
MULTIVARIATE NEWTON SUMS:

IDENTITIES AND GENERATING

FUNCTIONS

Emmanuel Briand1 and Laureano Gonzalez-Vega2
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ABSTRACT

This paper is devoted to present, first, a family of formulas extending to the 
multivariate case the classical Newton (or Newton–Girard) Identities relating the 
coefficients of a univariate polynomial equation with its roots through the Newton 
Sums and, secondly, the Generating Functions associated to the new introduced 
Newton Sums of the mul-tivariate case. As a by-product the kinds of systems accepting 
these Newton Identities are also characterized together with those allowing the Newton 
Sums to be computed in an inductive way directly from the coefficients of the 
polynomial system under consideration.



INTRODUCTION

When considering a univariate polynomial with coefficients in a field K
with characteristic 0, its Newton Sums and its coefficients are connected by
the well-known Newton Identities. Dealing with n polynomials in
n unknowns with coefficients in a subfield K of the field of the complex
numbers C, and finitely many solutions in Cn,[1] showed that there exists a
generalization of these formulas (Multivariate Newton Identities). They also
pointed out that, when the system was a Pham System, i-e had the shape:

Fi ¼ Xdii þ terms with total degree � di � 1 ð1 � i � nÞ; ð1Þ

then these identities made possible the computation of the Multivariate
Newton Sums from the coefficients, by an induction procedure, as in the
univariate case.

In a previous paper[8] it was shown how to obtain the same results with
the algebraic version of the global residue operator (which made the method
valid for systems with coefficients in any field K with characteristic 0). These
results can be extended, in an algebraic way too, to the so-called Pham
systems of type II (see also the analytic version in[1]).

In this paper we show that, using the same techniques introduced by[8],
the results extend to the case of Generalized Pham Systems, i-e systems:

Fi ¼ Xdii þ lower terms w.r.t. � ð1 � i � nÞ ð2Þ

for some term ordering �. This precisely means that, besides defining a zero-
dimensional complete intersection, the Fi’s are a Grobner basis for � (see
for instance[12], Lemma 6.15). The vector d ¼ ðd1; . . . ; dnÞ is called the
multidegree of the Generalized Pham System.

In the first part we present the elements of the algebraic theory of
the global residue operator to be used in the sequel. We also prove that
when F is a Generalized Pham System, the corresponding global residue
operator maps exactly a polynomial on the leading coefficient of its normal
form. This was already demonstrated in[5], but our proof is direct. Besides, it
leads naturally to a new proof of the Euler-Jacobi Theorem and Macaulay
Theorem.

Next we derive the Multivariate Newton Identities for Generalized
Pham Systems F ¼ ðF1; . . . ;FnÞ and show how to use them as induction
formulas to relate the generalized Newton sums (being defined most of them
as the traces of monomials) with the coefficients of the polynomials Fi’s.

The third part focuses on presenting the generating function for the
generalized Newton sums introduced in the second section: i-e a rational



function in the variables X1; . . . ;Xn whose expansion in negative powers of
the variables provides the generalized Newton sums. This result is genera-
lized to the case where, instead of the generalized Newton sums, we generate
the image of the monomials under any linear form defined in the quotient
K½X�=hF1; . . . ;Fni. This answers in a positive way a question posed by
E. Becker.

The last section shows how the previously mentioned Generating
Functions for the Multivariate Newton Sums provide explicit formulas for
the trace of some monomials with respect to a Pham System of degree 2.

1 ALGEBRAIC PRELIMINARIES

Let K be a field of characteristic 0 and L an algebraically closed field
containing K. Let F1; . . . ;Fn be polynomials in K½X� ¼ K½X1; . . . ;Xn�. We
assume the ideal they generate, J, is a zero-dimensional complete intersec-
tion. Equivalently: the quotient algebra A ¼ K½X�=J is finite-dimensional
over K. We denote by D1; . . . ;Dr the roots of J in Ln, and m1; . . . ; mr their
respective multiplicities. Then A has dimension D ¼P

mi. This section
focuses on the explicit presentation of some algebraic properties of A to be
used in the sequel.

1.1 The Dualizing Linear Form

Since the ideal J is a zero dimensional complete intersection, A is a
Frobenius Algebra[4]: there exists a linear form f:A ! K (called a dua-
lizing linear form) such that the symmetric K-bilinear form

A�A ! K

ða; bÞ 7! fðabÞ

is non degenerate. [4] shows how to find such a dualizing linear form on A.
We recall it now.

For P 2 K½X� and 1 � i � n we define @iðPÞðX1; . . . ;Xn;Y1; . . . ;YnÞ ¼
@iðPÞðX;YÞ as follows:

@iðPÞðX;YÞ ¼ PðY1; . . . ;Yi�1;Xi; . . . ;XnÞ � PðY1; . . . ;Yi;Xiþ1; . . . ;XnÞ
Xi �Yi

Then BezðX;YÞ, the Bezoutian Determinant associated to F1; . . . ;Fn, is the
determinant of the matrix of the @jðFiÞ for 1 � i; j � n (it is a polynomial in
K½X;Y�).



