SOME COVARIANTS RELATED TO STEINER SURFACES
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ABSTRACT. A Steiner surface is the generic case of a quadraticallgmeterizable quar-
tic surface used in geometric modeling. This paper studi@slitic parameterizations of
surfaces under the angle of Classical Invariant Theorycigely, it exhibits a collection
of covariants associated to projective quadratic paramet®ns of surfaces, under the
actions of linear reparameterization and linear transéions of the target space. Each of
these covariants comes with a simple geometric interjivetat

As an application, some of these covariants are used to peodplicit equations
and inequalities defining the orbits of projective quadrgtrameterizations of quartic
surfaces.

1. INTRODUCTION

This paper deals with quadratically parameterizable égquantrfaces ofR3, that is sur-
faces of degred admitting a parameterization of the form:

R? — R3
Fi(z1,22) Fa(z1,22) Fs(z1,22)
(e1,02) > (Fmzy, Dlen Sl

1)

where theF; are polynomial functions of degree at mastrFor genericF;'s, the parame-
terized surface obtained is calle@teiner surfacesee section 2 for the precise definition.

Our general motivation for the study of Steiner surfacedésfollowing. Two of us
(Franck Aries and Claude Bruchou) are interested in mattieatanodeling of vegetation
canopies (see [Espafa et al., 1999] for more details). Ttadleld description of the archi-
tecture of vegetation canopies is critical for the modebhghany agricultural processes :
the photosynthesis, the propagation of diseases from @aao another or the radiative
transfer. These processes involve a big amount of compuotatin geometric objects as-
sociated to each plant organ. Each geometric object cangrexdmated by a set of plane
triangles, or more complex patches like bicubic. As undediin several papers of geo-
metric modeling ([Sederberg and Chen, 1995] [Coffman etl8B6], [Aries et al., 2004]),
Steiner patches are a possibly good compromise betweegleis which need to be very
many for a good accuracy, and the eighteen degree surfasasated to the bicubic pa-
rameterization, which raise problems of complexity. Utioately, one may meet singular,
or close to singular parameterizations, that make comipattinreliable. Thus one needs
to know as much as possible about the geometry of the spacgadfatic parameteriza-
tions.

The study of quadratic parameterizations is eased by cerisg] instead of the affine
setting, the projective setting. This means consideriegtiojective quadratic parameter-
izations of surfaces, that is the quadratic rational maps fihe real projective plarfgP?

This paper will be published by Springer in the Proceedirfighe®Worshop COMPASS II.
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to the real projective spad®P>. These maps are those of the form:

QCcRP? — RP?
(wo 2wy :w2) — (fo:fi:fa:f3).

Where2 thef;'s are quadratic forms img, x1, 22 and<? is a non—empty Zariski open subset
of RP~.

The main topic of the present paper is the Invariant Theonyrofective quadratic pa-
rameterizations under linear changes of coordinat&®éfandRP. Precisely, we provide
a collection of covariants with simple geometric interptiin.

Let us give a motivating problem: the discrimination betweke different kinds of
guadratic parameterizations of quartic surfaces. Let ukentlais precise. Consider a
quadratic map as in (2). Its image RP® is not, in general, Zariski—closed. Consider
its Zariski closure, it is an algebraic surface of degree ast. Let !/ be the set of
those maps for which it is a quartice. it has degree exactly. Two elements ot/
are consideredquivalentf one is obtained from the other by a linear reparametddnat
(linear change of coordinates in the dom&R&?) and a projective transformation of the
ambient space (linear change of coordinates in the codoR&f). Then, as it is shown
in [Coffman et al., 1996] and [Degen, 1996], there are figitmlany equivalence classes
in Y. The problem is to discriminate between these equivaletasses. Algorithmic
solutions to this problem have been given in [Coffman etl&196] and [Aries et al., 2004].
Our paper proposes a new solution. It consists simply inigiog polynomial equations
and inequalities defining the equivalence claks&he equivalence classes are actually
orbits under the action of some group. Thus it is natural tk [or the equations and
inequalities among the objects provided by Classical iavérTheory: the covariants.
Then, the aforementioned problem of discrimination betwesbits of parameterizations
is solved as an application, by picking in our toolbox of adamats the most adapted ones.

