The moduli space of three-qutrit states
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We study the invariartheory of trilinearforms over a three-dimensionadmplexvectorspace,

and apply it to investigatdhe behavior of pure entangléaree-partitequtrit states and their normal
forms under locafiltering operations (SLOCC). We describe the orbit space of the SLOCC
group SL(3,CX3both in its affine and projectiveersions in terms of a very symmetriormal

form parametrizedby threecomplexnumbers. The parametessthe possible normal forms of a
given state are rootsf an algebraiequationwhich is proved to be solvable bgdicals.The
structureof the sets of equivalemtormalforms is relatedo the geometrypf certainregular
complexpolytopes.

I. INTRODUCTION

The invariant theory of trilinear forms over a three-dimensional complex vector space is an
old subject with a long history, which, as we shall see, appears even longer if we take into account
certain indirect but highly relevant contributioh.This question has been recently revived in the
field of Quantum Information Theory as the problem of classifying entanglement patterns of
three-quitrit states.

Indeed, since the advent of quantum computation and quantum cryptography, entanglement
has been promoted to a resource that allows quantum physics to perform tasks that are classically
impossible. Quantum cryptograpsrﬁ/proved that this gap even exists with small systems of two
entangled qubits. Furthermore, it is expected that the study of higher dimensional systems and of
multipartite (e.g., 3-partite)states would lead to more applications. A seminal example is the
so-called 3-qutrit Aharonov-state, whiclis“so elegant it had to be useful’Fitzi, Gisin, and
Maurer found out that the classically impossible Byzantine agreement pr8trtam be solved
using 3-partite qutrit states. From a more fundamental point a view, the Aharonov state led to
nontrivial counterexamples of the conjectures on additivity of the relative entropy of
entanglemeritand of the output purity of quantum chann&l©bviously, these results provide a
strong motivation for studying 3-partite qutrit states. Furthermore, interesting families of higher-
dimensional states are perfectly suited to address questions concerning local realism and Bell
inequalities(see, e.g., Ref. 11 for a study of three-qutrit correlations

It is therefore of interest to find some classification scheme for three-qutrit states. A possible
direction is to look for classes of equivalent states, in the sense that they are equivalent up to
local unitary transformatioi&**or local filtering operationgalso called SLOCC operation¥).*®
In the case of three qubits, especially the last classification proved to yield a lot of inglghts
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classification up to local unitaries has too many parameters tbé reason for that is that in the
closure of each generic orbit induced by SLOCC operations, there is a uniquéugtatelocal
unitary transformationsyith maximal entanglemerit:*’

In Ref. 19, a numerical method converging to such a maximally entangled state has been
described. It has been experimentally observed that, when applied to a three-qutrit state, this
method converged to a very special normal form. We shall provide a formal proof of this property,
and then study in some detail the geometry of those normal forms. Precise statements of the results
are summarized in the forthcoming section.

Il. RESULTS

Let V=C2 and H=V®V®V regarded as a representation of the gr@mpSL(3,()*3. The
elements ofH will be interpreted either as three-qutrit states

2
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i,j,k=0
or as trilinear forms

2
f= f(X Y, Z E Aljkxlyjzk (2)
i,j,k=0
that is, we identify the basis statqk) with the monomlalx,yjzk If g=(g?,9?,0g%)eGis a
triple of matrices, we defing/ Epglp Xo» yJ 24 ng Yo Z=2r gkr Z,, and the coefﬁuentA,Jk by
the condition

> A Yz = 2 AXYiZe 3
the action ofG on H being defined by

g-A= 2 AjXYiZe (4)

It has been shown by Vinbe%‘bthat a generic state can be reduced to the normal form

;o W-—v W+v
A= UGk + — €+ 5
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(where 6 is the Kronecker symbol andj, the completely antisymmetric tengdsy an appro-
priate choice ofg e G.

Ouir first result is as follows.