Let A�K A be the quotient K½X;Y�=hF1ðXÞ; . . . ;FnðXÞ;F1ðYÞ; . . . ;
FnðYÞi and xi and yi the images of Xi and Yi in A�K A. So Bezðx; yÞ is the
image in A�K A of BezðX;YÞ.

If B ¼ feiðxÞ : 1 � i � Dg is a basis of the K-algebra A then there
exists a decomposition:

Bezðx; yÞ ¼ be1ðyÞe1ðxÞ þ � � � þ beDðyÞeDðxÞ:
Then B̂ ¼ fbeiðxÞ : 1 � i � Dg happens to be also a basis of A (the dual basis
of B), and given the decomposition of 1 in A according to the dual basis bB,
1 ¼ d1 be1ðxÞ þ � � � þ dD beDðxÞ, the linear form on A defined by eiðxÞ 7! di is
dualizing. This form ‘F ¼ ‘½F1;...;Fn� is called the Kronecker Symbol or global
residue operator associated to F1; . . . ;Fn. We will take the liberty of denoting
also by ‘F the linear form it induces on K½X�, when convenient. When
K � C, the Kronecker Symbol coincides with the classical residue (see[14]

and[5], (§ 0)).
When J is a radical ideal the global residue operator verifies:

‘FðPÞ ¼
Xr
i¼1

PðDiÞ
JacðDiÞ

where Jac denotes the Jacobian determinant of the polynomials F1; . . . ;Fn.
Without assumptions on J the dualizing form ‘F is related with the trace by
the following equality:

‘FðP � JacÞ ¼ m1PðD1Þ þ � � � þ mrPðDrÞ ¼ TraceðPÞ:

A very useful tool to deal with the dualizing form is the Transformation Law
which is presented in the following proposition ([6] and [13] give an algebraic
proof of this classical result).

Proposition 1.1 ðTransformation LawÞ. Let G1; . . . ;Gn be polynomials in
K½X� with a finite number of solutions in Ln and Gi ¼ Ti1F1 þ � � � þ TinFn,
Tij 2 K½X� ði 2 f1; . . . ; ngÞ. If P 2 K½X� then ‘FðPÞ ¼ ‘GðP � detðTÞÞ.

1.2 Expression of the Dualizing Form for a Generalized Pham System

Now we consider the special case when F is a Generalized Pham
System for some term ordering �. The family of the eaðxÞ ¼ xa11 � � � � � xann ¼
xa, for 0 � a1 < d1; . . . ; 0 � an < dn, is a basis over K of the quotient
algebra.



We notice that we can write, for i 6¼ j, @jðFiÞ ¼ bi;jðX;YÞ=Xj and

@jðFjÞ ¼ ðXdjj þ bj; jðX;YÞÞ=Xj

where the bi; j’s, seen as polynomials in X with coefficients in K½Y�, have all
their monomials smaller than Xdii with respect to �. Thus, if we develop the
determinant defining the Bezoutian then we obtain:

BezðX;YÞ ¼ 1

X1 � � � � � Xn � ðX
d1
1 � � � � � Xdnn þ RðX;YÞÞ

with all X-monomials in R smaller than Xd11 � � � � � Xdnn . Otherwise stated:

BezðX;YÞ ¼ Xd1�11 � � � � � Xdn�1n þ R1ðX;YÞ

with all X-monomials in R1 smaller than X
d1�1
1 � � � � � Xdn�1n .

The reduction of R1 to its normal form with respect to F1ðXÞ; . . . ;
FnðXÞ;F1ðYÞ; . . . ;FnðYÞ never produces the monomial Xd1�11 � � � � � Xdn�1n , so
we get:

Bezðx; yÞ ¼ xd1�11 � � � � � xdn�1n þ
X

bi<di;i¼1...n
xbêbðyÞ:

Especially, êðd1�1;...;dn�1ÞðyÞ ¼ 1, whence, for 0 � a1 < d1; . . . ; 0 � an < dn:

‘½F1;...;Fn�ðxaÞ ¼ 1 if a ¼ ðd1 � 1; . . . ; dn � 1Þ
0 otherwise

�
:

We have just proved the following result which, for K � C, is Lemma 4.2
of[5].

Proposition 1.2. Let ðF1; . . . ;FnÞ be a Generalized Pham System for a term
ordering �, and Xdii the leading term of every Fi. Then ‘FðPÞ is exactly the
coefficient of Xd1�11 � � � � � Xdn�1n in the normal form of P 2 K½X� with respect to
F1; . . . ;Fn and �.

1.3 Euler–Jacobi Theorem and Macaulay’s Theorem

For H 2 K½X�, its Newton Diagram NDðHÞ � Zn is the set of the
exponents of the monomials in H with non-zero coefficient. The Newton
Polytope of H, denoted with NPðHÞ, is the convex hull of NDðHÞ in Rn.



The Newton Polytope of the product F1 � � � � � Fn is also the Minkowski sum
of the NPðFiÞ’s:

NPðF1 � � � � � FnÞ ¼ NPðF1Þ þ � � � þ NPðFnÞ:

For E � Zn, we denote the semi-group generated by E (the set of all the
finite sums e1 þ � � � þ em with the ei 2 E) with

P
E.