The sequel of the paper is organized as follows: Sectiondlssknown facts about the
classification of quadratic parameterizations of surfaGestion 3 provides preliminar-
ies on Classical Invariant Theory; Section 4 presents sa@oegtrical features of Steiner
surfaces, that will be helpful to present our collection ofariants; these covariants are
introduced in Section 5; the last section, Section 6, pitsstie application of these co-
variants to the discrimination of classes of parametddnat

(2)

2. ORBITS OF QUADRATIC PARAMETERIZATIONS OF QUARTICS

A quadratic rational map frolRP? to RP? is determined by a homogeneous quadratic
mapf fromR3 to R%, that can be presented as a family of four real ternary qtiadoams:

(3) f = (folwo, x1,22), f1(x0, 21, T2), f2(20, 71, 72), f3(T0, 71, 72)) .

Denote withF the space of all the quadruples of real ternary quadratin$oiThen, more
precisely, quadratic rational maps frd&iP? to RP® can be identified with the elements of
F considerednoduloscalar multiplicationi.e. the projective spacB(F). For f € F, we
will denote with[f] the corresponding element B{F).

IHere is an example where the methods of [Coffman et al., 1886][Aries et al., 2004] are not directly
applicable: suppose we are given a family of parameteozati depending on a parameter Then, by mere
specialization of the general equations and inequalitefinithg the classes, we are able to determine which
values oft give a parameterization in a given equivalence class.
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Now the groupGL(3,R) acts naturally oiR® (andRP?), and thus onF (andP(F)).
The action onF is as follows: forg € GL(3,R),

4) 0(f) =fob7".

The induced action off(F) corresponds to linear reparameterizations. There is also a
natural action of the group'Z(4, R) on R* (andRP?), and thus onF (andP(F)): for

p € GL(4,R),

) p(f)=pof.

We have thus an action 6L (3,R) x GL(4,R) onF (andP(F)). In the sequel, we will
denote this group witl.

In P(F), the subset/ of those projective parameterizations with the properat the
Zariski closure of their imadeis a surface of degreg exactly, is invariant unde@. It
is also a Zariski dense open set. As said in the introductiendecomposition df into
orbits is knowr; see [Coffman et al., 1996], [Degen, 1996] and [Aries et20Q4]. There
are only six orbits. Table 1 provides the list of the orbitghva representative for each.

Orbit Representative
li (2 T1Ta @ 2 XL : 2TT1 : To2 + 112 + {L%)
lii (2 T1T2 : 2X0T2 : 2X0T1 : ToZ — x% + x%)
liii (z0® + 1 : 2} + 23 : wows : 2172)
i 20?2 — 2%t x0Ty Ty xQ)
Iii ToTo — T1T2 : To> x% : x%)
i (x02 D ToTo — T T1Ta x2)
TaBLE 1. Orbits of quadratic parameterizations of quartic sa$ac

Let us say a word about the connection between this probleritha@analogous problem
in the complex setting. Denote with: the complexification ofF: that is the space of
families of four complex quadratic forms. Th&{F¢) represents the space of quadratic
rational maps from the complex projective plafi? to the complex projective three—
dimensional spac&P®. Letl be the subset of those parameterizations whose image is
a quartic surface. Thed is the trace ot/ onP(F). This means thdf = Uc NP(F).

Let Gc = GL(3,C) x GL(4,C). This group acts naturally oftc andP(F¢), and
also onlc. The classification of the orbits @(F) underG is obtained by refining the
classification ofP(F¢) into orbits underG¢ (see [Apery, 1987] for a modern reference
about this classification in the complex setting). PregisélO is an orbit inP(F¢) under
G, then its trace (intersection with(F)) is a union of orbits undef. For instancel{c
decomposesin three orbitg;, lll ¢ and llic, and their respective traces &rare liJlii Uliii,

[li U i, and 111.