Theorem II.1: When applied to a generic 3-qutrit state (1) the numerical algorithm of Ref. 19
converges to a state which is a Vinberg normal form, generically in the same G-orhl.as

As proved in Refs. 14 and 19, the normal fof#) is unique up to local unitary transforma-
tions. More precisely, we have the following.

Theorem I1.2: A generic state has exactBA8 different normal forms. For special states, this
number can be reduced 16, 72, 27or 1. Moreover, the coefficients, u, w of the normal form
can be computed algebraically

Theorem I1.3: The coefficients of the normal forms are determined, up to a sign, by an
algebraic equation of degre®296,which is explicitly solvable by radicals.

To form this equation, we need some notions of invariant theory.

A polynomial P(A) in the coefficientsd;j, is aninvariant of the action ofG on H if P(A’)
=P(A) for all ge G. These invariants form a graded algeliRaany invariantP is a sum of
homogeneous invariantend the first issue is to determine the dimension of the spycef
homogeneous invariants of degr@eThe Hilbert series



h(t) = >, dim Rt (6)

d=0

is knowrf°

1
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and in fact, one can prove thRtis a polynomial algebra generated by three algebraically inde-
pendent invariants of respective degree 6, 9, and 12.

The modern way to prove this result is due to Vinberg, who obtained it from his notion of
Weyl group of a graded Lie algebra, applied t@Zagrading of the exceptional Lie algebl.?zg.21

In Sec. Ill, we shall explain how it can be deduced from the work of Ch&hlade prove that
certain invariantdg, |9, andl,, introduced in Ref. 22 are indeed algebraic generatorR ahd
explain how to compute them from the numerical values of the coefficiptsby expressing
them in terms otransvectants, that is, by means of certain differential polynomials in the form
rather than in terms of the classical symbolic notation. Given the values of the invariants for a
particular state, we show how to form and solve the system of algebraic equations determining the
coefficients,u, v, w of the normal form.

Let a=lg, b=145, andc=lg (a certain polynomial in the fundamental invarigntshen, the
symmetric functions of®, v3, andw?

h(t) =

()

Y= W+ +ws, X= Wl + WA+ 03ws, A =21600%we (8)
satisfy
W -12y-a=0,
Y +\p-b=0,
PP- NP - 5\2-c=0. (9)

Theorem I1.4: The system (9) has genericall296solutions(u,v,w), which can be obtained
by solving a chain of algebraic equations of degree at Mo€nly 648 of them give the correct
sign for ly. The number of solutions (with the correct sign fgr ¢an be reduced only t816, 72,
27 or 1. Moreover, the isotropy groups of these degenerate orbits can be determined, and the
configuration of the point$u,v,w) in C3 can be interpreted in terms of the geometry of regular
complex polyhedra.

The details are given in Sec. VII.

Ill. THE FUNDAMENTAL INVARIANTS

In this section, we describe the fundamental invariants, as well as the other concomitants
obtained by Chanlé? in a form suitable for calculations, in particular for their numerical evalu-
ation (see also Refs. 23 and 24).

As already mentioned, we shall identify a three-qutrit stade= H with a trilinear form

fy.2)= 2 Apxyi (10)
1=<i,j,k=3
in three ternary variables. To construct its fundamental invariants, we shall need the notion of a
transvectant, which is defined by means of Cayley’s omega prgsesse.g., Ref. 25).

Let f4, 5, andf; be three forms in a ternary varialses (x;,X,,X%3). Their tensor product;
®f,®f; is identified with the polynomiaf;(xY)f,(x?)f5(x®) in the three independent ternary
variablesxV, x@ andx®. We use the “trace” notation of OV&rto denote the multiplication map
fi®f,®fy3— fif,fg, that s,



tr f1(x") F(x?)F5(x@) = £,00F00 F5(). (11)

Cayley’s operatof), is the differential operator

Jd Jd Jd
axt ax?  gx®
Q= &(n (9(2) a(3) : (12)
axP gx?  gx6
Jd d d
Xy ax@ axd

Now, we consider three independent ternary variaklgs andz together with the associated dual
(contravariantyariablesé=(&1,£,,&3), 7=(n1, 72, 173), {=({1, 5, ¢3) [that is, & is the linear form
on thex space such thag(x))=6;].

