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ABSTRACT

This paper is devoted to present, first, a family of formulas extending to the
multivariate case the classical Newton (or Newton—Girard) Identities relating the
coefficients of a univariate polynomial equation with its roots through the Newton
Sums and, secondly, the Generating Functions associated to the new introduced
Newton Sums of the mul-tivariate case. As a by-product the kinds of systems accepting
these Newton Identities are also characterized together with those allowing the Newton
Sums to be computed in an inductive way directly from the coefficients of the
polynomial system under consideration.



INTRODUCTION

When considering a univariate polynomial with coefficients in a field K
with characteristic 0, its Newton Sums and its coefficients are connected by
the well-known Newton Identities. Dealing with n polynomials in
n unknowns with coefficients in a subfield K of the field of the complex
numbers C, and finitely many solutions in C","! showed that there exists a
generalization of these formulas (Multivariate Newton Identities). They also
pointed out that, when the system was a Pham System, i-e had the shape:

F; = X¥ + terms with total degree < d; — 1 (1<i<n), (1)

then these identities made possible the computation of the Multivariate
Newton Sums from the coefficients, by an induction procedure, as in the
univariate case.

In a previous paper'™ it was shown how to obtain the same results with
the algebraic version of the global residue operator (which made the method
valid for systems with coefficients in any field K with characteristic 0). These
results can be extended, in an algebraic way too, to the so-called Pham
systems of type II (see also the analytic version inl").

In this paper we show that, using the same techniques introduced by®,
the results extend to the case of Generalized Pham Systems, i-e systems:

F; = X% + lower terms w.r.t. < (1<i<n) (2)

for some term ordering <. This precisely means that, besides defining a zero-
dimensional complete intersection, the F;’s are a Grobner basis for < (see
for instance!'”, Lemma 6.15). The vector 6 = (d,,...,d,) is called the
multidegree of the Generalized Pham System.

In the first part we present the elements of the algebraic theory of
the global residue operator to be used in the sequel. We also prove that
when F is a Generalized Pham System, the corresponding global residue
operator maps exactly a polynomial on the leading coefficient of its normal
form. This was already demonstrated in®!, but our proof is direct. Besides, it
leads naturally to a new proof of the Euler-Jacobi Theorem and Macaulay
Theorem.

Next we derive the Multivariate Newton Identities for Generalized
Pham Systems F = (F,...,F,) and show how to use them as induction
formulas to relate the generalized Newton sums (being defined most of them
as the traces of monomials) with the coefficients of the polynomials F;’s.

The third part focuses on presenting the generating function for the
generalized Newton sums introduced in the second section: i-e¢ a rational



function in the variables X7, ..., X, whose expansion in negative powers of
the variables provides the generalized Newton sums. This result is genera-
lized to the case where, instead of the generalized Newton sums, we generate
the image of the monomials under any linear form defined in the quotient
K[X]/(F),...,Fy,). This answers in a positive way a question posed by
E. Becker.

The last section shows how the previously mentioned Generating
Functions for the Multivariate Newton Sums provide explicit formulas for
the trace of some monomials with respect to a Pham System of degree 2.

1 ALGEBRAIC PRELIMINARIES

Let K be a field of characteristic 0 and . an algebraically closed field
containing K. Let Fi,..., F, be polynomials in K[X] = K[X},...,X,]. We
assume the ideal they generate, J, is a zero-dimensional complete intersec-
tion. Equivalently: the quotient algebra 4 = K[X]/J is finite-dimensional
over K. We denote by Ay,...,A, the roots of Jin L", and p, ..., u, their
respective multiplicities. Then A has dimension D =) ;. This section
focuses on the explicit presentation of some algebraic properties of A to be
used in the sequel.

1.1 The Dualizing Linear Form

Since the ideal J is a zero dimensional complete intersection, A is a
Frobenius Algebral®: there exists a linear form ¢: A — K (called a dua-
lizing linear form) such that the symmetric K-bilinear form

Ax A — K
(a,b) — ¢(ab)

is non degenerate. [4] shows how to find such a dualizing linear form on A.
We recall it now.