It happens that there is one dense orbifitf¢): that is Orbit .. Then acomplex
Steiner surfacés just the image itCP? of a parameterization in this orfitlt is always a
Zariski closed quartic surface. By extension, the namefigtesurface” is sometimes used

2We consider the set-theoretical image, and rule out thesaasken the Zariski closure of the image is a
double quadric (case 7 in Proposition 5 of [Aries et al., 3p04a plane counted four times.

3The determination of the orbits outsitiis a different problem. See the references in [Coffman 18P6].

40ne could, following some sources in the literature, redesurfaces in Orbits H and llic as “degenerate”
Steiner surfaces, but we will use the term Steiner surfadg fon the non—degenerate cases. only for the
elements of Orbitd.
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for the set of its real pointsthat is a real quartic surface, Zariski closure of the imaig
parameterization in Orbit li, lii or liii.

3. PRELIMINARIES ON CLASSICAL INVARIANT THEORY

The objects we will introduce in Section 5 grelynomial covariant$or the action of
on F. We wish now to recall the general definition (we point outdKiand Procesi, 1996]
and [Popov and Vinberg, 1994] as modern references for iC&davariant Theory).

Let G be a group (we will apply what follows faf = G), and letiW be some finite-
dimensionalg—module, that is: a vector space on whighacts linearly (we will have
W = F). LetV be another finite-dimensiong-module. Apolynomial covariarftof 1/
of typeV is a polynomial mag’ from W to V', equivariant with respect t§. This means
that:

(6) Clg(w)) =g(C(w)) YweW, Vgeg.

This includes the (relative) invariants, which are the polyial functions/ on W such
that for allg € G, there exists some scal@y) such that:

(7) I(g(w)) = c(g) - I(w) Vw e W.

ForG = G acting onWW = F, a polynomial covariant for the action 6f on F is a
polynomial map fromF to someG—module such that

(8) Clpofob™) =(p.0)(C(f))
forall € GL(3,R) and allp € GL(4,R).

Note that the zero set of any covariant i§-anvariant set, that is a union of orbits.

We finish this section with some remarks. The covariantsfamderG are essentially
the same as those dic underGc: the former are obtained by complexification of the
latter’. From a classical theorem of Invariant Theory (see [Popeanberg, 1994]), we
know that the homogeneous covariants separate the ortt&%f) underGe: this means
that for any two orbit®); andO,, there exists some homogeneous covariant vanishing on
O and not or0,, orvice—versaOn the contrary, there is no guarantee in advance that we
can separate the orbits Bf ) underG using equations and inequalities involving only
the covariants. We will be able to do it in Section 6 by usingiealerived objects.

4. SOME ELEMENTS OF GEOMETRY OF THESTEINER SURFACE

To each of the covariants we will introduce is attached a Ergpometric object asso-
ciated to the quadratic parameterizations of the comple&t surface. This is, actually,
what will guide us in the construction of the covariants.
We now introduce the main features of the Steiner surfaey ¢thn be found in [Salmon, 1915],
parag. 554a). Fof € F, denote withS( f) the associated complex Steiner surface, that is
the image ofCP? under|f]. Then:
e Itis a quatrtic (its implicit equation has degrée
e Its singular locus is the union of three lines, that are delibkes. They are con-
current: their intersection is the unique triple point af tBteiner surface.

SNeverthelessSteiner's Roman surfageroperly said corresponds to the Zariski closure of the inaba
parameterization in Orbit li; see [Coffman et al., 1996].

6This is the modern meaning fopvariant which includes the classical notions of covariants, @atriants
and mixed concomitants.