A concomitantof f is, by definition, a polynomiaF in the Ay, X, Y, z, & 7, {, such that if
9=(01,0,,93) € SL(3,0)3, then, withA’, x’, etc., as above,

F(A";x",y",2";&,7',{') =F(AX,Y,2;€,7,0). (13)

The algebra of concomitants admits only one generator of degree 1 i;thevhich is the
form f itself. Other concomitants can be deduced frbrand the three absolute invariaris
=2&Xx, Pg=2ny;, andP,=X{,z, using transvectants. F,, F,, andF; are three 6-tuple forms in
the independent ternary variables y, z, & %, and {, one defines for any(n;,n,,n3)
X (my,my,mg) € N3X N3 the multiple transvectant d%;, F,, andF3 by

3
(FyFaFammas, =tr - Q020R0m0TOR[ ] Fi(xVy0,20:60, 70,00, (14)
i=1
For convenience, we will sefF;,F,,F3)""%=(F,F,,F3)ghi™. The concomitants of degree 2
given by Chanlé¥ can be obtained using these operations,

Qa: (flflpﬁpy)()lll (15)
Q= (f,f,P,P,) (16)
Q,=(f,f,P,Pp™. (17)
The invariantlg is then
l6= 35(Qu Qur Qw305 = 55(Qp Qs Q)35 = 56(Q,.Q,.Q,) 1%, (18)
There is an alternative expression using only the ground figrm
®T152

Now, in degree 3 the covariang,, Bs, andB, of Ref. 22 are

B, = (f,f,H, (20)
B = (f,f,f)1%, (21)
B, = (f,f,f)°. (22)

The other concomitants found by Chanler can be written in a similar way,



Cop=3(f,1,TPp0, (23)

Cpa=3(F,1,FPYM, (24)

Cq, =3 (f,f,FP,)10%, (25)

Cyo=3(f, P, (26)

Cg, =3 (f,f,fP,)0L, (27)
C,p=3(f,f,fPg0, (28)
D,=-2(fPs fP,,f)1, (29)

D= 2(fP,,fP,,f)1, (30)
D,=-2(fP,,fPs f)*, (31)
Eo=(Q,f,P)™, (32)
Ep=(Qpf,Pp™, (33)
E,=(Q,.f,P)%, (34)

Go =~ S(fPg fP,, 1)+ X(fP4P,, )01, (35)
Gp= - S(fP,, fP,, 1)1+ X(fP,P,,f,f)10%, (36)
G, == 3(fP,, P4 1110+ (P Py f,)110, (37)
H=3(fP,, fPg fP,)ML (38)

Here, we have combined the concomitants of degrees 0, 1, and 2 into independent concomitants of
degree 3. Next, we have chosen the scalar factors so that the syzygies given by*€hatden
the form

H+E,—E,+DgPsz=0, (39)
H+Ez-E,+D,P,=0, (40)
H+E,-Ez;+D,P,=0, (41)

3C.5-B,P;=0, (42)

3Cg,—B,P,=0, (43)



3C.,~BsP,=0, (44)

3C,,~BgP,=0, (45)
3Cg,-B,P,=0, (46)
3C,5-B,Ps=0, (47)
6G, — 3Q,f +B,PsP,=0, (48)
6Gp— 3Quf + B4P,P,=0, (49)
6G, - 3Q,f +B,P,Pz=0. (50)

One can remark that a basis of the space of the concomitants of degree 3 found by Chanler can be
constructed using only transvections and products from smaller degrees,

f3aQaf1Qﬁf1Q'yvaarBB: B'nyayDﬂyDyv Ea- (51)
The knowledge of these concomitants allows one to construct the invatigausl | ;,,
| =;(B f,B,f,B,f)*! (53)
127124416 T

These expressions, which can be easily implemented in any computer algebra system, will prove
convenient to compute the specializations discussed in the sequel.

