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Abstract. We compute with SageMath the group of all linear
symmetries for the Littlewood-Richardson associated to the repre-
sentations of SL3. We find that there are 144 symmetries, more
than the 12 symmetries known for the Littlewood-Richardson co-
efficients in general.

1. Introduction

The Littlewood–Richardson coefficients cνλ,µ are among the most stud-
ied constants in geometry and representation theory. In geometry, they
are the structure constants for the multiplication in the cohomology
ring of the Grassmannian, in the basis of the Schubert cycles [1]. They
can also be interpreted as cardinalities of the intersection of some triples
of Schubert varieties [2]. In the representation theory of the general
linear group, they are the multiplicities in the tensor product of ir-
reducible representations, and also the dimensions of the subspace of
invariants in the triple tensor products of irreducible representations
[3]. In the representation theory of the symmetric groups, they are the
multiplicities in the restrictions of the irreducible representations of a
symmetric group Sm+n to its Young subgroup Sm × Sn. In the theory
of symmetric functions, they are the structure constants for the ordi-
nary multiplication in the basis of Schur functions. They receive also
a number a combinatorial interpretations: they are known to count
Littlewood-Richardson tableaux, hives, BZ triangles, . . .

Together, these different interpretations of the Littlewood-Richardson
coefficients make clear some symmetries they afford. For instance, the
descriptions as structural constants for commutative products (of Schur
functions, in the ring of symmetric functions; of Schubert cycles, in
the cohomology ring of the Grassmannian) make clear the invariance
cνλ,µ = cνµ,λ, under exchanging the two partitions λ and µ. The descrip-
tions as cardinalities of intersection of triples of Schubert varieties [4],
or as dimensions of subspaces of invariants in triple tensor products [3]
reveals the existence of a S3–symmetry of the Littlewood–Richardson
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coefficients (that comprises the previous symmetry):

(1) cνλ,µ = cνµ,λ = cλ
�

µ,ν� = cλ
�

ν�,µ = cµ
�

ν�,λ
= cµ

�

λ,ν�

where λ�, µ� and ν� are obtained from the Young diagrams of λ, µ
and ν by “taking complements” in suitable rectangles (see Figure 1).

λ

λ�

Figure 1. New Young diagram obtained as complement
of a Young diagram in a rectangle. When considering the
Littlewood–Richardson coefficients associated to SLN .
with λ and µ of length at most N − 1 and ν of length at
most N , one takes complements in rectangles of height N
and: for (1), of length ν1; for (2), of length respectively
λ1, µ1, λ1 + µ1 for λ�, µ� and ν�.

Duality provides an additional symmetry (see [5]):

(2) cνλ,µ = cν
�

λ�,µ� .

Together, these “known symmetries” generate a group of 12 sym-
metries, isomorphic to S2 × S3. Note that it is not straightforward
to understand these symmetries all together from the combinatorial
descriptions of the Littlewood-Richardson coefficients (see [6, 4, 7]).

Is it possible that the Littlewood–Richardson coefficients afford ad-
ditional, unknown symmetries?

To settle this question, we adopt an experimental approach. We
consider the family of Littlewood-Richardson coefficients indexed by
partitions λ, µ and ν with restricted length. The combinatorial ob-
ject they count can be interpreted as lattice points in a (rational con-
vex polyhedral) cone. As a consequence (see [8]), cνλ,µ is a piecewise
quasipolynomial function (actually polynomial, by an additional ar-
gument given again in [8]) of the parts of the partitions λ, µ and ν.
The domains of polynomiality are the maximal cones (“chamber”) of a
fan (a complex of rational polyhedral convex cones, called the “Cham-
ber Complex”). Explicit knowledge of such a description provides data
making possible an exhaustive search of all linear symmetries.

The Chamber Complex and the polynomial formulas for the Littlewood–
Richardson coefficients cνλ,µ related to the representations of GL3(C)
(i.e. where all three partitions have length at most 3) were explicitly
given in [8]. We exploit and analyze these data with SageMath [9], and
obtain:
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Theorem 1. The group of linear symmetries of the Littlewood–Richardson
coefficients cνλ,µ associated to SL3, has order 144. It is isomorphic to
S2 × (S3 o S2), and acts transitively on the chambers of the Chamber
Complex. It is generated by the well–known group of 12 symmetries,
and the additional symmetry:

c
(ν1,ν2,ν3)
(λ1,λ2),(µ1,µ2)

= c
(ν1,µ1,ν3)
(λ1+µ1−ν2,λ2+µ1−ν2),(ν2,µ2)

The calculations are presented in detail in a SageMath Notebook
available online [10] and as an ancillary file.