7For such issues of field of definition, see [Kraft and Prock296].
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e The intersection of(f) with a tangent plane is a quartic curve that either decom-
poses as the union of two conics intersecting at four poartas a double conic.
The latter situation happens only for four tangent plartes, $almon callsropes
In the former situation, one of the four intersection poistthe point of tangency;
the three remaining points are the intersections of theepiaith each of three
double lines.

e Each trope is tangent to the Steiner surface along a corlledcatorsal conié.
There are thus four torsal conics.

e There is a unique quadric going through the four torsal conicet us call ithe
Associated Quadric

e The dual (or “reciprocal”) surface t§( f) (the surface of CP*)* that is the Zariski
closure of the set of all tangent planes0f)) is a cubic surface, known as the
Cayley Cubic Surfacésee [Salmon, 1915]).

Also of interest are some facts connected to the quadratioypeterizatiorjf] (rather than
to the Steiner surfac8(f) itself):

e Itis defined on the whol€P?,

e The directimage of each line @fP* is a conic onS(f).

¢ The preimage of each conic drawn 81f) is a straight line ofCP?. As a conse-
qguence, the preimage of any tangent plane is a pair of lineslifies are distinct,
unless the plane is a trope.

e The four lines obtained as preimages of the four tropes Yatpntly: of the tor-
sal conics; yet equivalently: of the Associated Quadriciif@ non—degenerate
quadrilateral.

e The preimage of each of the singular linesSgff) is a straight line ofCP?. The3
lines obtained this way are non concurrent: they form a (degenerate) triangle,
that we call theExceptional Triangle

e The preimage of the triple point is the union of the verticéshe Exceptional
Triangle.

e The parameterization is faithfulé. generically injective). Precisely, it is injective
on the complement of the Exceptional TrianglelR?.

5. A COLLECTION OF COVARIANTS

5.1. Preliminaries. This section presents the new contribution of the paper:llaatimn
of homogeneous covariants for the actiort:odn F, with a simple geometric interpretation
for each of them.

Let us start with some notations. Denote the canonical lwégiS with \g, A1, A2 and
its dual basis withzg, z1, 2. Denote also the canonical basis@f with ag, a1, as, as
and its dual basis withg, y1, y2, y3. Given two complex vector spac&g andV, denote
with Pol,, (W, V') the space of homogeneous polynomial maps fi@nto V' of degreen.
Denote alsdPol,,(1V) the space of polynomial homogeneous functions of degreeer
W. Otherwise stated,

9) Pol,, (W) = Pol,, (W, C).
For f = (fo, f1, f2, f3) € F, denote the coefficients ¢f with a;; andb;;, as follows:

(10) fz = a;o J,‘(Q) —+ a;1 J)% + a2 x% + 2b0x1 29 + 2bj1 xg X2 + 2 b0 T X1

8This is called garabolic conic in [Coffman et al., 1996].



6 FRANCK ARIES, EMMANUEL BRIAND AND CLAUDE BRUCHOU

Each of the homogeneous covariants we will present, coresidgp to a scalar, repre-
sents some geometric object associated to the paraméitatizf, according to its type
(its space of valu€s Note that the definition of this geometric object will bdiganly in
the case whefyf] parameterizes a Steiner surface.

We will meet covariants of the following types:

e TypePol,,(C*): such a covarianf’ associates tf] a surface inCP* (the zero
locus of C(f)).

e TypePol, (C?): such a covariant associateq fo a curve inCP?.

e TypePol,, ((C*)*): such a covariant associates|fd a surface ifCP*)*. If this
surface is decomposable, that is a union of hyperplan¢€®?)*, then it also
represents a finite collection of points @P* (the points corresponding to the
hyperplanes by duality).

e TypePol,, ((C?)*): such a covariant associates[{f) a curve in(CP?)*. If this
curve is decomposable, then it also represents a finiteatiolfeof points inCPP?.

o Type some space of functiof®l,, (W, V) between spaced’, V amongC3?, C*
and their duals. Then the covariant associate'tesome family of curves or
surfaces ifP(V')* parameterized bf(W).

e TypeC: such a homogeneous covariantis just an invariant for thes$ L (3, C) x
SL(4,C). We will see that there is essentially only one invariant.