Webegin by looking at the special casewhen ðF1; . . . ;FnÞ is aGeneralized
Pham System, withXd11 ; . . . ;X

dn
n the respective leading terms of F1; . . . ;Fn, and

d ¼ ðd1; . . . ; dnÞ. Let SðFÞ be the semi-group generated by the elements of the
set fdþ aja 2 [ni¼1NDðFiÞg. This set SðFÞ is always contained in

CðFÞ ¼ fd� t � x : t 2 Rþ; x 2 NPðF1 � � � � � FnÞg

the polyhedron obtained by drawing half-lines from d through all points of
NðF1 � � � � � FnÞ, next translating it by �d and finally rotating it by half a turn
around 0. The origin 0 is a vertex for C, and for any linear form w in the
normal cone of NPðF1 � � � � � FnÞ at d, the hyperplane w ¼ 0 is a supporting
hyperplane of CðFÞ at 0. When all the Fi’s coefficients are non-zero and have
independent parameters then SðFÞ ¼ CðFÞ \Zn.

Proposition 1.3. Let F be a Generalized Pham System. If P 2 K½X� and
NDðPÞ lies outside fd� 1g þ SðFÞ then ‘FðPÞ ¼ 0.

Here 1 is the vector ð1; . . . ; 1Þ 2 Zn.

Proof. Suppose P reduces through F1, for instance, into a polynomial Q.
Then:

NDðQÞ � NDðPÞ þ NDðF1Þ þ fð�d1; 0; . . . ; 0Þg

More generally, if R is obtained from P after a series of reductions by
F1; . . . ;Fn, we’ll have:

NDðRÞ � NDðPÞ þ
X�NDðF1Þ þ fð�d1; 0; . . . ; 0Þg�þ � � �

þ
X�NDðFnÞ þ fð0; . . . ; 0;�dnÞg�:

Note that actually:X�NDðF1Þ þ fð�d1; 0; . . . ; 0Þg�þ � � �
þ
X�NDðFnÞ þ fð0; . . . ; 0;�dnÞg� ¼ �SðFÞ



for every set
PðNDðFiÞ þ fð. . . ; 0;�di; 0; . . .ÞgÞ containing f0g. After suf-

ficiently many reductions, R happens to be the normal form of P. Its global
residue is non-zero if and only if its Newton Diagram contains fd� 1g. This
would involve that fd� 1g 2 NDðPÞ þ ð�SðFÞÞ whence the proposition.

j

Example 1.1. A very special case is when the polynomials are pure powers:
F1 ¼ Xd11 ; . . . ;Fn ¼ Xdnn . Then the global residue operator acts on K½X� as
follows:

‘½Xd1
1
;...;Xdnn �ðX

aÞ ¼ 1 if a ¼ ðd1 � 1; . . . ; dn � 1Þ
0 otherwise

�
:

Let us introduce some vocabulary. Let w 2 Nn (a weight vector). It
determines a linear form on Rn: the weight w : ðt1; . . . ; tnÞ 7!w1t1 þ � � �
þwntn. The w-degree of a monomial Xa is defined as wðaÞ. The w-degree of a
non-zero polynomial P is the integer m ¼ degwðPÞ such that P ¼ Hþ R
with all monomials in H having w-degree m, and all monomials in R having
w-degrees lower than m. The polynomial H is then the w-homogeneous
leading part of P. A root of H, if different from the trivial root ð0; . . . ; 0Þ, is
said to be a root at the weighted infinity, with respect to w, for P.

If F1; . . . ;Fn have no common root at the weighted infinity with
respect to w, they are said to define a strict complete intersection graded by
w. Strict complete intersections are studied in[10] and in[5].

Example 1.2. A General Pham System F defines a strict complete intersec-
tion, graded by any weight w lying inside the normal cone of NPðF1 � � � � �
FnÞ at d, where d is the multidegree of F.

Conversely, if the system F ¼ ðF1; . . . ;FnÞ defines a strict complete
intersection graded by w and such that the leading w-homogeneous parts of
F1; . . . ;Fn are pure powers, X

d1
1 ; . . . ;X

dn
n , then it is a Generalized Pham

System for any term ordering � compatible with w in the following sense:
wðXaÞ < wðXbÞ ) Xa 	 Xb. One can construct such an ordering by choos-
ing an arbitrary term ordering �T and setting:

Xa � Xb () wðXaÞ < wðXbÞ or
�
wðXaÞ ¼ wðXbÞ and Xa �T Xb�:

With a classical method and using the Transformation Law, the study
of ‘F in the zero-dimensional strict complete intersection case is reduced to
the case of Generalized Pham Systems. Suppose F1; . . . ;Fn define a zero-
dimensional strict complete intersection graded by w. Let H1; . . . ;Hn be the



respective w-homogeneous leading parts of F1; . . . ;Fn. Then, for r1; . . . ; rn 2
N large enough, there exist polynomials Tij such that:

X
wiri
i ¼ Ti1ðXwÞ �H1ðXwÞ þ � � � þ TinðXwÞ �HnðXwÞ ð1 � i � nÞ ð3Þ

where Xw stands for Xw11 ; . . . ;Xwnn . We can assume that the Tij’s are
w-homogeneous (of respective w-degrees wiri � degwðFjÞ). Then
(i 2 f1; . . . ; ng):

Gi ¼ Ti1 � F1 þ � � � þ Tin � Fn ð4Þ

is a Generalized Pham System and ‘FðPÞ ¼ ‘GðP � detðTÞÞ .
Remark 1.1. Note that detðTÞ is w-homogeneous of w-degreeP
wiri �

P
degwðFiÞ.