For P € K[X] and 1 <i < n we define 0,(P)(X1,...,Xn, Y1,...,Y,) =
0;(P)(X,Y) as follows:

P(Yi,... .Y, Xe. . X)) = P(Y1,..., Yi, Xisr, .., Xy)

a(P)(X,Y) = Xi—

Then Bez(X, Y), the Bezoutian Determinant associated to Fi, ..., F,, is the
determinant of the matrix of the 9;(F;) for 1 <i,j < n (it is a polynomial in
KX, Y)).



Let A®x A be the quotient K[X,Y]/(Fi(X),...,F.(X),Fi(Y),...,
F,(Y)) and x; and y; the images of X; and Y; in A ®x A. So Bez(x, y) is the
image in A ®x A of Bez(X,Y). -

If B={¢g(x):1<i< D} is a basis of the K-algebra .4 then there
exists a decomposition:

Bez(x,y) = &1 (p)e1(x) +--- + ép(y)en(x).

Then B = {&(x) : 1 < i< D} happens to be also a basis of A (the dual basis
of B), and given the decomposition of 1 in .4 according to the dual basis B,
1 =di&(x)+ - +dpép(x), the linear form on A defined by &(x)—d; is
dualizing. This form ¢p = {z, ) is called the Kronecker Symbol or global
residue operator associated to Fi, ..., F,. We will take the liberty of denoting
also by ¢F the linear form it induces on K[X], when convenient. When
K c C, the Kronecker Symbol coincides with the classical residue (seel'*!
and™, (§ 0)).
When J is a radical ideal the global residue operator verifies:

PN
tr(P) = ; Jac(A;)

where Jac denotes the Jacobian determinant of the polynomials Fi, ..., F,.
Without assumptions on J the dualizing form ¢ is related with the trace by
the following equality:

Cp(P-Jac) = uy P(Ar) + - - - + . P(A,) = Trace(P).

A very useful tool to deal with the dualizing form is the Transformation Law
which is presented in the following proposition (I and '*! give an algebraic
proof of this classical result).

Proposition 1.1 (Transformation Law). Let G,...,G, be polynomials in
K[X] with a finite number of solutions in " and G; = TnFi + -+ + TiFy,
T; € K[X] (ie{l,...,n}). If P € K[X] then {p(P) = Ls(P - det(T)).

1.2 Expression of the Dualizing Form for a Generalized Pham System

Now we consider the special case when F is a Generalized Pham
System for some term ordering <. The family of the ¢,(x) = x]' - - X% =

x*, for 0 <oy <d,...,0< o, <d, is a basis over K of the quotient
algebra.



We notice that we can write, for i # j, 0;(F;) = b;;(X,Y)/X, and
(F) = (X} +b;,(X, 1))/ X,
where the b; ;’s, seen as polynomials in X with coefficients in K[Y], have all

their monomials smaller than X;l" with respect to <. Thus, if we develop the
determinant defining the Bezoutian then we obtain:

1
Bez(X,Y)=———— (X" ... . XP 4 R(X, Y
ez(_,_) Xl . Xn ( 1 n + (—7_))
with all X-monomials in R smaller than X{' - - .- X% . Otherwise stated:

Bez(X,Y) = X"+ X0 4 RI(X, Y)
with all X-monomials in R, smaller than X~ '..... x%-1,

The reduction of R; to its normal form with respect to F|(X),...,
F,(X), Fi(Y),...,Fy(Y) never produces the monomial X¥~'..... X4=1"s0
we get:

Bez(x,y) = x{" "' ot >0 i)

- pi<d;i=l..n
Especially, édlfl.,...,drl)(z) =1, whence, for 0 <o) < d},...,0 < a, <d,:

o _ )1 ifa=(d~—-1,...,d, 1)
£l (%) { 0 otherwise

We have just proved the following result which, for K C C, is Lemma 4.2
oft”

Proposition 1.2. Let (Fy,...,F,) be a Generalized Pham System for a term
ordering <, and X,‘/ the leading term of every F;. Then Lg(P) is exactly the
coefficient of X7 ... X4=1in the normal form of P € K[X] with respect to
Fi,...,F, and <.