The geometric objects attached to some of the covariantsilygresent will be clear from
their construction; for the rest, they can be found merelgugluating the covariant on the
representative of Orbit:t

(11) (2 1o 2ToTa : 2x0Ty : To> + 12 + l%) .

Table 2 recapitulates the list of covariants that will be mesented individually. The
reader will findMaple procedures implementing the formulas that follow on the pade:
http://enmanuel . jean. briand. free.fr/publications/steiner/

5.2. Derivation of the covariants. Here we suppose th@f] is in Ic, that is its image
S(f) in CP? is a complex Steiner surface.

For each covariant we indicate its type, and its degree wipect to the coefficients of
the f;’s.

Tangent plane at the image of a poiriven a generic poinfz] in the parameter space
CP?, we can consider the tangent plane to the Steiner su§ag¢gat its image by f]. It
has equatio®; (f)(x) = 0, where

Oofo O1fo O2fo o
L1 dfi fi Oofi i
8| Oofa Oife O2fs w2
Oofs Oifs Oafs 3

(12) Py =

Hered; stands forl—.
This covariant®; has degre8 and typePols(C3, (C*)*). The geometric object asso-
ciated tod, (f) is a parameterization of the dual surfacetq’).

9Strictly speaking, the type should mention also the actibiizoon this space. In all the cases we will
meet, this action is a canonical action@fon the space, or its product by some powers of the deternsirzint
0 € GL(3,R) andp € GL(4,R). These powers are easily determined from the degree of tragiant.



SOME COVARIANTS RELATED TO STEINER SURFACES 7

Symbol | Name | Degree Type
Invariants C
A | Discriminant | 24 C
Families of objects
D, Tangent plane at the image of a point 3 Pol3(C3, (CH*)
i) Linear plane spanned by the image of a line 3 Pols((C3)*, (C*)*)
3 Correspondence line—line 4 Poly ((C3)*, (C3)*)
g Preimage of a point 08 (f) 10 Poly(C*, C?)
Associated surfacesin CP? Pol,,(C%)
Dy Implicit Equation 12 n=4
D5 Associated Quadric 6 n=2
(o2 Union of the Tropes 12 n=4
Dqg Trihedron defined by the Double Lines 21 n=3
o3P Polar PlandI of the Associated Quadric and the Tripgle 15 n=1
Point
Associated surfacesin (CP3)* Pol,, ((CH*)
D Dual surface 3 n=3
Pg Triple Point 9 n=1
Associated curvesin CP? Pol,,(C?)
Dy Exceptional Triangle 12 n=3
D3 Conic preimage ofI 16 n=2
D5 Quadrilateral preimage of the torsal conics 8 n=4
Associated surfaces of (CP?)* Pol,, ((C*)*)
®14 | Dual conic to the preimage af | 8 n=2

TABLE 2. List of the covariants presented in the paper.

Plane spanned by the image of a lin@onsider a generic liné& in CP?, given by an
equation

(13) )\(.23) = Xoxg + A1x1 + Aoxo = 0.

Its image undey is a conic inCP®, spanning a plane, that is an elemen{@®P®)*. This
plane is always a tangent planeS6¢f). It admits®,(f)(A) = 0 as an equation, with

ago aor @o2 2bog 2bor 2bo2 Yo
alo air a2 2big 2b11 2b12 w1
1] @20 a2 a2 2by9 2b21 2ba2 Y2
(14) ®y =1 a3z a3r azx 2bz 2b31 2b32 y3
Ao 0 0 0 Ao A1 0
0 A1 0 Ao 0 Ao 0
0 0 Ao A1 Ao 0 0

Note that the lines of the matrix in the determinant correshto the equations:

fl(x) = Yi, Z':Oa172a37
(15) zjMz) =0, j=0,1,2,

seen as linear in, zoz1, ...