Theorem 1.1 ðWeighted version of the Euler�Jacobi TheoremÞ. Let w be a
weight vector, kwk ¼ w1 þ � � � þ wn, and F1; . . . ;Fn with no common solution
at the weighted infinity with respect to w. If P 2 K½X� and

degw ðPÞ <
Xn
i¼1
degw ðFiÞ � kwk

then we have ‘FðPÞ ¼ 0 .
The integer

P
i degwðFiÞ � kwk is called the critical number associated

to F for w.

Proof. First, the result is obvious when F is a Generalized Pham System,
with multidegree d, because w ¼P

degwðFiÞ � kwk is a supporting hyper-
plane of fd� 1g þ CðFÞ at d� 1.

Now, if F just defines a zero-dimensional complete intersection, we set
T and G as in (3), (4). If degwðPÞ <

P
degwðFiÞ � kwk, then degwðP �

detðTÞÞ < P
wiri � kwk (by Remark 1.1). This last number is exactly the

critical number of the system G for w. The theorem follows. j

Theorem 1.2 ðWeighted version of Macaulay0s TheoremÞ. Let w be a weight
vector, and H1; . . . ;Hn be w-homogeneous polynomials, with no common non-
trivial zero. Let P be a w-homogeneous polynomial. If degwðPÞ >P
degwðHiÞ � kwk then P lies in the ideal hH1; . . . ;Hni.

Proof. We choose r1; . . . ; rn and T as in (3). Then, by Example 1.1,
‘HðPÞ ¼ ‘½Xr1

1
;...;X

rn
n �ðP � detðTÞÞ ¼ 0 as soon as NDðPÞ does not meet

ðr1 � 1; . . . ; rn � 1Þ � NDðdetðTÞÞ. This last set is contained in the hyper-



plane w ¼P
degwðHiÞ � kwk. So if P is homogeneous of degree larger than

this number, then ‘HðPÞ ¼ 0, and better: ‘HðP �QÞ ¼ 0 for every Q 2 K½X�.
But this implies P lying in the ideal hH1; . . . ;Hni, because the global residue
operator is dualizing. j

Remark 1.2. As noticed by[3] and[5], Macaulay’s theorem provides con-
venient r1; . . . ; rn for the construction (3), (4): it is sufficient to solve a linear
system.

Example 1.3. Let w ¼ ð1; 2Þ and

F1 ¼ X21X22 þ X21 þ X22 þ X1X2 þ X1 þ 1;
F2 ¼ X41 þ X22 � X21X2 þ X1 þ 1:

Then F1;F2 have weighted degrees, with respect to w, repectively 6; 4, and no
common solution at the weighted infinity. The system has critical number 7.
So X81 and X

4
2 are in the ideal generated by the w-homogeneous leading parts

X21X
2
2 and X

4
1 þ X22 � X21X2. Looking for a1; a2; b1; b2; b3; u1; u2; v1; v2; v3 such

that:

X81¼ða1X21þa2X2Þ �X21X22þðu1X41þu2X21X2þb3X22Þ � ðX41þX22�X21X2Þ
X42¼ðu1X21þu2X2Þ �X21X22þðv1X41þ v2X

2
1X2þ v3X

2
2Þ � ðX41þX22�X21X2Þ

we find easily there is a unique solution: a1 ¼ v1 ¼ v2 ¼ b3 ¼ 0; a2 ¼ u1 ¼
�1; b1 ¼ b2 ¼ u2 ¼ v3 ¼ 1 and:

T ¼ �X2 X41 þ X21X2
�X21 þ X2 X22

� �
:

The Generalized Pham System G ¼ T � F is:

G1 ¼ X81 � X23 � X1X22 � X1X2 � X2 þ X15 þ X14 þ X13X2
G2 ¼ X42 � X14 � X12X22 � X13X2 � X13 � X12 þ X2X12

þ X23 þ 2X1X22 þ X1X2 þ X2 þ X22:

In Fig. 1, the shaded polytope is fd� 1g þ NPðG1 � G2Þ, and the shaded
polyhedron is fd� 1g þ CðGÞ. The weighted Euler–Jacobi theorem says the
‘GðXaÞ ¼ 0 for a below the dotted line w ¼ 13, but Proposition 1.3 implies
this for the cases in the broader white area.