1.3 Euler-Jacobi Theorem and Macaulay’s Theorem

For H € K[X], its Newton Diagram ND(H) C 7" is the set of the
exponents of the monomials in H with non-zero coefficient. The Newton
Polytope of H, denoted with NP(H), is the convex hull of ND(H) in R".



The Newton Polytope of the product Fj - -- - - F, is also the Minkowski sum
of the NP(F)’s:

NP(Fy -+ F) = NP(F\) + - -+ NP(F,).

For E C 7", we denote the semi-group generated by E (the set of all the
finite sums e; + - - - + ¢, with the ¢; € F) with > E.

We begin by looking at the special case when (F7, .. ., F,) is a Generalized
Pham System, with X‘fl , -+, X9 the respective leading terms of Fi, ..., F,, and
0= (dy,...,d,). Let S(F) be the semi-group generated by the elements of the
set {0 + ajo € UL |, N'D(F;)}. This set S(F) is always contained in

CF)={6—t-x:te R, xe NP(F|----- F,)}

the polyhedron obtained by drawing half-lines from ¢ through all points of
N(Fp - F,), next translating it by —¢ and finally rotating it by half a turn
around 0. The origin 0 is a vertex for C, and for any linear form w in the
normal cone of NP(F) - ---- F,) at §, the hyperplane w = 0 is a supporting
hyperplane of C(F) at 0. When all the F;’s coefficients are non-zero and have
independent parameters then S(F) = C(F) N 7Z".

Proposition 1.3. Let F be a Generalized Pham System. If P € K[X] and
ND(P) lies outside {6 — 1} + S(F) then {p(P) = 0.

Here 1 is the vector (1,...,1) € Z".

Proof. Suppose P reduces through Fi, for instance, into a polynomial Q.
Then:

ND(Q) € ND(P) + ND(Fy) + {(~d),0,...,0)}

More generally, if R is obtained from P after a series of reductions by
Fi,...,F,, we'll have:

ND(R) € ND(P) + ) (ND(F) + {(=d1,0,...,0)}) + -+
+ 3 (WD(E) +{(0,...,0,~d,)}).

Note that actually:

S (WD) +{(~dh,0,....0)}) + -
+ 5" (WD(F) +{(0,...,0,~d,)}) = ~S(F)



for every set > (ND(Fi) + {(...,0,—d;,0,...)}) containing {0}. After suf-
ficiently many reductions, R happens to be the normal form of P. Its global
residue is non-zero if and only if its Newton Diagram contains {6 — 1}. This
would involve that {6 — 1} € ND(P) + (—S(F)) whence the proposition.

|

Example 1.1. A very special case is when the polynomials are pure powers:
F = X‘l’ll,...,ﬂ = X% Then the global residue operator acts on K[X] as
follows:

i (X*) = . e :
X! ..“.,X,{”]( ) { 0 otherwise

Let us introduce some vocabulary. Let w € N" (a weight vector). It
determines a linear form on R": the weight w: (f1,...,t,)—wit; +---
“+wyt,. The w-degree of a monomial X* is defined as w(a). The w-degree of a
non-zero polynomial P is the integer m = deg, (P) such that P= H+ R
with all monomials in H having w-degree m, and all monomials in R having
w-degrees lower than m. The polynomial H is then the w-homogeneous
leading part of P. A root of H, if different from the trivial root (0,...,0), is
said to be a root at the weighted infinity, with respect to w, for P.

If Fy,...,F, have no common root at the weighted infinity with
respect to w, they are said to define a strict complete intersection graded by
w. Strict complete intersections are studied in"” and in!.

Example 1.2. A General Pham System F defines a strict complete intersec-
tion, graded by any weight w lying inside the normal cone of NP(F; - - - -
F,) at J, where o is the multidegree of F.

Conversely, if the system F= (Fj,...,F,) defines a strict complete
intersection graded by w and such that the leading w-homogeneous parts of
Fy,... F, are pure powers, Xf‘,...,Xff", then it is a Generalized Pham
System for any term ordering =< compatible with w in the following sense:
w(X*) < w(X#) = X* < X, One can construct such an ordering by choos-

ing an arbitrary term ordering <7 and setting:
X* < XF = w(X*) <w(Xf) or[w(X*)=w(Xf) and X*=rXF].

