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We study the invariant theory of trilinear forms over a three-dimensional complex vector space, 
and apply it to investigate the behavior of pure entangled three-partite qutrit states and their normal 
forms under local filtering operations (SLOCC). We  describe the orbit space of the SLOCC 
group SLs3,Cd33 both in its affine and projective versions in terms of a very symmetric normal 
form parametrized by three complex numbers. The parameters of the possible normal forms of a 
given state are roots of an algebraic equation, which is proved to be solvable by radicals. The 
structure of the sets of equivalent normal forms is related to the geometry of certain regular 
complex polytopes. 

I. INTRODUCTION

The invariant theory of trilinear forms over a three-dimensional complex vector space is an
old subject with a long history, which, as we shall see, appears even longer if we take into account
certain indirect but highly relevant contributions.1–4 This question has been recently revived in the
field of Quantum Information Theory as the problem of classifying entanglement patterns of
three-qutrit states.

Indeed, since the advent of quantum computation and quantum cryptography, entanglement
has been promoted to a resource that allows quantum physics to perform tasks that are classically
impossible. Quantum cryptography5,6 proved that this gap even exists with small systems of two
entangled qubits. Furthermore, it is expected that the study of higher dimensional systems and of
multipartite (e.g., 3-partite)states would lead to more applications. A seminal example is the
so-called 3-qutrit Aharonov-state, which “is so elegant it had to be useful”:7 Fitzi, Gisin, and
Maurer7 found out that the classically impossible Byzantine agreement problem8 can be solved
using 3-partite qutrit states. From a more fundamental point a view, the Aharonov state led to
nontrivial counterexamples of the conjectures on additivity of the relative entropy of
entanglement9 and of the output purity of quantum channels.10 Obviously, these results provide a
strong motivation for studying 3-partite qutrit states. Furthermore, interesting families of higher-
dimensional states are perfectly suited to address questions concerning local realism and Bell
inequalities(see, e.g., Ref. 11 for a study of three-qutrit correlations).

It is therefore of interest to find some classification scheme for three-qutrit states. A possible
direction is to look for classes of equivalent states, in the sense that they are equivalent up to
local unitary transformations12–14or local filtering operations(also called SLOCC operations).14–19

In the case of three qubits, especially the last classification proved to yield a lot of insights(the
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classification up to local unitaries has too many parameters left); the reason for that is that in the
closure of each generic orbit induced by SLOCC operations, there is a unique state(up to local
unitary transformations)with maximal entanglement.14,17

In Ref. 19, a numerical method converging to such a maximally entangled state has been
described. It has been experimentally observed that, when applied to a three-qutrit state, this
method converged to a very special normal form. We shall provide a formal proof of this property,
and then study in some detail the geometry of those normal forms. Precise statements of the results
are summarized in the forthcoming section.

II. RESULTS

Let V=C3 and H=V^ V^ V regarded as a representation of the groupG=SLs3,Cd33. The
elements ofH will be interpreted either as three-qutrit states

ucl = o
i,j ,k=0

2

Aijkui, j ,kl s1d

or as trilinear forms

f = fsx,y,zd = o
i,j ,k=0

2

Aijkxiyjzk, s2d

that is, we identify the basis stateui jkl with the monomialxiyjzk. If g=sgs1d ,gs2d ,gs3ddPG is a
triple of matrices, we definexi8=opgip

s1dxp, yj8=oq gjq
s2dyq, zk8=or gkr

s3dzr, and the coefficientsAijk8 by
the condition

o Aijk8 xi8yj8zk8 = o Aijkxiyjzk, s3d

the action ofG on H being defined by

g ·A = o Aijk8 xiyjzk, s4d

It has been shown by Vinberg20 that a generic state can be reduced to the normal form

Aijk8 = udi jk +
w − v

2
ei jk +

w + v
2

uei jku s5d

(wheredi jk is the Kronecker symbol andei jk the completely antisymmetric tensor) by an appro-
priate choice ofgPG.