This function®, is a covariant of degregof typePol3((C3)*, (C*)*). The geometric
object associated t@,(f) is a (non—proper) parameterization of the the dual surface t

S(f)-
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Line whose image spans the same plafe.already mentioned, any section®ff) by
some20f its tangent planes is a union of two conics. The prgénod each is a straight line
in CP~.

Thus we have the following construction: take a generic lirdrawn inCP?, consider
its image inCP?, this is a conic spanning a tangent plane. The preimage ®pthne is
made of the original lind., plus another ond,’. The mapL — L’ is given by a covariant
®3 of typePoly ((C?)*, (C3)*). This covariant is defined by the formula

app  ap1 ap2 2boo 2bo1 2bo2 O
alp a1 a2 2big 2b11 2bi2 O
azo a1 aze 2by 2bay 2b 0
(16) ®3=| a3o a1 azx 2b3p 2b31 2032 O
)\0 0 0 0 )\2 )\1 ZTo
O )\1 0 )\2 O /\0 X1
0 0 )\2 )\1 /\0 0 xZo

It has degred.

Implicit equation. The implicit equation ofS(f) can be obtained as follows. Consider
®,(f) as a cubic polynomial in:

By = L300(y)xf + Lozo ()} + Loos(y)a3 + 3Laro(y)xgzs + 3 La01(y)xiae
a7) +3 l120(y) 2330 + 3 Lo21 (y) T30 + 3 L102(y) 2370 + 3 Lo12(y) 371
+ 64111 (y)zox122.

Here the coefficients;;;, are linear forms iry, depending polynomially offi. Set

apo  aor  ap2  boo  bor  bo2 %o
aip @11 12 b1o b11 b12
G20 G21 (22 bag b21 bao
(18) ®y=6%azx as1 asz2 bso by bao
l300 120 lio2 111 flao1 L210
b0 Lozo Loiz Lo21 111 Li2o
la01 flo21 Loos o1z flio2 fi1n

coog§ S

Then®,(f) is an implicit equation ofS(f). And @, is also a covariant. it has degree
12 and typePol,(C*). The attached geometric object is its zero locus, that isipeéne
surface itself.
This covariant has another property: it vanishes if and dihthe parameterization
admits a base point (this means that ftis have a common zero iiP?; thus it is revealed
to be a resultant).
Formula (18) has been proposed in [Aries and Senoussi, 188@][Brill, 1872], [Jouanolou, 1996],
[Aries and Senoussi, 2001] for formulas close to this ond,@oofs.

Associated QuadricOne produces a new covariant by the followiogntraction (see
[Kraft and Procesi, 1996]) ob; and®,:

1 03®, D3 ®,
19 By = = .

It has degre& and typePol,(C*). One finds (by evaluation on the representative of the
dense orbit) tha®;(f) = 0 is an equation for the Associated Quadric.
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Preimage of a point of the Steiner surfackhe map[f] from CP? to CP? induced byf is
birational onto its imagé(f): its inverse is induced by the rational mig;(f)] : CP* —
CP? where

agp  aor ap2 boo bor  bo2 O
aip a1 aiz by bir bz 0
azxo az1  azx by bar by 0
(20) $6=6"|as0 as1 asx bso bz bz O
l300 120 fio2 111 foo1 210 Ao
la0 Lozo Loz Lo21 li11 flizo M
lao1 Loa1 Looz Loz Lioz 111 A2

This is a covariant of degrelé and typePoly (C*, C?).

The dual surfaceConsider the quadratic formy, fo + - - - + a3 f3 and take its discriminant
(that is the determinant of its matrix):

(21) - = Disc (Oéofo + Oélfl + Oézfg + Oégfg) .

The object obtained this wa®,, is a covariant. It has degréend typePol;((C*)*). The
zero locus of®7(f) is the dual surface tS(f).