Remark 1.3. The classical Euler–Jacobi Theorem and Macaulay’s Theorem
are obtained from their weighted versions by choosing for w the total degree.
The weight vector is ð1; . . . ; 1Þ. As remarked in[5], when considering a
Generalized Pham System ðF1; . . . ;FnÞ with multidegree d, applying the
weighted Euler–Jacobi theorem for all weights w coming from the normal
cone of NPðF1 � � � � � FnÞ at d directly implies the vanishing Proposition 1.3.

2 GENERALIZED NEWTON SUMS AND MULTIVARIATE

NEWTON IDENTITIES

To begin with, let us recapitulate the situation in the univariate case.
Let F ¼ Xd þ a1Xd�1 þ � � � þ an, with roots D1; . . . ;Dr (in an algebraic clo-
sure of the base field, still assumed to have characteristic zero). Let m1; . . . ; mr
be their respective multiplicities. The Newton Sum with index j 2 N asso-
ciated to F is:

sj ¼
Xr
i¼1

miDi
j:

The coefficients of F and its Newton Sums are connected by the
Newton Identities (s0 ¼ n):

s1 ¼ �a1
s2 þ a1s1 ¼ �2a2

..

.

sn þ a1sn�1 þ � � � þ an�1s1 ¼ �nan:

ð5Þ

Figure 1. The cone fd� 1g þ CðGÞ and the Newton polytope fd� 1gþ
NPðG1 � G2Þ



Note that they make it possible to compute inductively the Newton Sums
from the coefficients, and, conversely, the coefficients from the Newton
Sums.

The definition of the Newton Sums is generalized to the multivariate
case as follows: let F1; . . . ;Fn be a complete intersection, with roots
D1; . . . ;Dr with respective multiplicities m1; . . . ; mr. The Newton Sum with
index a 2 Nn is:

Sa ¼
Xr
i¼1

miX
aðDiÞ:

In other words, the trace of the monomial Xa with respect to F1; . . . ;Fn.
In order to generalize the univariate Newton Identities to the multi-

variate case, for Pham Systems,[1] introduces Generalized Newton Sums:
objects Sa with a 2 Zn, which coincide with the Newton Sums when a 2 Nn.
They set:

Sa ¼ 1

ð2ipÞn
Z

Xa � Jac � dX1 ^ � � � ^ dXn
F1 � � � � � Fn

for a 2 Zn, and the integration on a convenient chain. This gives the
Newton Sums when a 2 Nn.

We can set up the algebraic equivalent of this definition for a larger
class of systems (containing the Generalized Pham Systems), those verifying:

Condition 1. X1F1; . . . ;XnFn still have finitely many common solutions in L
n.

For such systems, we extend the global residue operator ‘F to a linear
form ~‘F on K½X1; 1X1 ; . . . ;Xn; 1Xn�. It is sufficient to define its value on the
Laurent monomials. For a 2 Zn,

~‘FðXaÞ ¼ ‘½Xa�
1
1
F1;...;X

a�n
n Fn�
ðXaþÞ

where a ¼ aþ � a�, and aþ; a� 2 Nn (the Transformation Law, 1.1, ensures
the consistency of this definition).

Then we define the generalized Newton Sums associated to F:

Sa ¼ ~‘FðXa � JacÞ; a 2 Zn:

Some of the vanishing properties of ‘ extend to ~‘.



Proposition 2.1.

1. Suppose F ¼ ðF1; . . . ;FnÞ defines a zero-dimensional strict com-
plete intersection graded by w. Then for any Laurent Polynomial P
such that degwðPÞ <

P
degwðFiÞ � kwk we have ~‘FðPÞ ¼ 0.

2. Suppose F is a Generalized Pham System. Then ~‘FðPÞ ¼ 0 for any
Laurent polynomial P such thatNDðPÞ lies outside fd� 1g þ SðPÞ.

Proof. This immediately comes from the definition of ~‘F and Propositions 1.1
and 1.3. j

Example 2.1.

1. Suppose F defines a strict complete intersection, graded by w.
Note that degwðJacÞ �P

degw Fi � kwk. So the Generalized
Newton Sums Sa ¼ ~‘FðXa � JacÞ are zero whenever wðaÞ < 0.

2. Suppose F is a Generalized Pham System with multidegree d for
some term ordering �. Let w be a weight lying inside the normal
cone of NPðF1 � � � � � FnÞ at d. Then fd� 1g þ CðFÞ þ
ð�NPðJacÞÞ is included in CðGÞ. Indeed,

NPðJacÞ � NPðF1; . . . ;FnÞ þ f�1g � fd� 1g þ
�� CðGÞ�:

So the Generalized Newton Sums Sg are zero whenever g is
outside CðFÞ. Specially, w ¼ 0 being a supporting hyperplane of
CðFÞ at 0, we have Sg ¼ 0 when wðgÞ � 0, except for g ¼ 0: then
S0 ¼ D ¼ d1 � � � � � dn.

Example 2.2. Suppose now the Fi’s are univariate: F1 ¼ F1ðX1Þ; . . . ;Fn ¼
FnðXnÞ. Suppose also that P is reduced modulo F. Then fd� 1gþ
CðGÞ þ ð�NPðPÞÞ � Nn.

We state two lemmas from which we will next deduce the Multivariate
Newton Identities.