With a classical method and using the Transformation Law, the study
of /r in the zero-dimensional strict complete intersection case is reduced to
the case of Generalized Pham Systems. Suppose Fi,..., F, define a zero-
dimensional strict complete intersection graded by w. Let Hy, ..., H, be the



respective w-homogeneous leading parts of F,. .., F,. Then, for p,,...,p, €
N large enough, there exist polynomials 7} such that:

X7 =Toa(X") - Hi(X") + -+ Tip(X") - Hy(X") (1<i<n) (3

where X" stands for X|',...,X)». We can assume that the T}’s are
w-homogeneous (of respective w-degrees w;p; —deg,(F;)). Then

ie{l,...,n}:
Gi=Ty - Fi+-+Tiu F, (4)

is a Generalized Pham System and £¢p(P) = £g(P - det(T)) .
Remark 1.1. Note that det(7) is w-homogeneous of w-degree

dowip; — > degy (Fy).

Theorem 1.1 (Weighted version of the Euler—Jacobi Theorem). Let w be a
weight vector, ||w|| =wi + -+ wy, and F, ..., F, with no common solution
at the weighted infinity with respect to w. If P € K[X] and

degw (P) < Z degw (E) - ”W”
i=1

then we have Lg(P) =0 .

The integer Y ;deg, (F;) — ||w|| is called the critical number associated
to F for w.

Proof. First, the result is obvious when F is a Generalized Pham System,
with multidegree 6, because w = > deg, (F;) — ||w|| is a supporting hyper-
plane of {6 — 1} + C(F) at 6 — 1.

Now, if F just defines a zero-dimensional complete intersection, we set
T and G as in (3), (4). If deg,(P) < >_deg,(F;) —|w||, then deg, (P -
det(T)) < > wip; — ||w|]| (by Remark 1.1). This last number is exactly the
critical number of the system G for w. The theorem follows. |

Theorem 1.2 (Weighted version of Macaulay’s Theorem). Let w be a weight
vector, and Hy, . .., H, be w-homogeneous polynomials, with no common non-
trivial zero. Let P be a w-homogeneous polynomial. If deg,(P) >
> deg,, (H;) — ||w|| then P lies in the ideal (H,...,H,).

Proof. We choose p,...,p, and T as in (3). Then, by Example 1.1,
Ly(P) = K[Xﬁnwxg”](P-det(T)) =0 as soon as ND(P) does not meet
(py—1,...,p,— 1) = ND(det(T)). This last set is contained in the hyper-



plane w = > deg, (H;) — ||w||- So if P is homogeneous of degree larger than
this number, then £y (P) = 0, and better: (P - Q) = 0 for every O € K[X].
But this implies P lying in the ideal (H,..., H,), because the global residue
operator is dualizing. [ |

Remark 1.2. As noticed by?®! and®®, Macaulay’s theorem provides con-
venient p, ..., p, for the construction (3), (4): it is sufficient to solve a linear
system.

Example 1.3. Let w = (1,2) and

F=XX+X+XB+ XX+ X +1,
F=X+X - XX+ X + 1.

Then Fy, F, have weighted degrees, with respect to w, repectively 6,4, and no
common solution at the weighted infinity. The system has critical number 7.
So X% and X3 are in the ideal generated by the w-homogeneous leading parts
X2X3 and X7 + X5 — X3X,. Looking for ay,az, by, ba, by, uy,uz, vy, v2, v3 such
that:

X{ = (a1 X7+ aX2) - Xi X3+ (un X{ + 1, X7 X2 +53.X3) - (X + X5 — X1X3)
X3 = (w X{+uXo) XPX5 + (01 X] + 02X X0 +03.X3) - (X} + X3 — X1X0)

we find easily there is a unique solution: ¢ =vi =v, =b3;=0,a0 = u; =
—1,b1 = b2 = Uy = V3 = 1 and:

—-X> X?—FX%XQ

T—
—X2 + X, X3

The Generalized Pham System G = T - F is:

G = Xff D CHED ¢P. CEED ¢P CIND CED CLITD CRED ¢E'C
G =X X' - XX - XX, - X — X+ XX
+X23 +2X1X22 +Xi1Xo+Xs Jerz.