Our first result is as follows.
Theorem II.1: When applied to a generic 3-qutrit state (1) the numerical algorithm of Ref. 19

converges to a state which is a Vinberg normal form, generically in the same G-orbit asucl.
As proved in Refs. 14 and 19, the normal formuc8l is unique up to local unitary transforma-

tions. More precisely, we have the following.
Theorem II.2: A generic state has exactly648different normal forms. For special states, this

number can be reduced to216, 72, 27or 1. Moreover, the coefficients u, v, w of the normal form
can be computed algebraically.

Theorem II.3: The coefficients of the normal forms are determined, up to a sign, by an
algebraic equation of degree1296,which is explicitly solvable by radicals.

To form this equation, we need some notions of invariant theory.
A polynomial PsAd in the coefficientsAijk is an invariant of the action ofG on H if PsA8d

=PsAd for all gPG. These invariants form a graded algebraR (any invariantP is a sum of
homogeneous invariants) and the first issue is to determine the dimension of the spaceRd of
homogeneous invariants of degreed. The Hilbert series



hstd = o
dù0

dim Rdt
d s6d

is known20

hstd =
1

s1 − t6ds1 − t9ds1 − t12d
s7d

and in fact, one can prove thatR is a polynomial algebra generated by three algebraically inde-
pendent invariants of respective degree 6, 9, and 12.

The modern way to prove this result is due to Vinberg, who obtained it from his notion of
Weyl group of a graded Lie algebra, applied to aZ3-grading of the exceptional Lie algebraE6.

21

In Sec. III, we shall explain how it can be deduced from the work of Chanler.22 We prove that
certain invariantsI6, I9, and I12 introduced in Ref. 22 are indeed algebraic generators ofR and
explain how to compute them from the numerical values of the coefficientsAijk, by expressing
them in terms oftransvectants, that is, by means of certain differential polynomials in the formf,
rather than in terms of the classical symbolic notation. Given the values of the invariants for a
particular state, we show how to form and solve the system of algebraic equations determining the
coefficients,u, v, w of the normal form.

Let a= I6, b= I12, andc= I18 (a certain polynomial in the fundamental invariants). Then, the
symmetric functions ofu3, v3, andw3

c = u3 + v3 + w3, x = u3v3 + u3w3 + v3w3, l = 216u3v3w3 s8d

satisfy

c2 − 12x − a = 0,

c4 + lc − b = 0,

c6 − 5
2lc3 − 1

8l2 − c = 0. s9d

Theorem II.4: The system (9) has generically1296solutionssu,v ,wd, which can be obtained
by solving a chain of algebraic equations of degree at most4. Only 648 of them give the correct
sign for I9. The number of solutions (with the correct sign for I9) can be reduced only to216, 72,
27 or 1. Moreover, the isotropy groups of these degenerate orbits can be determined, and the
configuration of the pointssu,v ,wd in C3 can be interpreted in terms of the geometry of regular
complex polyhedra.

The details are given in Sec. VII.

III. THE FUNDAMENTAL INVARIANTS

In this section, we describe the fundamental invariants, as well as the other concomitants
obtained by Chanler,22 in a form suitable for calculations, in particular for their numerical evalu-
ation (see also Refs. 23 and 24).

As already mentioned, we shall identify a three-qutrit stateuclPH with a trilinear form

fsx,y,zd = o
1øi,j ,kø3

Aijkxiyjzk s10d

in three ternary variables. To construct its fundamental invariants, we shall need the notion of a
transvectant, which is defined by means of Cayley’s omega process(see, e.g., Ref. 25).

Let f1, f2, and f3 be three forms in a ternary variablex=sx1,x2,x3d. Their tensor productf1

^ f2 ^ f3 is identified with the polynomialf1sxs1ddf2sxs2ddf3sxs3dd in the three independent ternary
variablesxs1d, xs2d andxs3d. We use the “trace” notation of Olver26 to denote the multiplication map
f1 ^ f2 ^ f3→ f1f2f3, that is,



tr f1sxs1ddf2sxs2ddf3sxs3dd = f1sxdf2sxdf3sxd. s11d

Cayley’s operatorVx is the differential operator

Vx =*
]

] x1
s1d

]

] x1
s2d

]

] x1
s3d

]

] x2
s1d

]

] x2
s2d

]

] x2
s3d

]

] x3
s1d

]

] x3
s2d

]

] x3
s3d
* . s12d

Now, we consider three independent ternary variablesx, y, andz together with the associated dual
(contravariant)variablesj=sj1,j2,j3d, h=sh1,h2,h3d, z=sz1,z2,z3d [that is,ji is the linear form
on thex space such thatjisxjd=di j].