Lemma 2.1. Let F1; . . . ;Fn verifying condition 2. We set:

F1 � � � � � Fn ¼
X
a

baX
a

Let P 2 K½X�. We set: X1 � � � � � Xn � P ¼
P

a paX
a. Then the coefficients of the

Fi’s, of P and the ~‘FðXa � PÞ are connected by the following relations:X
a

ba~‘FðXa�b � PÞ ¼ pb

for b 2 Zn.



Proof. The proof of the lemma consists in developing tg ¼ ~‘FðXg � P � F1 �
� � � � FnÞ in two different ways. First, simplifying by F1 � � � � � Fn with the
Transformation Law (1.1), we obtain:

tg ¼ ‘½Xg�
1
1
F1;...;X

g�n
n Fn�
ðXgþ � P � F1 � � � � � FnÞ ¼ ‘½Xg�

1
1

;...;X
g�n
n �
ðXgþ � PÞ

¼ ‘½Xg�
1
þ1

1
;...;X

g�n þ1
n �ðX

gþ � X1 � � � � � Xn � PÞ

¼
X
a

pa‘½Xg�
1
þ1

1
;...;X

g�n þ1
n �ðX

gþþaÞ ¼ p�g

by using the arguments in Example 1.1. On the other hand, developing the
product F1 � � � � � Fn yields:

tg ¼
X
a

ba~‘FðXgþa � PÞ:

Now set b ¼ �g. j

Next we present a technical lemma[8] which provides a very useful way
of representing the jacobian of the polynomials F1; . . . ;Fn. First we set, for
i ¼ 1; . . . ; n:

Fi ¼
X
a

aðiÞa Xa: ð6Þ

Lemma 2.2. Let Jac be the jacobian of the polynomials F1; . . . ;Fn and for any
family a1; . . . ; an of multi-indices in Zn let us denote by G½a1;...;an� the deter-
minant of the matrix ðaijÞi;j. Then the following equality holds:

X1 � � � � � Xn � Jac ¼
X

a1;���;an
a
ð1Þ
a1 � � � � � a

ðnÞ
an � G½a1;...;an� � Xa1 � � � � � Xan :

Proof. The way of representing the polynomials Fj allows us to write:

Xi � @Fj
@Xi
¼ Xi �

� X
kak�dj

að jÞa
@Xa

@Xi

	
¼

X
kak�dj

að jÞa aiXa ð7Þ

and thus:



X1 � � � � �Xn � Jac ¼
X1 � @F1

@X1
. . . Xn � @F1

@Xn
..
. ..

.

X1 � @Fn
@X1

. . . Xn � @Fn
@Xn
























:

Replacing in this determinant the equalities in (7), the desired result is
obtained merely by developing the determinant. j

Theorem 2.1 ðMultivariate Newton IdentitiesÞ. Let b 2 Zn a multi-index.
Then: X

a1;...;an
a
ð1Þ
a1 � � � � � a

ðnÞ
an � Sa1þ���þan�b ¼

X
a1þ���þan¼b

G½a1;...;an� � að1Þa1 � � � � � a
ðnÞ
an :

Proof. These identities come directly from Lemma 2.1 with P ¼ Jac and
from Lemma 2.2. j

Now we raise the problem of knowing when the Multivariate Newton
Identities make possible the computation of the Newton Sums from the
coefficients. A good strategy consists in choosing a weight vector w 2 Nn to
organize the computations: we demand the leading w-homogeneous part of
the product F1 � � � � � Fn be a monomial Xd with weight larger than that of any
other monomial in F1 � � � � � Fn, so that the formulas, expressing Sd�b in terms
of the Sa�b for wðaÞ < wðdÞ, become recurrent. This requires that the Fi’s
have all the same shape, that is: a monomial plus lower terms (with respect to
w). We can also assume that the leading monomials have coefficient 1. Our
final need is to have initial conditions. They are given by the extension of the
weighted Euler–Jacobi Theorem to ~‘ (Example 2.1,1). However, using this
result requires that ðF1; . . . ;FnÞ has no zero at the weighted infinity.

Finally, the systems F which fulfill all of our requirements, those for
which we know how to use the Newton Identities, are exactly the Gen-
eralized Pham System. In this case, the Newton Identities are as follows:

Sd�b þ
X

wðbÞ<w
P

i
aið Þ<wðdÞ

a
ð1Þ
a1 � � � � � a

ðnÞ
an � Sa1þ���þan�b

¼
X

a1þ���þan¼b
ðG½a1;���;an� �DÞ � að1Þa1 � � � � � a

ðnÞ
an ð8Þ

where D ¼ d1 � � � � � dn, b 2 Zn. Indeed, S0 ¼ Traceð1Þ equals the dimension
of the quotient algebra A, which is d1 � � � � � dn, and all of the other Newton
sums Sa with wðaÞ � 0 are zero, by Example 2.1, 2.



Example 2.3. By applying the Newton Identity S7;3 þ � � � for the system
ðG1;G2Þ of Example 1.2, we express S7;3 in terms of the Generalized Newton
sums whose indices lie inside the dark polytope in Fig. 2. To express S7;3 in
function of the coefficients of the system we just need to apply all the
identities Sa þ � � � for a in the union of the striped area and the dark poly-
gon, since all Sa for a in the white area, are zero.

