3 + a011z2z3.

Its polars are f (0)(x, z) = f(z), f (2)(x, z) = f(x) and

f (1)(x, z) = 2 a200x1z1 + 2 a020x2z2 + 2 a002x3z3

+ a110(x1z2 + x2z1) + a101(x1z3 + x3z1) + a011(x2z3 + x3z2).



We evaluate them at z = (1, 0, 0):

f (0)(x, (1, 0, 0)) = a200,

f (1)(x, (1, 0, 0)) = 2 a200x1 + a110x2 + a101x3,

f (2)(x, (1, 0, 0)) = f(x).

The evaluation at z = (1, 0, 0) of f(tz− f(z)x)/f(z) is therefore:

t2 − (2 a200x1 + a110x2 + a101x3) t+ a200f(x)

The symmetric power sum p2 is obtained from the elementary symmetric polyno-
mials as e2

1 − 2 e2. Set g for Q2(f)(x; (1, 0, 0)). We have:

g = (2 a200x1 + a110x2 + a101x3)2 − 2 a200f(x)

= 2 a2
200 x2

1 + (a2
110 − 2 a200 a020)x2

2 + (a2
101 − 2 a200 a002)x2

3

+ 2 a200 a110 x1x2 + 2 a200 a101 x1x3 + 2 (a110a101 − a200a011)x2x3

Therefore,

Source(B) = CApo,x(f, g) = 2 f(y)g(x)− f (1)(x;y)g(1)(x;y) + 2 f(x)g(y)

After decomposing in the brackets we obtain:

Source(B) = −8 [23]2 D

where [23] = x2y3 − x3y2 and D is the determinant of the matrix of f :

D = a200a020a002 +
1
4
a110a101a011 −

1
4
a200a

2
011 −

1
4
a020a

2
101 −

1
4
a002a

2
110

After Proposition 8, Brill’s equations span the same vector space as D and the
coefficients with respect to x and y of the following polynomials:

Δ2Source(B), Δ2
2Source(B), Δ3Δ2Source(B),

Δ3Source(B), Δ2
3Source(B).

We have:

Δ2 = a110
∂

da200
+ 2 a020

∂

da110
+ a011

∂

da101

and

a110
∂Source(B)

da200
= −8 [23]2

(
a110a020a002 −

1
4
a110a

2
011

)
,

2 a020
∂Source(B)

da110
= −8 [23]2

(
1
2
a020a101a011 − a002a110a020

)
,

a011
∂Source(B)

da101
= −8 [23]2

(
1
4
a110a

2
011 −

1
2
a020a101a011

)
.

Therefore Δ2Source(B) = 0. Similarly we compute that Δ3Source(B) = 0. This
shows that Brill’s equations for the ternary quadratic form are all proportional to
the determinant D.



5.5. Still more redundancies

Let C be either Gaeta’s covariant G or Brill’s covariant B and (d, j, k) its multi-
degree. After expressing the homogeneous covariant C as

C =
∑

cT,γT (x,y)zγ (11)

where the sum is carried over all monomials T of degree j in the brackets indexed
by semi-standard tableaux and all monomials zγ of degree k, we have obtained with
the forms cT,γ a much smaller generating set for L(C, n, N). We may expect these
generators to be linearly independent. Explicit computations show the contrary:
dimL(c, n, N) is still much smaller that the number of summands in (11). For
instance, for N = 4 with n = 3, there are 4200 summands in (11) for C = B but
dimL(B, 3, 4) = 875 (as reported in [5, 1]).

For ternary forms, the explanation is known: Brill’s covariant can be divided
by the square of ∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
Indeed, proving this is the object of Gordan’s paper [9]. One can show that the
same holds for Gaeta’s covariant. Therefore, for ternary forms, there exist polyno-
mial covariants Ĉ (for C = B or G) such that:

C =

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
2

· Ĉ

A symbolic form for B̂ is provided by [4] for n = N = 3 and by Gordan [9] for
N = 3, all n.

The smaller covariant Ĉ can be decomposed into:

Ĉ =
∑
T,γ

ĉT,γT (x,y)zγ

where the sum is carried over all T monomials of degree j−2 in the brackets and all
zγ monomials of degree k−2. The forms ĉT,γ give a still smaller generating system
for L(C, n, 3). Explicit computation show that the cardinal of this generating set
coincides with dimL(B, n, 3) for C = B and n = 4 and n = 5. (For n = 3 the
generating set has 45 elements but dimL(B, 3, 3) = 35.) After this we can expect
that for all n > 3,

dimL(B, n, 3) =
(

n

2

)2

(n2 − n− 1).

Note that the method presented in Section 5.3 is easily adapted to this simplifica-
tion. It is enough to observe that for N = 3,

Source(Ĉ) = Source(C)/[23]2.



It would be interesting to study how the above factorization property of B
and G exhibited for ternary forms generalizes to forms of higher arity, and how
to use it for more efficient computations. Brill’s covariant and Gaeta’s covariant
belong to the ideal I generated by the maximal minors of the matrix⎡⎣x1 x2 · · · xN

y1 y2 · · · yN

z1 z2 · · · zN

⎤⎦
since, by construction, they vanish for all specializations of x, y and z at three
coplanar vectors. We conjecture that Brill’s covariant and Gaeta’s covariant actu-
ally belong to the square of the ideal I.
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multidimensional determinants. Birkhäuser Boston Inc., Boston, MA, 1994.

[9] Paul Gordan. Das Zerfallen der Curven in gerade Linien. Math. Ann., 45:410–427,
1894.

[10] David Hilbert. Theory of algebraic invariants. Cambridge University Press, Cam-
bridge, 1993. Translated from the German and with a preface by Reinhard C. Lau-
benbacher, Edited and with an introduction by Bernd Sturmfels.



[11] Michael F. Singer and Felix Ulmer. Linear differential equations and products of
linear forms. J. Pure Appl. Algebra, 117/118:549–563, 1997. Algorithms for algebra
(Eindhoven, 1996).

[12] Bernd Sturmfels. Algorithms in invariant theory. Texts and Monographs in Symbolic
Computation. Springer-Verlag, Wien, New York, 1993.

Emmanuel Briand
Universidad de Sevilla
Departamento de Álgebra
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