A concomitantof f is, by definition, a polynomialF in the Aijk, x, y, z, j, h, z, such that if
g=sg1,g2,g3dPSLs3,Cd3, then, withA8, x8, etc., as above,

FsA8;x8,y8,z8;j8,h8,z8d = FsA;x,y,z;j,h,zd. s13d

The algebra of concomitants admits only one generator of degree 1 in theAijk, which is the
form f itself. Other concomitants can be deduced fromf and the three absolute invariantsPa

=ojixi, Pb=oh jyj, andPg=ozkzk, using transvectants. IfF1, F2, andF3 are three 6-tuple forms in
the independent ternary variablesx, y, z, j, h, and z, one defines for anysn1,n2,n3d
3 sm1,m2,m3dPN33N3 the multiple transvectant ofF1, F2, andF3 by

sF1,F2,F3dm1m2m3

n1n2n3 = tr Vx
n1Vy

n2Vz
n3Vj

m1Vh
m2Vz

m3p
i=1

3

Fisxsid,ysid,zsid;jsid,hsid,zsidd. s14d

For convenience, we will setsF1,F2,F3dn1n2n3=sF1,F2,F3d000
n1n2n3. The concomitants of degree 2

given by Chanler22 can be obtained using these operations,

Qa = sf, f,PbPgd011, s15d

Qb = sf, f,PaPgd101, s16d

Qg = sf, f,PaPbd110. s17d

The invariantI6 is then

I6 = 1
96sQa,Qa,Qad011

200= 1
96sQb,Qb,Qbd101

020= 1
96sQg,Qg,Qgd110

002. s18d

There is an alternative expression using only the ground formf,

I6 =
1

1152
sf2, f2, f2d222. s19d

Now, in degree 3 the covariantsBa, Bb, andBg of Ref. 22 are

Ba = sf, f, fd011, s20d

Bb = sf, f, fd101, s21d

Bg = sf, f, fd110. s22d

The other concomitants found by Chanler can be written in a similar way,



Cab = 1
4sf, f, fPbd110, s23d

Cba = 1
4sf, f, fPad110, s24d

Cag = 1
4sf, f, fPgd101, s25d

Cga = 1
4sf, f, fPad101, s26d

Cbg = 1
4sf, f, fPgd011, s27d

Cgb = 1
4sf, f, fPbd011, s28d

Da = − 2sfPb, fPg, fd111, s29d

Db = 2sfPa, fPg, fd111, s30d

Dg = − 2sfPa, fPb, fd111, s31d

Ea = sQa, f,Pad100, s32d

Eb = sQb, f,Pbd010, s33d

Eg = sQg, f,Pgd001, s34d

Ga = − 3
8sfPb, fPg, fd011+ 5

16sfPbPg, f, fd011, s35d

Gb = − 3
8sfPa, fPg, fd101+ 5

16sfPaPg, f, fd101, s36d

Gg = − 3
8sfPa, fPb, fd110+ 5

16sfPaPb, f, fd110, s37d

H = 1
2sfPa, fPb, fPgd111. s38d

Here, we have combined the concomitants of degrees 0, 1, and 2 into independent concomitants of
degree 3. Next, we have chosen the scalar factors so that the syzygies given by Chanler22 hold in
the form

H + Ea − Eg + DbPb = 0, s39d

H + Eb − Ea + DgPg = 0, s40d

H + Eg − Eb + DaPa = 0, s41d

3Cab − BgPb = 0, s42d

3Cba − BgPa = 0, s43d



3Cag − BbPg = 0, s44d

3Cga − BbPa = 0, s45d

3Cbg − BaPg = 0, s46d

3Cgb − BaPb = 0, s47d

6Ga − 3Qaf + BaPbPg = 0, s48d

6Gb − 3Qbf + BbPaPg = 0, s49d

6Gg − 3Qgf + BgPaPb = 0. s50d

One can remark that a basis of the space of the concomitants of degree 3 found by Chanler can be
constructed using only transvections and products from smaller degrees,

f3,Qaf,Qbf,Qgf,Ba,Bb,Bg,Da,Db,Dg,Ea. s51d

The knowledge of these concomitants allows one to construct the invariantsI9 and I12,

I9 = 1
576sEa,Eb,Ebd111

111, s52d

I12 =
1

124 416
sBaf,Baf,Bafd411. s53d

These expressions, which can be easily implemented in any computer algebra system, will prove
convenient to compute the specializations discussed in the sequel.