Precisely, the considered Newton Identity is:

S7;3 � S�1;6 þ S7;2 � S9;1 � S10;0 þ S2;4 � S0;5 þ S4;3 þ 2S8;1 � S10;�1
þ S9;0 þ S1;4 � S�1;5 þ S3;3 þ S7;1 � S11;�1 þ S8;0 � 4S0;4 þ 3S2;3
� S6;1 þ 5S3;2 � 2S�1;4 � 3S1;3 � S9;�1 � S6;0 þ 2S2;2 � 3S0;3 þ 5S4;1
� S8;�1 þ S5;0 � S1;2 � 2S�1;3 þ 4S3;1 � 2S7;�1 � 4S0;2 þ 2S2;1
� 2S6;�1 þ 3S3;0 � S�1;2 � 2S1;1 þ 2S2;0 � 2S0;1 þ S1;0 � S�1;1 ¼ 0:

Remark 2.1. When considering the case n ¼ 1, which is a univariate poly-
nomial, the above Newton Identities are exactly the classical Newton
Identities presented in (5).

3 GENERATING FUNCTIONS FOR THE NEWTON SUMS

With the notations of Lemma 2.1, we had:X
a

ba~‘FðXaþg � PÞ ¼ p�g; g 2 Zn:

Multiplying both sides of the equality by 1=Xg, and then summing for all g 2
Zn yields, after reordering properly the terms:

Figure 2. Computing the Newton Sum Sð7;3Þ.



F1 � � � � � Fn �
X
g2Zn

~‘FðXg � PÞ
Xg ¼ P � X1 � � � � � Xn: ð9Þ

At this point we guess this may lead to generating functions for the family of
the ~‘FðXg � PÞ; g 2 Zn, and especially for the Generalized Newton Sums, with
P ¼ Jac. The following lemma will give the appropriate setting for these
considerations. Let us introduce the necessary notions: let w be a weight and
Bw be the set of all expressions

P
g2Zn

ug
Xg with ug 2 K, and such that

1. for any k 2 Z, all but a finite number of the ug with wðgÞ ¼ k are
zero, and

2. there exists k0 2 Z such that ug ¼ 0 as soon as wðgÞ < k0.

This is naturally a graded K-algebra. If P is a polynomial whose w-
homogeneous leading part is a monomial, so P ¼ Xd þ R with wðRÞ < wðdÞ,
then the formal series

S ¼
X
i2N

�
R

Xd

	i
is well-defined in Bw, and P � S ¼ 1. In this way in our ring Bw all the
inverses of such polynomials P are represented. We say that S is the series
expansion of 1=P in Bw.

Remark 3.1. If K � C, we define:

Log : Cn ! Rn

ðz1; . . . ; znÞ 7! ðLogjz1j; . . . ;LogjznjÞ
and Nd as the normal cone of P at d. Then the series S converges in
Log�1ðbþNdÞ for some b 2 Rn (see[7]).

Lemma 3.1. Let F1; . . . ;Fn be a Generalized Pham System, with multidegree
d. With the notations of Lemma 2:1: the series

X
g2Zn

~‘FðXg � PÞ
Xg

lies in Bw, for any weight w lying inside the normal cone of NPðF1 � � � � � FnÞ at
d, and:

X
g2Zn

~‘FðXg � PÞ
Xg ¼ P � X1 � � � � � Xn

F1 � � � � � Fn
in Bw.



Proof. The series is in Bw because of Proposition 2.1, 2. Its expression as a
rational fraction comes from the above calculation. j

Suppose we have a zero-dimensional system F ¼ ðF1; . . . ;FnÞ, which
can be transformed into a Generalized Pham System G (1 � i � n):

Gi ¼ Ti1 � F1 þ � � � þ Tin � Fn: ð10Þ

For g 2 Nn: ‘FðXg � PÞ ¼ ‘GðXgPdetðTÞÞ. So:

X
g2Nn

‘FðXg � PÞ
Xg ¼ P � detðTÞX1 � � � � � Xn

G1 � � � � � Gn þ
X
g 62Nn

mg

Xg ð11Þ

for some mg. Precisely, mg ¼ ~‘GðXg � P � detðTÞÞ.
Example 3.1. If F defines a zero-dimensional strict complete intersection, it
can be transformed as above into a Generalized Pham System, with the
method used in the Proof of 1.3, and Macaulay’s Theorem (see Remark 1.2).
This was pointed out in[2] and[5]. In these papers the equality (15) was used
to compute the residues by series expansions.