In Fig. 1, the shaded polytope is {0 — 1} + NP(G, - G2), and the shaded
polyhedron is {0 — 1} + C(G). The weighted Euler—Jacobi theorem says the
£6(X*) = 0 for o below the dotted line w = 13, but Proposition 1.3 implies
this for the cases in the broader white area.



Figure 1. The cone {0—1}+C(G) and the Newton polytope {o—1}+
NP(G; - Gy)

Remark 1.3. The classical Euler—Jacobi Theorem and Macaulay’s Theorem
are obtained from their weighted versions by choosing for w the total degree.
The weight vector is (1,...,1). As remarked in®!, when considering a
Generalized Pham System (Fy,...,F,) with multidegree 0, applying the
weighted Euler—Jacobi theorem for all weights w coming from the normal
cone of NP(Fy -« --- F,) at ¢ directly implies the vanishing Proposition 1.3.

2 GENERALIZED NEWTON SUMS AND MULTIVARIATE
NEWTON IDENTITIES

To begin with, let us recapitulate the situation in the univariate case.
Let F= X+ a; X' + ... + a,, with roots Ay, ...,A, (in an algebraic clo-
sure of the base field, still assumed to have characteristic zero). Let y, ..., u,
be their respective multiplicities. The Newton Sum with index j € N asso-
ciated to Fis:

;
Sj= Z A
i=1

The coefficients of F and its Newton Sums are connected by the
Newton Identities (s = n):

S1 = —aq

S2 + aisy —2a;

Sp+ A1Sp—1 + -+ - + Ap_151 = —hay.



Note that they make it possible to compute inductively the Newton Sums
from the coefficients, and, conversely, the coefficients from the Newton
Sums.

The definition of the Newton Sums is generalized to the multivariate
case as follows: let Fy,...,F, be a complete intersection, with roots
Ay, ..., A, with respective multiplicities p,. .., u#,. The Newton Sum with
index o € N" is:

Sy =Y uX*(A)).
i=1

In other words, the trace of the monomial X* with respect to Fy,..., F,.

In order to generalize the univariate Newton Identities to the multi-
variate case, for Pham Systems,!' introduces Generalized Newton Sums:
objects S, with o« € Z", which coincide with the Newton Sums when o € IN",
They set:

S — 1 /X“-Jac-Xm/\-~-/\dX,,
“_(Zin)” F - F,

for 2 € 7", and the integration on a convenient chain. This gives the
Newton Sums when o € N”,

We can set up the algebraic equivalent of this definition for a larger
class of systems (containing the Generalized Pham Systems), those verifying:

Condition 1. X\ Fy, ..., X, F, still have finitely many common solutions in L.".

For such systems, we extend the global residue operator £ to a linear
form ¢ on K[XI,XLI, . .,X,“Xi”]. It is sufficient to define its value on the
Laurent monomials. For o € 7",

7 oy _ _ ot
EF(X ) - [[Xxl F Xi;Fn](X )

where o = o™ — o™, and o, «~ € " (the Transformation Law, 1.1, ensures

the consistency of this definition).
Then we define the generalized Newton Sums associated to F:

S, = ZF(XO( -Jac), ae 7"

Some of the vanishing properties of ¢ extend to /.



Proposition 2.1.

1. Suppose F= (F,...,F,) defines a zero-dimensional strict com-
plete intersection graded by w. Then for any Laurent Polynomial P
such that deg,(P) < )_deg,(F;) — [|w|| we have {r(P) = 0.

2. Suppose F is a Generalized Pham System. Then £r(P) = 0 for any
Laurent polynomial P such that ND(P) lies outside {0 — 1} + S(P).

Proof. This immediately comes from the definition of /7 and Propositions 1.1
and 1.3. |

Example 2.1.

1. Suppose F defines a strict complete intersection, graded by w.
Note that deg,(Jac) <> deg, F; —|w||. So the Generalized
Newton Sums S, = /z(X* - Jac) are zero whenever w(a) < 0.