IV. NORMAL FORM AND INVARIANTS

It will now be shown that a generic state can be reduced to the normal form

W-v W+v
Ak = U8+ €+~ €ijul (54)
2 2
where g is the alternating tensor, or, otherwise said, that the generic trilinear forry,z) is
equivalent to some

Nupw(X,Y,2) = U(X1Y1Z1 + XoY0Zp + X3Y3Z3) + 0(X1Y3Z, + XoY1Z5 + X321
+ W(XqY2Zg + XoY3Z1 + X3Y12p) . (55)

For such a state, the local density operators are all proportional to the identity. This property is
automatically satistfied by the limiting state obtained from the numerical method of Ref. 19, and
implies maximal entanglement as well. Since this algorithm amounts to an infinite sequence of
invertible local filtering operations, the genericity of Vinberg’s normal form, together with the
previously mentioned properties, implies convergence to a Vinberg normal form for a generic
input state, that is, our Theorem ll(see also Refs. 27 and 28).

This normal form is in general not unique, and the relations between the vadjpysn a
given orbit is an interesting question, which will be addressed in the sequel.

Although, the validity of this normal form follows from Vinberg's thedfyijt can also be
proved in other ways, some of them being particularly instructive. We shall detail one of these
possibilities, which will give us the opportunity to introduce some important polynomials, playing
a role in the algebraic calculation of the normal form and in the geometric discussion of the orbits.



The shortest possibility, although not the most elementary, relies on the results of Ref. 22, and
starts with computing the invariants of,,,. We then use a few results of algebraic geometry,
which can be found in Ref. 29. Let us denote®@y=Cy(u,v,w) (k=6,9,12 the values of the,
on N, Direct calculation gives, denoting by, the monomial symmetric functions of.v,w
(sum of all distinct permutations of the monomigbw"),

Ce =M — 10m3 3), (56)
Co= (U= -w?) (v -wd), (57)
C12=M(10) + 4Mg 3+ BM(g 6+ 228M 3 3). (58)

It is easily checked by direct calculation that the Jacobian of these three functions is nonzero for
generic values ofu,v,w). Actually, its zero set consists of 12 planes, whose geometric signifi-
cance will be discussed below.

(elal12

Let us denote by:H — (3, the map sending a trilinear form to its three invariants, so that
(Cg,Cq,C10)=¢(Nyyw). Let S={Ny,ul(u,v,w) € C3} be the three-dimensional space of normal
forms. The nonvanishing of the Jacobian proves thatduces a dominant mapping frogto €3
(that is, the direct image of any nonempty open subs& odntains a nonempty open subset of
C%). Note that the independence @f;,Cq,C,, implies the independence d§,lq,l;,. Now,
Chanlef? has shown thats, | 9,11, Separate the orbits in general position. This proves that the field
of rational invariants ofG is freely generated byg,lg,l1, (Ref. 29, Lemma 2.1). As a conse-
quence,p is arational quotient(Ref. 29, Sec. 2.4for the action ofG on H (actually, this also
implies thatg is a categorical quotient, by Ref. 29, Proposition 2.5 and Theorem 4.12, using that
¢|s is surjective, whence alsp).

There exists a nonempty open sub¥gbf C2 such that the fiber op over each of its points
is the closure of an orbiiRef. 29, Proposition 2)5Let thenU,= ¢ (Y,). This set cutsS sincegis
is dominant. LetU; be the union of all orbits having maximal dimensi@nonempty open set,
the functiondimension of the orbibeing lower semicontinuolslt is easy to see thad, intersects
S (for instance ati=1,v=1, w=-1, whose orbit has dimension 24=d{& as may be checked by
direct calculation). Le§,=U; NS, a dense open subset 8f The setg p(S) thus contains a
dense open subsét, of 7. One then checks thal,NU; U, (a dense open subset, as an
intersection of dense open subsets of an irreducible $paadntained inGS. This prove$sS
=H, that is, the normal fornN,,,, iS generic.