IV. NORMAL FORM AND INVARIANTS

It will now be shown that a generic state can be reduced to the normal form

Aijk = udi jk +
w − v

2
ei jk +

w + v
2

uei jku, s54d

whereei jk is the alternating tensor, or, otherwise said, that the generic trilinear formfsx ,y ,zd is
equivalent to some

Nuvwsx,y,zd = usx1y1z1 + x2y2z2 + x3y3z3d + vsx1y3z2 + x2y1z3 + x3y2z1d

+ wsx1y2z3 + x2y3z1 + x3y1z2d. s55d

For such a state, the local density operators are all proportional to the identity. This property is
automatically satistfied by the limiting state obtained from the numerical method of Ref. 19, and
implies maximal entanglement as well. Since this algorithm amounts to an infinite sequence of
invertible local filtering operations, the genericity of Vinberg’s normal form, together with the
previously mentioned properties, implies convergence to a Vinberg normal form for a generic
input state, that is, our Theorem II.1(see also Refs. 27 and 28).

This normal form is in general not unique, and the relations between the variousNuvw in a
given orbit is an interesting question, which will be addressed in the sequel.

Although, the validity of this normal form follows from Vinberg’s theory,21 it can also be
proved in other ways, some of them being particularly instructive. We shall detail one of these
possibilities, which will give us the opportunity to introduce some important polynomials, playing
a role in the algebraic calculation of the normal form and in the geometric discussion of the orbits.



The shortest possibility, although not the most elementary, relies on the results of Ref. 22, and
starts with computing the invariants ofNuvw. We then use a few results of algebraic geometry,
which can be found in Ref. 29. Let us denote byCk;Cksu,v ,wd sk=6,9,12d the values of theIk

on Nuvw. Direct calculation gives, denoting bympqr the monomial symmetric functions ofu,v ,w
(sum of all distinct permutations of the monomialupvqwr),

C6 = ms6d − 10ms3,3d, s56d

C9 = su3 − v3dsu3 − w3dsv3 − w3d, s57d

C12 = ms12d + 4ms9,3d + 6ms6,6d + 228ms6,3,3d. s58d

It is easily checked by direct calculation that the Jacobian of these three functions is nonzero for
generic values ofsu,v ,wd. Actually, its zero set consists of 12 planes, whose geometric signifi-
cance will be discussed below.

Let us denote byw :H →
sI6,I9,I12d

C3, the map sending a trilinear form to its three invariants, so that
sC6,C9,C12d=wsNuvwd. Let S=hNuvwusu,v ,wdPC3j be the three-dimensional space of normal
forms. The nonvanishing of the Jacobian proves thatw induces a dominant mapping fromS to C3

(that is, the direct image of any nonempty open subset ofS contains a nonempty open subset of
C3). Note that the independence ofC6,C9,C12 implies the independence ofI6,I9,I12. Now,
Chanler22 has shown thatI6,I9,I12 separate the orbits in general position. This proves that the field
of rational invariants ofG is freely generated byI6,I9,I12 (Ref. 29, Lemma 2.1). As a conse-
quence,w is a rational quotient(Ref. 29, Sec. 2.4)for the action ofG on H (actually, this also
implies thatw is a categorical quotient, by Ref. 29, Proposition 2.5 and Theorem 4.12, using that
wuS is surjective, whence alsow).