2. The Littlewood–Richardson coefficients associated to
SL3 and their known symmetries

2.1. The Littlewood–Richardson coefficients associated to SL3.
In this work we restrict our study to the family of Littlewood-Richardson
coefficients related to SL3. These are the Littlewood–Richardson coef-
ficients cνλ,µ such that λ and µ have length at most 2 and ν has length
at most 3. Since cνλ,µ = 0 when |λ|+ |µ| 6= |ν|, we have for any non–zero
coefficient c(ν1,ν2,ν3)(λ1,λ2),(µ1,µ2)

that

(3) ν3 = λ1 + λ2 + µ1 + µ2 − ν1 − ν2.
We thus consider the function C defined on Z6 by

C(λ1, λ2, µ1, µ2, ν1, ν2) = c
(ν1,ν2,ν3)
(λ1,λ2),(µ1,µ2)

when λ1 ≥ λ2 ≥ 0, µ1 ≥ µ2 ≥ 0, ν1 ≥ ν2 ≥ ν3 ≥ 0 (with ν3 defined by
(3)), and C(λ1, λ2, µ1, µ2, ν1, ν2) = 0 otherwise.

Note that considering instead the Littlewood-Richardson coefficients
associated to GL3 (the c(ν1,ν2,ν3)(λ1,λ2,λ3),(µ1,µ2,µ3)

) gives equivalent results (but
hides symmetries). This is because of the invariance properties:

c
(ν1,ν2,ν3)
(λ1,λ2,λ3),(µ1,µ2,µ3)

= c
(1+ν1,1+ν2,1+ν3)
(1+λ1,1+λ2,1+λ3),(µ1,µ2,µ3)

and
c
(ν1,ν2,ν3)
(λ1,λ2,λ3),(µ1,µ2,µ3)

= c
(1+ν1,1+ν2,1+ν3)
(λ1,λ2,λ3),(1+µ1,1+µ2,1+µ3)

which imply

c
(ν1,ν2,ν3)
(λ1,λ2,λ3),(µ1,µ2,µ3)

= c
(ν1−µ3−λ3,ν2−µ3−λ3,ν3−µ3−λ3)
(λ1,λ2),(µ1,µ2)

.

2.2. Known symmetries. We now look for all linear symmetries of
C, i.e. all invertible linear maps F : Z6 → Z6 such that C ◦ F = C.
The group S3 of symmetries (1) is generated by

λ, µ, ν 7→ µ, λ, ν, and λ, µ, ν 7→ ν�, µ, λ�,

that correspond in this context to:

S : (λ1, λ2 | µ1, µ2 | ν1, ν2) 7−→ (µ1, µ2 | λ1, λ2 | ν1, ν2),
U : (λ1, λ2 | µ1, µ2 | ν1, ν2) 7−→ (ν1 − ν3, ν1 − ν2 | µ1, µ2 | ν1, ν1 − λ2).
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Chamber Generators Formula for C
κ1 b, c, d1, e2, d2, e1 1− λ2 − µ2 + ν1

κ2 b, c, d1, g1, d2, g2 1 + ν2 − ν3
κ3 b, c, e2, g1, e1, g2 1 + λ1 + µ1 − ν1
κ4 b, f, d1, e2, d2, e1 1 + ν1 − ν2
κ5 b, f, d1, g1, d2, g2 1 + λ2 + µ2 − ν3
κ6 b, f, e2, g1, e1, g2 1− λ3 − µ3 + ν3

κ7 b, c, d1, g1, d2, e1 1 + λ3 + µ1 − ν3
κ8 b, c, d1, e2, d2, g2 1 + λ1 + µ3 − ν3
κ9 b, c, d1, e2, e1, g2 1 + λ1 − λ2
κ10 b, c, e2, g1, d2, e1 1 + µ1 − µ2

κ11 b, c, d1, g1, e1, g2 1− λ2 − µ3 + ν2
κ12 b, c, e2, g1, d2, g2 1− λ3 − µ2 + ν2

κ13 b, f, d1, g1, d2, e1 1− λ1 − µ3 + ν1
κ14 b, f, d1, e2, d2, g2 1− λ3 − µ1 + ν1

κ15 b, f, d1, g1, e1, g2 1 + µ2 − µ3

κ16 b, f, e2, g1, d2, g2 1 + λ2 − λ3
κ17 b, f, d1, e2, e1, g2 1 + λ1 + µ2 − ν2
κ18 b, f, e2, g1, d2, e1 1 + λ2 + µ1 − ν2

Table 1. The Chamber Complex for C, from [8, Ta-
ble 1]. Note that there is a typo in [8, Table 1]: there
one should read ν1 instead of ν3 in the quasipolynomial
formulas for chambers κ13 and κ14.