Let us remark that the above discussion also proves, thanks to lgusa’s th@®eén?9,
Theorem 4.12%hat C[H]®=C[lg,lq,1;12], that is, the algebra of invariants is freely generated by
Chanler’s invariants.

Is is also possible to give a direct proof of the normal form by using the same technique as in
Ref. 22. Chanler’'s method relies on the geometry of plane cubics, which will play a prominent
role in the sequel.

V. THE FUNDAMENTAL CUBICS

The trilinear formf(x,y,z) can be encoded in three ways by & 3 matrix of linear forms
My(x), My(y), andM,(z), defined by

f(x,y,2) = 'yMy(x)2=XM,(y)z ='xM(2)y (59)

and the classification of trilinear forms amounts to the classification of one of these matrices, say
M,(x) up to left and right multiplication by elements of &, () and action of SL3,() on the
variablex.

The most immediate covariants bfare the determinants of these matrices



X(x) = detMy(x) = £B,, (60)
Y(y) = detM,(y) = £Bj, (61)

Z(2) = detM,(z) = §B,. (62)

These are ternary cubic forms, and for gendribie equations{(x)=0, etc., will define nonsin-
gular cubics(elliptic curves)in P2, It is shown in Ref. 24 that whenever one of these curves is
elliptic, so are the other two ones, and moreover, all three are projectively equivalent. Actually,
one can check by direct calculation that they have the same invariants. i&#hgy,,, these three
cubics have even the same equation and are in the Hesse canonicdl form

X(X) = = (X3 + X3+ X3) + ¢hXyXoXs = Y(X) = Z(X), (63)

where we introduced, following the notation of Ref. 2,

d=uvw, Y= u3+03+W3. (64)

The Aronhold invariants of the cubi¢§3) are given by

6%S= - (2 + (6¢)%), (65)

65T = (6¢0)° + 20(6¢°) y/° — 8y°. (66)

These are of course invariantsfolWe recognize that%=-C,,, and we introduce an invariahtg
such thaC,g=1,g(N,,w) =6°T. The three cubics have the same discriminar@642, known to be
proportional to the hyperdeterminant bfsee Refs. 31 and 32), which we normalize as

A =27(64S+T2). (67)

ThenA=C'3,, whereC;, is the product of 12 linear forms

Cl,=Uuww(u+ v +W)(su+v +W)(U+ v +W)(e2u+ sv +W)(U+ 2 + W)
X (eu+ev +wW)(e?u+v +w)(eu+ &% + W) (2u+ &% +w), (68)

wheree=e?"3, so thatC},=0 is the equation i°? of the twelve lines containing 8 3 the nine
inflection points of the pencil of cubics,

uw+ovd+w+6m uww=0, (69)

obtained fromX, Y, Z by treating the original variables as parameters. We note also that the
Jacobian ofCg, Cq, C,, is proportional toC'2,,

VI. SYMMETRIES OF THE NORMAL FORMS

In this section, we will prove Theorem I1.2. That is, a gendrias 648 different normal forms
[the points(u,v,w) for which this number is reduced will be studied in Sec.]VII

To prove the theorem, we remark that the Hilbert se(i®sis also the one of the ring of
invariants ofG,s, the group number 25 in the classification of irreducible complex reflection
groups of Shephard and Toddhis group, which we will denote for short b¢, has order 648. It
is one of the groups considered by Maschkehis determination of the invariants of the sym-
metry group of the 27 lines of a general cubic surfac&3ria group with 51 840 elements, which
is related to the exceptional root systéty). To defineK, we first have to introduce Maschke’s
groupH, a group of order 1296, which is generated by the matrices of the linear transformations
on (2 given in Table I.



TABLE I. The generators of.