There exists a nonempty open subsetY0 of C3 such that the fiber ofw over each of its points
is the closure of an orbit(Ref. 29, Proposition 2.5). Let thenU0=w−1sY0d. This set cutsSsincewuS
is dominant. LetU1 be the union of all orbits having maximal dimension(a nonempty open set,
the functiondimension of the orbitbeing lower semicontinuous). It is easy to see thatU1 intersects
S (for instance atu=1, v=1, w=−1, whose orbit has dimension 24=dimG, as may be checked by
direct calculation). LetS0=U1ùS, a dense open subset ofS. The setw−1wsS0d thus contains a
dense open subsetU2 of H. One then checks thatU0ùU1ùU2 (a dense open subset, as an
intersection of dense open subsets of an irreducible space) is contained inGS. This provesGS
=H, that is, the normal formNuvw is generic.

Let us remark that the above discussion also proves, thanks to Igusa’s theorem(Ref. 29,
Theorem 4.12)that CfHgG=CfI6,I9,I12g, that is, the algebra of invariants is freely generated by
Chanler’s invariants.

Is is also possible to give a direct proof of the normal form by using the same technique as in
Ref. 22. Chanler’s method relies on the geometry of plane cubics, which will play a prominent
role in the sequel.

V. THE FUNDAMENTAL CUBICS

The trilinear formfsx ,y ,zd can be encoded in three ways by a 333 matrix of linear forms
Mxsxd, Mysyd, andMzszd, defined by

fsx,y,zd = tyMxsxdz = txMysydz = txMzszdy s59d

and the classification of trilinear forms amounts to the classification of one of these matrices, say
Mxsxd up to left and right multiplication by elements of SLs3,Cd and action of SLs3,Cd on the
variablex.

The most immediate covariants off are the determinants of these matrices



Xsxd = det Mxsxd = 1
6Ba, s60d

Ysyd = det Mysyd = 1
6Bb, s61d

Zszd = det Mzszd = 1
6Bg. s62d

These are ternary cubic forms, and for genericf the equationsXsxd=0, etc., will define nonsin-
gular cubics(elliptic curves)in P2. It is shown in Ref. 24 that whenever one of these curves is
elliptic, so are the other two ones, and moreover, all three are projectively equivalent. Actually,
one can check by direct calculation that they have the same invariants. Whenf =Nuvw, these three
cubics have even the same equation and are in the Hesse canonical form30

Xsxd = − fsx1
3 + x2

3 + x3
3d + cx1x2x3 = Ysxd = Zsxd, s63d

where we introduced, following the notation of Ref. 2,

f = uvw, c = u3 + v3 + w3. s64d

The Aronhold invariants of the cubics(63) are given by

64S= − fsc3 + s6fd3d, s65d

66T = s6fd6 + 20s6f3dc3 − 8c6. s66d

These are of course invariants off. We recognize that 64S=−C12, and we introduce an invariantI18

such thatC18= I18sNuvwd=66T. The three cubics have the same discriminant 64S3+T2, known to be
proportional to the hyperdeterminant off (see Refs. 31 and 32), which we normalize as

D = 27s64S3 + T2d. s67d

ThenD=C812
3 , whereC128 is the product of 12 linear forms

C128 = uvwsu + v + wds«u + v + wdsu + «v + wds«2u + «v + wdsu + «2v + wd

3 s«u + «v + wds«2u + v + wds«u + «2v + wds«2u + «2v + wd, s68d

where«=e2ip/3, so thatC128 =0 is the equation inP2 of the twelve lines containing 333 the nine
inflection points of the pencil of cubics,

u3 + v3 + w3 + 6m uvw = 0, s69d

obtained fromX, Y, Z by treating the original variables as parameters. We note also that the
Jacobian ofC6, C9, C12 is proportional toC812

2 .

VI. SYMMETRIES OF THE NORMAL FORMS

In this section, we will prove Theorem II.2. That is, a genericf has 648 different normal forms
[the pointssu,v ,wd for which this number is reduced will be studied in Sec. VII].

To prove the theorem, we remark that the Hilbert series(7) is also the one of the ring of
invariants ofG25, the group number 25 in the classification of irreducible complex reflection
groups of Shephard and Todd.4 This group, which we will denote for short byK, has order 648. It
is one of the groups considered by Maschke2 in his determination of the invariants of the sym-
metry group of the 27 lines of a general cubic surface inP3 (a group with 51 840 elements, which
is related to the exceptional root systemE6). To defineK, we first have to introduce Maschke’s
groupH, a group of order 1296, which is generated by the matrices of the linear transformations
on C3 given in Table I.