Triple point. A covariant of degreé and typeC* = Pol, ((C*)*) is produced by contrac-
tion of &7 and®s:

0?05 0?®;
22 Og = .
( ) 8 Z dy7 dyj dOéi dOéj

Z!j
Write
(23) Ds(f) = o0 + 11 + T + T3003.
Then the associated geometric object is a pgigt 71 : 72 : 73) of CP?. One checks that
this is exactly the triple point af(f).

Discriminant. By evaluating®s ( /), the equation of the Associated Quadric®at f), the
Triple Point, one gets a scalar:

(24) A(f) = ®5(f)(Ps(f))-

This objectA is a homogeneous covariant of degedeand typeC. Otherwise stated, this
is a homogeneous invariant 6t (3, C) x SL(4,C). One checks by direct computation
that it is irreducible. From this and the existence of a desrdd, it is not difficult to
deduce thal\ is essentially the only invariant. This means thagenerates the algebra of
the invariants unde$ L (3, C) x SL(4,C).

Union of the tropes.Set
(25) by = Py + (I)g.

This is a covariant of degré@ and typePol, (C*), and thusb, ( f) represents some quartic
surface inCP®. One checks that this surface is the union of the four tropes.
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Trihedron of the double linesRemember the classical notion of polar: given an hypersur-
face of degred > 1 given by an equatiod'(z,...,z,) = 0and apoin{Zy : ---: Z,.),

the polar of the hypersurface and the point is the hypersemdédegreel — 1 defined by

the equation

OF
(26) Z Zid—Zi = 0.
Then the polar o8 (f) and the triple point(f) has equatiors(f) = 0, where
3
B 0Py
(27) By = Z;Tl(f) o

(Ther;’s are defined in Equation (23).) This way we get a covariadiegiree21 with type
Pol3(C*). One checks that its zero locus@P? is a union of three planes: they are the
faces of the trihedron drawn by the singular linesS¢f).

Exceptional Triangle.Consider the discriminant @3, quadratic form or{C3)*:

8% d 8% dy 82 P
1 dx2 dXoA1  dhohz
_ 0% dg 22 dg 8%®s
(28) Q11 = g dXoA1 dX? dhi s |
o 8% dy 82 P
dXorz  dAiAz dx2

This is a covariant of degre2 and typePols;(C3). The zero locus oy (f) in CP? is
the Exceptional Trianghé.

Polar planell of the Associated Quadric and the Triple Poifithe polar surface of the
Associated Quadric and the Triple Point is a plane, cdll.itt has equatio®2(f) = 0,
where

3

Obs
(29) Pp=Y 72,
12 ; ™

This is a covariant of degreié and type(C*)* = Pol; (C*).

Conic, preimage ofl. By merely substituting; with f;(x) in ®;2, one finds a new co-
variant®:

(30) P13(f)(x) = Pr2(f)(f ().

The covariant,3 has degree6 and typePol,(C?). Naturally,®;3(f) = 0 is the equation
of the conic that is the preimage b of the section ofS(f) by II(f).

Dual conic to the preimage dil. In [Salmon, 1884], parag. 377 is shown a covariant
U (q1, g2, A) of forms onC? (¢; andg, quadratic\ linear), whose vanishing is a necessary
and sufficient condition for the traces of the conics of efumsty; (z) = 0 andgz(z) =0
on the line of equation(z) = 0 to be a harmonic system of points.

Set

0P
(31) =) 7 »d5 -W(fi, 5, M)
Py YiayY;

10The equation obtained this way is of smaller degree than ieeobtained by simply substituting the's
with the f;'s in ®1¢. Actually, this latter is proportional to the square®f; .
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where
)\(.23) = Xoxg + A1x1 + Aaxo.

Then®,, is a covariant of degre®and typePols((C3)*). One checks thab4(f) = 0is
an equation for the conic ¢€P?)* dual to the conic of equatiohys(f) = 0 of CP?. Note
that the equation we find this way has lower degree than thebtaned by computing
the comatrix of the matrix ob13(f) (that would have degres2).