A B C D E
u’ v u u u 1iV3(u+v+w)
v’ w w gv &v 1/iv3(u+ev +g2w)
w’ u v 2w ew 1iv3(u+ev +ew)

This group contains in particular the permutation matrices, and simultaneous multiplication by
+¢X sinceE?=-B. The subgroufK is the one in which odd permutations can appear only with a
minus sign. It is generated b4,C,D,E.

Then, as proved by Maschke, the algebra of invariantKoih C[u,v,w] is precisely
(. [Cg,Cq,C1sl-

Hence, we can conclude thidtis the symmetry group of the normal form,,,. There was
another, equally natural possibility leading to the same Hilbert series. The symmetrylgafup
the equianharmonic cubic surfaBez +z +7z3+73=0 acting on the homogeneous coordinate ring
C[X] has as fundamental invariants the elementary symmetric functions af,thieae first one
being 0 by definition, so that the Hilbert series®f>]" coincides with(7). Moreover.L is also
of order 648, but it is known that it is not isomorphic Ko

Taking into account the results of Sec. IV, we see that

S={Nyul(u,v,w) e C3 (70)

is what is usually called a Chevalley section of the actio®an H, with Weyl groupK (see Ref.
29, p. 174).

VIl. THE FORM PROBLEM

This section contains the proofs of Theorems 11.3 and 11.4. K{sge Ref. 33has introduced
and investigated the notion of “Formenproblem” associated to a finite group action. This is the
following: given the numerical values of the invariants, compute the coordinates of a point of the
corresponding orbit.

In our case, we shall see that the problem of finding the parametarsw) of the normal
form of a given generié, given the values of the invariants, can be reduced to a chain of algebraic
equations of degree at most 4, hence sovable by radicals.

Let a=lg, b=I,, and c=l,g (we start withl,g becauseC,g is a symmetric function of
u®,v3,w?, and at the end of the calculation, select the solutions which give the correct sigg for
which is alternating).

What we have to do is to determine the elementary symmetric funcépng,e,=y,e;
=¢° of ud,03,w. Let \=216¢°. Then,

Jr+Ny-b=0, (71)

YP= SNy - 5\2-c=0. (72)
Eliminating A from these equations, we get a quartic equationyfor

27y - 18y - 8¢y - b2 = 0. (73)

The discriminan{with respect tay) of this polynomial is proportional t® =b?(b®-c?)*. When it
is nonzero, we get eight values fey, each of which determines univocaky ande;. Hence, we
obtain eight cubic equations whose roots are the possible valugsi3f w?. This gives eight sets,
whence 8<6=48 triples, each of which providing generically 27 values(wfv,w), in all 48
X 27=1296 triples corresponding to the given valuesadh,c, among which exactly 1296/2
=648 give the correct sign fdi,. The common discriminant of the eight cubicsdsa®-3ab
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FIG. 1. The polyhedron{2}3{3}3.

+2c. Clearly, whens+ 0, we will have 648 triples. 16=0, one can check that the cubics cannot
have a triple root, and that no root is zero. Hence, in this case, we obtain again 648 triples.

If D=0, we can haveb®=c? or b=0. In the first case, setting=0g?,c=¢°, the equation
becomes

(7 =) +29)°=0. (74)

In this case, we get only four quartics fgf. If Co# 0, we obtain 216 triples. 1€4=0 andb

=a’/4, c=-a®/8 we obtain again 216 triples which form the centers of the edges of a complex
polyhedron of type #4}3{3}3 in (2 (see Fig. 1), in the notation of Ref. 34. The vertices of this
polyhedron are the vertices of two reciprocal Hessian polyhéska Fig. 2)and its edges join

each vertex of one Hessian polyhedron to the eight closest vertices of the other one. In Fig. 2, the
edges of the Hessian polyhedron, which are complex lines, are represented by real equilateral
triangles, so that the figure can as well be interpreted as a two-dimensional projection of a
six-dimensional Gosset polytope,21f Cq=0 andb=a? c=a? we obtain only 72 triples which

s./:“\?\.' 7N
X Y/

S——<77 S Se—=
N e

e
L2523
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FIG. 2. The Hessian polyhedron.