This group contains in particular the permutation matrices, and simultaneous multiplication by
±«k, sinceE2=−B. The subgroupK is the one in which odd permutations can appear only with a
minus sign. It is generated byA,C,D ,E.

Then, as proved by Maschke, the algebra of invariants ofK in C fu,v ,wg is precisely
C fC6,C9,C12g.

Hence, we can conclude thatK is the symmetry group of the normal formsNuvw. There was
another, equally natural possibility leading to the same Hilbert series. The symmetry groupL of
the equianharmonic cubic surfaceS :z0

3+z1
3+z2

3+z3
3=0 acting on the homogeneous coordinate ring

C fSg has as fundamental invariants the elementary symmetric functions of thezi
3, the first one

being 0 by definition, so that the Hilbert series ofC fSgL coincides with(7). Moreover,L is also
of order 648, but it is known that it is not isomorphic toK.

Taking into account the results of Sec. IV, we see that

S= hNuvwusu,v,wd P C3j s70d

is what is usually called a Chevalley section of the action ofG on H, with Weyl groupK (see Ref.
29, p. 174).

VII. THE FORM PROBLEM

This section contains the proofs of Theorems II.3 and II.4. Klein(see Ref. 33)has introduced
and investigated the notion of “Formenproblem” associated to a finite group action. This is the
following: given the numerical values of the invariants, compute the coordinates of a point of the
corresponding orbit.

In our case, we shall see that the problem of finding the parameterssu,v ,wd of the normal
form of a given genericf, given the values of the invariants, can be reduced to a chain of algebraic
equations of degree at most 4, hence sovable by radicals.

Let a= I6, b= I12 and c= I18 (we start with I18, becauseC18 is a symmetric function of
u3,v3,w3, and at the end of the calculation, select the solutions which give the correct sign forC9,
which is alternating).

What we have to do is to determine the elementary symmetric functionse1=c ,e2=x ,e3

=f3 of u3,v3,w3. Let l=216f3. Then,

c4 + lc − b = 0, s71d

c6 − 5
2lc3 − 1

8l2 − c = 0. s72d

Eliminating l from these equations, we get a quartic equation forc2,

27c8 − 18bc4 − 8cc2 − b2 = 0. s73d

The discriminant(with respect toc) of this polynomial is proportional toD=b2sb3−c2d4. When it
is nonzero, we get eight values fore1, each of which determines univocallye2 ande3. Hence, we
obtain eight cubic equations whose roots are the possible values ofu3,v3,w3. This gives eight sets,
whence 836=48 triples, each of which providing generically 27 values ofsu,v ,wd, in all 48
327=1296 triples corresponding to the given values ofa,b,c, among which exactly 1296/2
=648 give the correct sign forI9. The common discriminant of the eight cubics isd=a3−3ab

TABLE I. The generators ofH.

A B C D E

u8 v u u u 1/iÎ3su+v+wd
v8 w w «v «v 1/iÎ3su+«v+«2wd
w8 u v «2w «w 1/iÎ3su+«2v+«wd



+2c. Clearly, whendÞ0, we will have 648 triples. Ifd=0, one can check that the cubics cannot
have a triple root, and that no root is zero. Hence, in this case, we obtain again 648 triples.

If D=0, we can haveb3=c2 or b=0. In the first case, settingb=q2,c=q3, the equation
becomes

sc2 − qd3sc2 + 2qd3 = 0. s74d

In this case, we get only four quartics forc2. If C9Þ0, we obtain 216 triples. IfC9=0 andb
=a2/4, c=−a3/8 we obtain again 216 triples which form the centers of the edges of a complex
polyhedron of type 2h4j3h3j3 in C3 (see Fig. 1), in the notation of Ref. 34. The vertices of this
polyhedron are the vertices of two reciprocal Hessian polyhedra(see Fig. 2)and its edges join
each vertex of one Hessian polyhedron to the eight closest vertices of the other one. In Fig. 2, the
edges of the Hessian polyhedron, which are complex lines, are represented by real equilateral
triangles, so that the figure can as well be interpreted as a two-dimensional projection of a
six-dimensional Gosset polytope 221. If C9=0 andb=a2, c=a3, we obtain only 72 triples which

FIG. 1. The polyhedron 2h4j3h3j3.