2. Suppose F'is a Generalized Pham System with multidegree ¢ for
some term ordering <. Let w be a weight lying inside the normal
cone of WNP(F,-----F,) at 6. Then {6—1}+C(F)+

(—=N'P(Jac)) is included in C(G). Indeed,
NPJac) C NP(Fy,...,F,)+{-1} c {6 -1} + (-C(G)).

So the Generalized Newton Sums S, are zero whenever y is
outside C(F). Specially, w = 0 being a supporting hyperplane of
C(F) at 0, we have S, = 0 when w(y) <0, except for y = 0: then
So=D=dy - -d,.

Example 2.2. Suppose now the F;’s are univariate: F; = Fi(X1),...,F, =
F,(X,). Suppose also that P is reduced modulo F. Then {J—1}+
C(G) + (—NP(P)) C N".

We state two lemmas from which we will next deduce the Multivariate
Newton Identities.

Lemma 2.1. Let Fy,..., F, verifying condition 2. We set:

Let P € K[X]. Weset: Xy ----- X, - P =73, p,X*. Then the coefficients of the
F;’s, of P and the £x(X* - P) are connected by the following relations:

Z b“ZF(Xaiﬁ . P) = Pg

for pe 7.



Proof. The proof of the lemma consists in developing , = ZF(X7' -P-F-
.-+ F,) in two different ways. First, simplifying by F;----- F, with the
Transformation Law (1.1), we obtain:

= - . Vo P L FE e — - - LA
t""_e[X’l' Aoxiry & P E £ é[X’,‘ X P)

= [x’f“ Xr,7+1](X7+ Xy X, - P)

= aé[x;l'l’Jrl,m,X;,;;Jrl] (X”)" +0() = p*))

by using the arguments in Example 1.1. On the other hand, developing the
product Fy - --- - F, yields:

b= 3 bilr(X P,

Now set f = —y. |
Next we present a technical lemma which provides a very useful way

of representing the jacobian of the polynomials Fi, ..., F,. First we set, for
i=1,...,m

Fi=Y a)Xx". (6)
o

Lemma 2.2. Let Jac be the jacobian of the polynomials Fy, . .., F, and for any
Sfamily o', ... " of multi-indices in 7" let us denote by [y o the deter-
minant of the matrix (oc_j)l.‘/.. Then the following equality holds:

XX, Jac = Z “ill) ..... o™ Tt ot XY X

Proof. The way of representing the polynomials F; allows us to write:

OF; _ (X" _ Dy X
X; aXi—X, <Zaa X —Zaa o, X (7)

ll#ll<d ll«ll<d;




OF, OF,

X — ... X,
! 0X, X,
). CERERE X, -Jac = : : .
OF, OF,
X - D ¢
"X, X,

Replacing in this determinant the equalities in (7), the desired result is
obtained merely by developing the determinant. ]

Theorem 2.1 (Multivariate Newton Identities). Let f € Z" a multi-index.
Then:

Z aﬁ)~"'-aﬁ'ﬁ)-sm---w—/ﬁ: Z r[a‘,“ww]'aﬁ) ..... af,,’,’,).

ol o ol ton=p

Proof. These identities come directly from Lemma 2.1 with P = Jac and
from Lemma 2.2. ]

Now we raise the problem of knowing when the Multivariate Newton
Identities make possible the computation of the Newton Sums from the
coefficients. A good strategy consists in choosing a weight vector w € N”" to
organize the computations: we demand the leading w-homogeneous part of
the product Fy - - - - - F, be a monomial X° with weight larger than that of any
other monomial in Fy - - - - - F},, so that the formulas, expressing Ss_z in terms
of the S, g for w(x) < w(d), become recurrent. This requires that the F;’s
have all the same shape, that is: a monomial plus lower terms (with respect to
w). We can also assume that the leading monomials have coefficient 1. Our
final need is to have initial conditions. They are given by the extension of the
weighted Euler-Jacobi Theorem to ¢ (Example 2.1,1). However, using this
result requires that (F,..., F,) has no zero at the weighted infinity.