Example 3.2. For F defining a zero-dimensional complete intersection, there
always exist ‘‘eliminating equations’’:

Ti1 � F1 þ � � � þ Tin � Fn ¼ wiðXiÞ ð12Þ

for i ¼ 1 . . . n, with Tij 2 K½X� and the wi 2 K½Xi� non-zero. We get:

X
a2Nn

Sa

Xa ¼ detðTÞ � Jac � X1 � � � � � Xn
w1 � � � � � wn

þ
X
a 62Nn

ma

Xa

for some ma, a 62 Nn. This result, for n ¼ 2, had been established by Jacobi
in 1835 in the particular case when every wi is the Eliminant polynomial of
F for Xi (that is: wi has no multiple root, and its roots are precisely the Xi-
coordinates of the roots of F)[9]. Much later, in 1991, P. Pedersen proved the
general case[11].

Now we find what are precisely the generating series for the Newton
Sums (without terms ma with a 62 Nn), and for the families defined in a
similar way, that is: the families of all of the lðXaÞ for a given linear form l
on A. Note that, since ‘F is dualizing, there exists a polynomial Pl (unique
modulo hF1; . . . ;Fni) such that l : Q 7! ‘FðQ � PlÞ.



Proposition 3.1. Suppose F1; . . . ;Fn define a zero-dimensional complete
intersection. Let f by any K-linear form on A. Then the generating function of
the fðXaÞ is obtained by series expansion in 1=X1; . . . ; 1=Xn of a rational
function:X

a2Nn

fðXaÞ
Xa ¼

X1 � � � � � Xn
w1ðX1Þ � � � � � wnðXnÞ

�NFwðdetðTÞ � PlÞ

where T is a transformation matrix of F into w ðas in 16Þ and NFw gives the
normal form with respect to w1; . . . ; wn.

Proof. For a 2 Nn: ‘wðXa �NFwðdetðTÞ � PfÞÞ ¼ ‘wðXa � detðTÞ � PfÞ ¼ fðXaÞ.
And for a 62 Nn:

‘wðXa �NFwðdetðTÞ � PfÞÞ ¼ 0

because the wi’s are univariate (see Example 2.2). j

Example 3.3. This formula produces some well-known identities for a single
univariate polynomial PðXÞ:


 With f ¼ Trace, the fðXiÞ are the Newton Sums si associated to P,
and

X
i2N

si
Xi
¼ XP

0

P
:


 With f ¼ ‘P, the global residue operator:

X
i2N

‘PðxiÞ
Xi
¼ X
P
:

4 AN APPLICATION: PHAM SYSTEMS OF DEGREE 2

In the particular case when all the Fi have degree 2 and the system is a
Pham system (then we denote: Fi ¼ X2i þ

Pn
j¼1 ui;jXj þ vi; i ¼ 1; . . . ; n), the

Newton Sums S1;1;...;1;0;0;...;0 have quite a simple expression as functions of
the coefficients.

Indeed, for such a system, developing in Laurent series the function

X1 � � � � � Xn � Jac

F1 � � � � � Fn



gives:

Sa¼
X
M;I;J

ð�1ÞjMj �2CardI �
Yn
i¼1

mi;0þ���þmi;n

mi;0 ;...;mi;n

� 	
�detUðJÞ �

Yn
i¼1

v
mi;0
i �

Yn
i;j¼1

u
mi;j
i;j

where the sum is carried over all of the decompositions I ] J ¼ f1; . . . ; ng
and matrices M ¼ ðmi;jÞ;i¼1;...;n; j¼0;...;n with positive entries, such that:

ai ¼
X
j¼0;...;n

ml;j �
X
i¼1;...;n

mi;l � wIðiÞ; i ¼ 1; . . . ; n

where wIðiÞ ¼ 1 if i 2 I, 0 otherwise. Our notation UðJÞ stands for the sub-
matrix of the ui;j with i 2 J; j 2 J.

For a ¼ ð1; . . . ; 1; 0; . . . ; 0Þ: k times 1 followed by n� k times 0, these
I; J;M should verify:

2
X
j¼0;...;n

ml;j �
X
i¼1;...;n

mi;l ¼
1 if i � k and i 2 I
�1 if i > k and i 2 J
0 otherwise

(
:

Adding these equalities together one gets:

jMj þ
Xn
i¼1
mi;0 ¼ Cardðf1; . . . ; kg \ IÞ � Cardðfkþ 1; . . . ; ng \ JÞ:

But obviously everytime i � k and i 2 I then the i-th line of M has a non-
zero entry, so jMj � Cardðf1; . . . ; kg \ IÞ. From this we deduce that for all i,
mi;0 ¼ 0; J � f1; . . . ; kg; and finally that the matrix of the mi;j;i2I;j2I is a
permutation matrix (all coefficients equal to 0 except precisely one 1 on each
column and one 1 on each row) and the remaining coefficients mi;j ¼ 0 for
i 62 I or j 62 I. This Newton Sum has an expression of the following type:

S1;...;1;0...;0 ¼ 2n�k �
X

J]L¼f1;...;kg;t2SL
ð�2ÞCardðLÞ � detðUðJÞÞ �

Y
i2L
ui;tðiÞ

¼ ð�1Þk2n�k
X
s2Sk

tðsÞ
Yk
i¼1
ui;sðiÞ

where tðsÞ ¼ ð2l1 � 1Þ � � � � � ð2lp � 1Þ when s decomposes as a product of p
cycles with disjoint supports of respective lengths l1; . . . ; lp.
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