FIG. 2. The Hessian polyhedron.



are the centers of the edges of a Hessian polyhedron and the vertices of a complex polytope of
type 3h3j3h4j2 (see Fig. 3).

In the case whereb=0, we have to distinguish between the casescÞ0 andc=0. If cÞ0, we
find 648 triples, whatever the value ofa. If c=0, we obtain 27 triples ifaÞ0, and only one ifa=0.

Indeed, forb=c=0, the c-equation reduces toc8=0, and all the cubics collapse to 12U3

−aU=0. For aÞ0 we obtain precisely 27 triplessu,v ,wd which form the vertices of a Hessian
polyhedron inC3 (see Ref. 1).

From the results of Ref. 3 about the arrangement of 12 planes formed by the mirrors of the
pseudoreflections ofK=G25, we can determine the structure of the stabilizers of the normal forms.
The only nontrivial cases are as follows:

(i) the orbits with 216 elements, for which the stabilizer is the cyclic groupC3;
(ii) the orbits with 72 elements, for which it isC33C3;
(iii) the Hessian orbits with 27 elements, for which it is the groupG4 of the Shephard–Todd

classification.

These results can be regarded as a complete description of the moduli space of three-qutrit
states. To see what this means, let us recall some definitions from geometric invariant theory.

It is well known that it in general, the orbits of a group action on an algebraic variety cannot
be regarded as the points of an algebraic variety. To remedy this situation, one has to discard
certain degenerate orbits. It is then possible to construct acategorical quotientand amoduli space,
which describe the geometry of sufficiently generic orbits, respectively, in the affine and projective
situation.

The categorical quotient Y=H / /G is defined as the affine variety whose affine coordinate
ring is the ring of polynomial invariantsR= CfHgG. The moduli space is the projective variety
M=ProjsRd of which R is the homogeneous coordinate ring. It is the quotient of the setPsHdss of
semistablepoints by the action ofG (by definition, a point is semistable iff at least one of its
algebraic invariants is nonzero, see Ref. 29).

Now, since in our case the algebra of invariants is a polynomial algebra, we see that the
categorical quotient is just the affine spaceC3.

The moduli space is more interesting. The projective variety whose homogeneous coordinate
ring is a polynomial algebra over generators of respective degreesd1, . . . ,dm is called aweighted
projective spacePsd1, . . . ,dmd. Hence, by definition, our moduli spaceM is the weighted projec-
tive spacePs6,9,12d.Ps2,3,4d. It is known that this space is isomorphic toPs1,2,3d,35 which
in turn can be embedded as a sextic surface inP6, the so-calleddel Pezzo surface F6 (see Ref. 36).
The del Pezzo surfaces are very interesting objects, known to be related to the exceptional root
systems(see, e.g., Ref. 37).

FIG. 3. The polyhedron 3h3j3h4j2.



The above results can then be interpreted as a description of the singularities ofM, since one
can view it as the quotient of the projective planeP2 of the parameterssu:v :wd under the
projective action ofG25. We have described this quotient as a 648-fold ramified coveringP2

→M, and analyzed its ramification locus.

VIII. CONCLUSION

A problem of current interest in Quantum Information Theory has been connected to various
important mathematical works, scattered on a period of more than one century from Ref. 2 in 1889
to Ref. 27 in 2000, in general independent of each other and apparently discussing different
subjects. Relying on all these works, we have described the geometry of the normal forms of
semistable orbits of three-qutrit states under the action of SLs3,Cd33, the group of local filtering
(SLOCC)operations. From a physical point of view, our results can be expected to provide a good
starting point for studying the richness of the entanglement of three qutrits and its differences with
that of the simpler qubit systems. From a mathematical point of view, we have worked out an
interesting example of a problem in invariant theory, using both classical algebraic and modern
geometric methods, found a surprising connection with the geometry of complex polytopes, and
applied Klein’s vision of Galois theory to the explicit solution of an algebraic equation of degree
648.

Also, this example provides a good illustration of the ideas presented in Refs. 14 and 17.
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