Finally, the systems F which fulfill all of our requirements, those for
which we know how to use the Newton Identities, are exactly the Gen-
eralized Pham System. In this case, the Newton Identities are as follows:

S(S*ﬁ + Z aill) e Clé’;) : S“1+..A+an_ﬁ
w(p)<w( i) <w(s)
= Z (1—‘[117,,,706/1] — D) . ail]) ..... ai’;) (8)
ol o =3
where D =d; ----- dy, p € 7". Indeed, Sy = Trace(1) equals the dimension
of the quotient algebra A, which is &; - - - - - d,, and all of the other Newton

sums S, with w(a) < 0 are zero, by Example 2.1, 2.



Figure 2. Computing the Newton Sum S73).

Example 2.3. By applying the Newton Identity S73 + --- for the system
(G1, G1) of Example 1.2, we express Sy 3 in terms of the Generalized Newton
sums whose indices lie inside the dark polytope in Fig. 2. To express S73 in
function of the coefficients of the system we just need to apply all the
identities S, + - - - for a in the union of the striped area and the dark poly-
gon, since all S, for « in the white area, are zero.

Precisely, the considered Newton Identity is:

S75—S_16+S72—So1 —Si00+S24 —Sos5+S43+2Ss1 — Si0-1
+S90+S14—S_15+S33+S71 —Si1,-1 +Ss0 — 4S04 + 3523
—S6,1+ 3832 —2S_14 —3S13—Sg_1 —Se0 + 2825 — 3503 + 5S4
—Sg 1 +S50—Si12—2S_13+4S31 —2S7_1 — 4502 + 2S5
—286-1+3S30—S_12—2S11+2S20—2S01 +Si10—S_11 =0.

Remark 2.1. When considering the case n = 1, which is a univariate poly-

nomial, the above Newton Identities are exactly the classical Newton
Identities presented in (5).

3 GENERATING FUNCTIONS FOR THE NEWTON SUMS

With the notations of Lemma 2.1, we had:

SR P = ge 7
o

Multiplying both sides of the equality by 1/X”, and then summing for all y €
7" yields, after reordering properly the terms:



Fi-ooo- F, - Z M =P-X;- - X,. (9)

’
yeL"

At this point we guess this may lead to generating functions for the family of
the (p(X" - P), y € 7", and especially for the Generalized Newton Sums, with
P = Jac. The following lemma will give the appropriate setting for these
considerations. Let us introduce the necessary notions: let w be a weight and
By be the set of all expressions Zyezn ;— with u, € K, and such that

1. for any k € Z, all but a finite number of the u, with w(y) = k are

zero, and
2. there exists ky € Z such that u, = 0 as soon as w(y) < k.

This is naturally a graded K-algebra. If P is a polynomial whose w-
homogeneous leading part is a monomial, so P = X° + R with w(R) < w(§),
then the formal series

-x(x)

ieN

is well-defined in By, and P-S = 1. In this way in our ring By all the
inverses of such polynomials P are represented. We say that S is the series
expansion of 1/P in By,.

Remark 3.1. If K c C, we define:
Log: cr — R"
(z1y...yzn) +— (Loglzi],...,Log|za|)

and Ns as the normal cone of P at . Then the series S converges in
Log~! (b + Nj) for some b € R" (seel™).

Lemma 3.1. Let Fy,...,F, be a Generalized Pham System, with multidegree
0. With the notations of Lemma 2.1: the series

Z (p(X7 - P)

“/67,,” X/
lies in By, for any weight w lying inside the normal cone of NP(F, - --- - F,) at
0, and:
lp(X7-P) p.( X,
b7 X Fy - Fy



Proof. The series is in B,, because of Proposition 2.1, 2. Its expression as a
rational fraction comes from the above calculation. |

Suppose we have a zero-dimensional system F = (Fy,...,F,), which
can be transformed into a Generalized Pham System G (1 < i < n):

Gi=Ty Fi+-+Ty-F, (10)

For y € N": £p(X" - P) = (X" Pdet(T)). So:

(X" - P X X, .
Z%:Pdet(T)iJrZ ! (11)
7EN" 7EN"

for some m,. Precisely, m, = (X" - P - det(T)).