Quadrilateral, preimage of the four torsal conic¥he union of the four torsal conics is
also the intersection between the Associated Quadric @ty ®5(f) = 0) and the
Steiner surface. Thus, its preimage is also the preimadeeajtadric.

Substitutey; with f; in ®5, this gives a new covariafit; ; of degrees and typePol, (C?):

(32) ®15(f) (@) = @5 (f)(f ().

The zero locus ofb,5(f) in CP? is the quadrilateral, preimage of the union of the torsal
conics.

6. APPLICATION: EQUATIONS AND INEQUALITIES DEFINING THE TYPES OFSTEINER
SURFACES

We want to recognize the orbits i, that is the orbits of parameterizations of quartic
surfaces (from those of surfaces of smaller degree), andadiscriminate between these
orbits.

We consider the first task. After [Aries et al., 2004] (Prapos 2 and Proposition 5),
there are three cases to rule out. The first case is when thenptarizatiori /] admits a
base pointi(e. the f;’s have a common zero iBP?). The second case corresponds to the
orbit of the parameterization

(33) (z2: 2323 x129).

The Zariski closure of its image is a quadric. The third casthé case when the Zariski
closure of the image of the parametrization is a plane. Assary and sufficient condition
for being in the first case is the identical vanishingbaf f), which translates into a system
of polynomial equations of degrde in the coefficients off. The second case is isolated
by remarking (by mere evaluation on the representative)®ha vanishes identically on
the orbit of (33), and not on the six orbits of parameter@adigiving true quartics. This
gives another system of equations of dedr&eThe third case is detected by the vanishing
of the maximal minors of thé x 6 matrix of the coefficients of th¢;’s. This is a system
of equations of degreé

Now we evaluate the covariants of our collection on the regméatives of the six orbits
in U, and find thatb;, makes possible the discrimination. Let us explain hdw;(f) is a
quadratic form orR3. Let M () be its matrix. Then thaertia of ®14(f) is the following
ordered pair: (number of positive eigenvaluesidf number of negative eigenvalues of
M(f)). The covariance property df;4 can be stated as follows:

(Pralpo fo071)) (A) = det(0) ™ det(p)” (P1a(f)) (A0 07)

Because the powers of the determinants involved in the flarsrare even, the inertia of
®14(f) takes only one value on each orbitBfunderG. As a consequence, it defines a
function oni/. Table 3 shows its values.

It is already an interesting result that the inertia of onadyatic form attached t¢ is
enough to discriminate between the six orbité{in
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Orbit of [f] | inertia of ®14(f) | equations and inequalities
li (0,3) A3 >0NA>0NA; >0
lii (2,1) A3>O/\(A2§O\/A1§O)
liii (1,2) A3 <0
Il (1,1) A3 =0AAy <0
i (0,2) A3 =0A Ay >0
1] (0,1) A3 =A4,=0

TABLE 3. Discrimination between the orbits.

Now, we want to go further and define the orbits by equationlsia@qualities. For this
we introduce the characteristic polynomialdf( f):

(34) det(t- I — M(f)) =+ A1 (f) 12 + Ao (f)t + As(f).

Any condition on the inertia can be translated into equatimd inequalities involving the
coefficients ofA;(f). The formulas obtained are presented in the last column loleTa
3. They are obtained trivially, except those for discrintiimg between inertiag2, 1) and
(0,3), that makes use of Descartes’ law of signs [Basu et al., 2003]

Note thatAs(f) is a non—trivial invariant of degre®t. Thus it should be proportional
to A. One finds (by evaluation on the representative of OrbitHgttthe coefficient of
proportionality is positive. Thus in the sign condition®ab, we are allowed to substitute
Asz with A.

CONCLUSION

In this paper, we have produced a collection of covariantgjémdratic parameteriza-
tions of surfaces. We were guided by the geometry of the &tainrface. In future work,
we wish to tackle the problem in a more systematic way: eiplpimethods from Invari-
ant Theory, we will try to produce systems of generatorsiierdovariants; or at least to
describe all the covariants of low degree.
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