The additional involution (2) corresponds to

T : (λ1, λ2 | µ1, µ2 | ν1, ν2)
7−→ (λ1, λ1 − λ2 | µ1, µ1 − µ2 | λ1 + µ1 − ν3, λ1 + µ1 − ν2)

where, again, ν3 is given by (3).
Rassart’s Chamber Complex and polynomial formulas for the GL3–

Littlewood-Richardson coefficients restrict to a Chamber Complex and
polynomial formulas for the function C (set λ3 = µ3 = 0). The rays
of this Chamber Complex are given in Table 2, and the chambers and
polynomial formulas are shown in Table 1.

3. Computation of the symmetries

In this section, we prove Theorem 1.

3.1. Reduction to the symmetries of the Chamber Complex.
In order to find all symmetries of the function C, we look for symmetries
of simpler objects: first we check that any symmetry of C must be a
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b = (2, 1, 2, 1, 3, 2) c = (1, 1, 1, 1, 2, 1) f = (1, 0, 1, 0, 1, 1)
d1 = (1, 1, 1, 0, 1, 1) e1 = (1, 1, 0, 0, 1, 1) g1 = (1, 0, 0, 0, 1, 0)
d2 = (1, 0, 1, 1, 1, 1) e2 = (0, 0, 1, 1, 1, 1) g2 = (0, 0, 1, 0, 1, 0)

Table 2. The minimal generators for the rays of the
Chamber Complex for C.

symmetry of the chamber complex. Afterwards, we will show that such
a symmetry must be also a symmetry of an even simpler object: the
set of the ray generators of the Chamber Complex.

Lemma 1. Any linear symmetry of C is necessarily a linear symmetry
of the chamber complex, i.e. an invertible linear map from Z6 to itself
that permutes the cells of the chamber complex.

Proof. We will call C the support of the Chamber Complex, i.e. the
cone that is the union of all chambers.

Let F be a symmetry of C. On any chamber κ of the chamber
complex, the function C coincides with a polynomial function Pκ. Let
κ be a chamber of the chamber complex. Since C ◦ F = C , we have
that C ◦ F also coincides with Pκ on κ. Therefore C coincides with
Pκ ◦ F−1 on F (κ). The cone F (κ) can’t meet the exterior of the cone
C. Indeed, if F (κ) would meet the exterior of C, the intersection would
contain a full-dimensional cone of R6. But two polynomial functions
that coincide on the integer points of a full-dimensional cone must
be equal. We would have Pκ ◦ F−1 = 0, and thus Pκ = 0, which is
false. Therefore F (κ) ⊂ C. Again, it is impossible that F (κ) meet
two chambers τ1 and τ2 full–dimensionally, because this would imply
Pτ1 = Pτ2 , and there is no such coincidence in the list of formulas for C.
As a consequence, there exists one cell τ such that F (κ) ⊂ τ . Applying
the same reasoning to F−1, we see that we must have also F−1(τ) ⊂ κ.
As a conclusion, F (κ) = τ . Therefore, F permutes the chambers of
the chamber complex. It follows that F is a symmetry of the chamber
complex. �

3.2. Reduction to the Symmetries of the rays. After Lemma 1,
any linear symmetry of C is also a linear symmetry of the chamber
complex. Obviously, any linear symmetry of the chamber complex
induces also a linear symmetry of the set of its ray generators R =
{b, c, f, d1, d2, e1, e2, g1, g2} (i.e. a permutation of R induced by a linear
invertible map from Z6 to itself). We will denote with S(R) the group
of linear symmetries of R.

We compute with SageMath the group S(R), thanks to the following
lemma. Firstly, note that the group of symmetries of a set of vectors
R = {v1, v2, . . . , vn} embeds in the symmetric group Sn.
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d1 d2

e1

f

g2

e2

Figure 2. The edge–colored graph H(R). Its automor-
phism group is the group of linear symmetries of the ray
generators of the chamber complex.

Lemma 2 ([11, Proposition 3]). Let R = {v1, v2, . . . , vn} be a set of
vectors of Zm, spanning Zm. Then the linear symmetries of R are the
automorphisms of the edge–colored complete graph H(R) whose vertices
are the vi, with the edge vi− vj colored by the entry (i, j) of the matrix
Q = V t(V V t)−1V , where V is the matrix of order m×n whose columns
are the vi.

In the case under consideration, the edge–colored graph H(R) is
shown in Figure 2, and its automorphism group is readily obtained:
S(R) is the direct product of the group S2 of permutations of {c, f} and
of the wreath product S3 oS2 of the permutations of {d1, e2, g1, d2, e1, g2}
that stabilize or swap the subsets {d1, e2, g1} and {d2, e1, g2}. In par-
ticular, S(R) is generated by v = (c, f) , x = (e1, g2) and y = (e1, d2)
that permute {e1, g2, d2}, and s = (d1, d2)(e1, e2)(g1, g2) that swaps
{d1, e2, g1} and {d1, e1, g2}.