Example 3.1. If F defines a zero-dimensional strict complete intersection, it
can be transformed as above into a Generalized Pham System, with the
method used in the Proof of 1.3, and Macaulay’s Theorem (see Remark 1.2).
This was pointed out in™® and®). In these papers the equality (15) was used
to compute the residues by series expansions.

Example 3.2. For F defining a zero-dimensional complete intersection, there
always exist “‘eliminating equations’:

T -Fir+- 4 Ty Fy = (X)) (12)
for i=1...n, with T;; € K[X] and the y; € K[X;] non-zero. We get:

S, X, - X, m,
Zﬁ:det(T)-Jac-Xi—&- i

2eN" 1 e g

for some m,, o ¢ N". This result, for n = 2, had been established by Jacobi
in 1835 in the particular case when every y; is the Eliminant polynomial of
F for X; (that is: y; has no multiple root, and its roots are precisely the X;-
coordinates of the roots of F)[9]. Much later, in 1991, P. Pedersen proved the
general casel!!.

Now we find what are precisely the generating series for the Newton
Sums (without terms m, with o € N"), and for the families defined in a
similar way, that is: the families of all of the A(X*) for a given linear form A
on A. Note that, since /¢ is dualizing, there exists a polynomial P; (unique
modulo (Fi,...,F,)) such that : Q— {p(Q - P)).



Proposition 3.1. Suppose F,...,F, define a zero-dimensional complete
intersection. Let f by any K-linear form on A. Then the generating function of
the f(X*) is obtained by series expansion in 1/Xy,...,1/X, of a rational
function:

fx) Xy X, . |
2% () 2y NEde(D) - Py)

X ()
where T is a transformation matrix of F into y (as in 16) and NF, gives the
normal form with respect to yy, ..., Y-
Proof. For o € N": £,(X* - NF,(det(T) - Py)) = £,(X* - det(T) - Py) = f(X*).
And for o ¢ N

6,(X* - NF,(det(T) - Py)) = 0

because the y;’s are univariate (see Example 2.2). |

Example 3.3. This formula produces some well-known identities for a single
univariate polynomial P(X):

e With /= Trace, the f(X") are the Newton Sums s; associated to P,
and

Si _ XP

X P

ieN

e With f'= /p, the global residue operator:

ﬂp(xi) i X
Z xXi _p

ieN

4 AN APPLICATION: PHAM SYSTEMS OF DEGREE 2

In the particular case when all the F; have degree 2 and the system is a
Pham system (then we denote: F; = X? + 27:1 u i X;+v,i=1,...,n), the
the coefficients.

Indeed, for such a system, developing in Laurent series the function



gives:

n n n
S, = Z (—1)IMI . pCardr, H (’"’-" *) -detU(J) .Hu,?”-“ . H !
M

1J i=1 M QMg i—1 Q=1

where the sum is carried over all of the decompositions W J = {I,...,n}

where y;(i) = 1 if i € I, 0 otherwise. Our notation U(J) stands for the sub-
matrix of the u;; with i € J,j € J.

For o = (1,...,1,0,...,0): k times 1 followed by n — k times 0, these
I, J, M should verify:

2 Z mpj — Z mi; =

Jj=0,....n i=1,...,n

1 if i<k and iel
—1 if i>k and iel.
0 otherwise

Adding these equalities together one gets:

|M|+ Y mig = Card({1,...,k} N 1) = Card({k + 1,...,n} N J).
i=1

But obviously everytime i < k and i € I then the i-th line of M has a non-
zero entry, so |M| > Card({1,...,k} NI). From this we deduce that for all i,
mig=0; JC{l,...,k}; and finally that the matrix of the m;,icljer is a
permutation matrix (all coefficients equal to 0 except precisely one 1 on each
column and one 1 on each row) and the remaining coeflicients m;; = 0 for
i¢1Iorjé¢ I This Newton Sum has an expression of the following type:

Si..10.0=2"F. Z (—2)Card(L> ~det(U(J)) - H“i,r(i)
JYL={1,...k}1€X, ieL
k
= (—1)1(2”7/C Z t(0) Hui,a(i)
[ i=1
where #(¢) = (2" — 1) ----- (2» — 1) when ¢ decomposes as a product of p

cycles with disjoint supports of respective lengths /i, ..., /,.
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