FIG. 3. The polyhedron{3}3{4}2.

are the centers of the edges of a Hessian polyhedron and the vertices of a complex polytope of
type 33}3{4}2 (see Fig. 3).

In the case wherb=0, we have to distinguish between the cased andc=0. If c# 0, we
find 648 triples, whatever the value afIf c=0, we obtain 27 triples i&+ 0, and only one ia=0.

Indeed, forb=c=0, the y-equation reduces tg#=0, and all the cubics collapse to U2
—auU=0. Fora# 0 we obtain precisely 27 triple@,v,w) which form the vertices of a Hessian
polyhedron inC3 (see Ref. 1).

From the results of Ref. 3 about the arrangement of 12 planes formed by the mirrors of the
pseudoreflections df =G,;, we can determine the structure of the stabilizers of the normal forms.
The only nontrivial cases are as follows:

(i) the orbits with 216 elements, for which the stabilizer is the cyclic grogp

(i) the orbits with 72 elements, for which it 3 X Cj;

(iiiy the Hessian orbits with 27 elements, for which it is the gr@ypof the Shephard—Todd
classification.

These results can be regarded as a complete description of the moduli space of three-quitrit
states. To see what this means, let us recall some definitions from geometric invariant theory.

It is well known that it in general, the orbits of a group action on an algebraic variety cannot
be regarded as the points of an algebraic variety. To remedy this situation, one has to discard
certain degenerate orbits. It is then possible to constroategorical quotienand amoduli space,
which describe the geometry of sufficiently generic orbits, respectively, in the affine and projective
situation.

The categorical quotient ¥H//G is defined as the affine variety whose affine coordinate
ring is the ring of polynomial invariant®= C[#]C. The moduli space is the projective variety
M =Proj([R) of which R is the homogeneous coordinate ring. It is the quotient of thé&&)ss of
semistablepoints by the action ofs (by definition, a point is semistable iff at least one of its
algebraic invariants is nonzero, see Ref).29

Now, since in our case the algebra of invariants is a polynomial algebra, we see that the
categorical quotient is just the affine spdte

The moduli space is more interesting. The projective variety whose homogeneous coordinate
ring is a polynomial algebra over generators of respective degkees. ,d,, is called aweighted
projective spacé’(d,, ..., d,). Hence, by definition, our moduli spagéel is the weighted projec-
tive spaceP(6,9,12=1P(2,3,4. It is known that this space is isomorphicﬂf@l,Z,@,35 which
in turn can be embedded as a sextic surfadeéfjrthe so-callediel Pezzo surface®®see Ref. 36).

The del Pezzo surfaces are very interesting objects, known to be related to the exceptional root
systemgsee, e.g., Ref. 37).



The above results can then be interpreted as a description of the singulariti¢ssifice one
can view it as the quotient of the projective plafié of the parametergu:v:w) under the
projective action ofG,s. We have described this quotient as a 648-fold ramified covelthg
— M, and analyzed its ramification locus.

VIIl. CONCLUSION

A problem of current interest in Quantum Information Theory has been connected to various
important mathematical works, scattered on a period of more than one century from Ref. 2 in 1889
to Ref. 27 in 2000, in general independent of each other and apparently discussing different
subjects. Relying on all these works, we have described the geometry of the normal forms of
semistable orbits of three-qutrit states under the action ¢8 SL)*3, the group of local filtering
(SLOCC)operations. From a physical point of view, our results can be expected to provide a good
starting point for studying the richness of the entanglement of three qutrits and its differences with
that of the simpler qubit systems. From a mathematical point of view, we have worked out an
interesting example of a problem in invariant theory, using both classical algebraic and modern
geometric methods, found a surprising connection with the geometry of complex polytopes, and
applied Klein's vision of Galois theory to the explicit solution of an algebraic equation of degree
648.

Also, this example provides a good illustration of the ideas presented in Refs. 14 and 17.
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