Note that s is precisely the automorphism ofR induced by the known
symmetry S of the Littlewood-Richardson coefficients. Let us consider
the automorphisms t, u of the rays induced by the other two known
symmetries T , U . It is easily calculated that

t = (d1, d2)(e1, g1)(e2, g2)(c, f), u = (d1, g2)(d2, e2)(e1, g1).

Again with SageMath, we check that s, t, u and x already generate
S(R). More precisely, we get that v = txsx and y = usxsu, which is
easily checked by hand.

3.3. The symmetries of the rays are also symmetries of the
Littlewood–Richardson coefficients. Note that any automorphism
of the rays lifts uniquely to a linear automorphism of R6. Let X be the
lifting of x. Let G be the group of all liftings of the elements of S(R).
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After Lemmas 1 and 2, the group G contains all symmetries of C. We
will check by explicit calculation that G is actually equal to the group
of symmetries of C. Since G is generated by S, T , U and X, and that
S, T and U are known to be symmetries of C, it is enough to check
that X is a symmetry of C.

To check that X is a symmetry of C we proceed as follows: for
each chamber κ, with generators w1, w2, w3, w4, w5, w6, we calculate
x(w1), x(w2), . . . (This is immediate since x just swaps e1 and g2 and
leaves all other ray generators fixed). We check that they are the
generators of a chamber g(κ) of the Chamber Complex. Then we check
by inspection that g is indeed a permutation of the chambers. Last, we
check that for each κ, the polynomials Pg(κ) and Pκ ◦ X−1 are equal.
The latter calculation is performed within SageMath, and gives the
expected result: X is indeed a symmetry of C. Finally, one calculates
that X is given by

(λ1, λ2 | µ1, µ2 | ν1, ν2) 7−→ (λ1 + µ1 − ν2, λ2 + µ1 − ν2 | ν2, µ2 | ν1, µ1).

3.4. Transitivity of the action on the chambers. By direct in-
spection of Table 1, one can check that the rays of each chamber are:
b, one of {c, f}, two of {d1, e2, g1} and two of {d2, e1, g2}. This proves
that G permutes transitively the chambers, since G is exactly the sta-
bilizer of ({c, f}, {{d1, e2, g1}, {d2, e1, g2}}).

4. Final remarks

4.1. Littlewood–Richardson coefficients associated to GL3. If
we consider the Littlewood–Richardson coefficients associated to GL3,
instead of SL3, we get one more generator for the group of symmetries,
yielding in total 144 × 2 = 288 symmetries. The additional generator
sends (λ1, λ2, λ3 | µ1, µ2, µ3 | ν1, ν2, ν3) to

(λ1 −m,λ2 −m,λ3 −m | µ1 +m,µ2 +m,µ3 +m | ν1, ν2, ν3),

where m = λ3 − µ3. In Rassart’s description [8] of the chamber com-
plex for the Littlewood-Richardson coefficients associated to GL3, this
generator swaps the additional rays a1 and a2 while fixing all other
rays.

4.2. The case of SLN for N ≥ 4. One finds that the linear symme-
tries of the Littlewood-Richardson coefficients associated to SLN , for
N in {4, 5, 6, 7}, are only the 12 known symmetries. Indeed, the group
of symmetries of these Littlewood–Richardson coefficients embeds in
the group of linear symmetries of the ray generators of their support.
But one computes that this group has only 12 elements[12].
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5. Perspectives

There are two contributions in this work: the results (144 linear
symmetries for the Littlewood-Richardson coefficients associated to the
representations of SL3, a much bigger number than expected); and the
method (embedding the group of the linear symmetries in the group of
symmetries of a chamber complex, and the group of symmetries of its
rays). This method may be applied to the study of the symmetries of
other families of Littlewood-Richardson coefficients, and even more, to
families of other representation–theoretic structural coefficients (such
as Kostka coefficients, Kronecker coefficients, plethysm coefficients) as
long as we have an explicit description of their piecewise quasipolyno-
mial formulas. Explicit descriptions of piecewise quasipolynomial for
such structural coefficients appear in the literature. For example, for
the plethysm coefficients in the Schur expansion of sµ[sk] with µ any
fixed partition of 3, 4 or 5 [13], for the Kronecker coefficients gλ,µ,ν with
λ and µ of length ≤ 2 [14] or with λ, µ, ν of length ≤ 3 [15].
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