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ABSTRACT. A Steiner surface is the generic case of a quadratically parameterizable quar-
tic surface used in geometric modeling. This paper studies quadratic parameterizations of
surfaces under the angle of Classical Invariant Theory. Precisely, it exhibits a collection
of covariants associated to projective quadratic parameterizations of surfaces, under the
actions of linear reparameterization and linear transformations of the target space. Each of
these covariants comes with a simple geometric interpretation.

As an application, some of these covariants are used to produce explicit equations
and inequalities defining the orbits of projective quadratic parameterizations of quartic
surfaces.

1. INTRODUCTION

This paper deals with quadratically parameterizable quartic surfaces ofR3, that is sur-
faces of degree4 admitting a parameterization of the form:

(1)
R

2 −→ R
3

(x1, x2) 7−→

(

F1(x1,x2)
F0(x1,x2)

,
F2(x1,x2)
F0(x1,x2)

,
F3(x1,x2)
F0(x1,x2)

)

where theFi are polynomial functions of degree at most2. For genericFi’s, the parame-
terized surface obtained is called aSteiner surface, see section 2 for the precise definition.

Our general motivation for the study of Steiner surfaces is the following. Two of us
(Franck Aries and Claude Bruchou) are interested in mathematical modeling of vegetation
canopies (see [España et al., 1999] for more details). The detailed description of the archi-
tecture of vegetation canopies is critical for the modelingof many agricultural processes :
the photosynthesis, the propagation of diseases from one organ to another or the radiative
transfer. These processes involve a big amount of computations on geometric objects as-
sociated to each plant organ. Each geometric object can be approximated by a set of plane
triangles, or more complex patches like bicubic. As underlined in several papers of geo-
metric modeling ([Sederberg and Chen, 1995] [Coffman et al., 1996], [Aries et al., 2004]),
Steiner patches are a possibly good compromise between triangles, which need to be very
many for a good accuracy, and the eighteen degree surfaces associated to the bicubic pa-
rameterization, which raise problems of complexity. Unfortunately, one may meet singular,
or close to singular parameterizations, that make computations unreliable. Thus one needs
to know as much as possible about the geometry of the space of quadratic parameteriza-
tions.

The study of quadratic parameterizations is eased by considering, instead of the affine
setting, the projective setting. This means considering the projective quadratic parameter-
izations of surfaces, that is the quadratic rational maps from the real projective planeRP

2
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to the real projective spaceRP
3. These maps are those of the form:

(2)
Ω ⊂ RP

2
−→ RP

3

(x0 : x1 : x2) 7−→ (f0 : f1 : f2 : f3) .

where thefi’s are quadratic forms inx0, x1, x2 andΩ is a non–empty Zariski open subset
of RP

2.
The main topic of the present paper is the Invariant Theory ofprojective quadratic pa-

rameterizations under linear changes of coordinates ofRP
2 andRP

3. Precisely, we provide
a collection of covariants with simple geometric interpretation.

Let us give a motivating problem: the discrimination between the different kinds of
quadratic parameterizations of quartic surfaces. Let us make this precise. Consider a
quadratic map as in (2). Its image inRP

3 is not, in general, Zariski–closed. Consider
its Zariski closure, it is an algebraic surface of degree at most 4. Let U be the set of
those maps for which it is a quartic,i.e. it has degree exactly4. Two elements ofU
are consideredequivalentif one is obtained from the other by a linear reparameterization
(linear change of coordinates in the domainRP

2) and a projective transformation of the
ambient space (linear change of coordinates in the codomainRP

3). Then, as it is shown
in [Coffman et al., 1996] and [Degen, 1996], there are finitely many equivalence classes
in U . The problem is to discriminate between these equivalence classes. Algorithmic
solutions to this problem have been given in [Coffman et al.,1996] and [Aries et al., 2004].
Our paper proposes a new solution. It consists simply in providing polynomial equations
and inequalities defining the equivalence classes1. The equivalence classes are actually
orbits under the action of some group. Thus it is natural to look for the equations and
inequalities among the objects provided by Classical Invariant Theory: the covariants.
Then, the aforementioned problem of discrimination between orbits of parameterizations
is solved as an application, by picking in our toolbox of covariants the most adapted ones.

The sequel of the paper is organized as follows: Section 2 recalls known facts about the
classification of quadratic parameterizations of surfaces; Section 3 provides preliminar-
ies on Classical Invariant Theory; Section 4 presents some geometrical features of Steiner
surfaces, that will be helpful to present our collection of covariants; these covariants are
introduced in Section 5; the last section, Section 6, presents the application of these co-
variants to the discrimination of classes of parameterizations.

2. ORBITS OF QUADRATIC PARAMETERIZATIONS OF QUARTICS

A quadratic rational map fromRP
2 to RP

3 is determined by a homogeneous quadratic
mapf fromR3 to R4, that can be presented as a family of four real ternary quadratic forms:

(3) f = (f0(x0, x1, x2), f1(x0, x1, x2), f2(x0, x1, x2), f3(x0, x1, x2)) .

Denote withF the space of all the quadruples of real ternary quadratic forms. Then, more
precisely, quadratic rational maps fromRP

2 to RP
3 can be identified with the elements of

F consideredmoduloscalar multiplication,i.e. the projective spaceP(F). Forf ∈ F , we
will denote with[f ] the corresponding element ofP(F).

1Here is an example where the methods of [Coffman et al., 1996]and [Aries et al., 2004] are not directly
applicable: suppose we are given a family of parameterizations, depending on a parametert. Then, by mere
specialization of the general equations and inequalities defining the classes, we are able to determine which
values oft give a parameterization in a given equivalence class.
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Now the groupGL(3, R) acts naturally onR3 (andRP
2), and thus onF (andP(F)).

The action onF is as follows: forθ ∈ GL(3, R),

(4) θ(f) = f ◦ θ−1.

The induced action onP(F) corresponds to linear reparameterizations. There is also a
natural action of the groupGL(4, R) on R4 (andRP

3), and thus onF (andP(F)): for
ρ ∈ GL(4, R),

(5) ρ(f) = ρ ◦ f.

We have thus an action ofGL(3, R) × GL(4, R) onF (andP(F)). In the sequel, we will
denote this group withG.

In P(F), the subsetU of those projective parameterizations with the property that the
Zariski closure of their image2 is a surface of degree4 exactly, is invariant underG. It
is also a Zariski dense open set. As said in the introduction,the decomposition ofU into
orbits is known3; see [Coffman et al., 1996], [Degen, 1996] and [Aries et al.,2004]. There
are only six orbits. Table 1 provides the list of the orbits, with a representative for each.

Orbit Representative
Ii

(

2 x1x2 : 2 x0x2 : 2 x0x1 : x0
2 + x1

2 + x2
2

)

Iii
(

2 x1x2 : 2 x0x2 : 2 x0x1 : x0
2 − x2

1 + x2
2

)

Iiii
(

x0
2 + x2

1 : x2
1 + x2

2 : x0x2 : x1x2

)

IIi
(

x0
2 − x2

1 : x0x1 : x1x2 : x2
2

)

IIii
(

x0x2 − x1x2 : x0
2 : x2

1 : x2
2

)

III
(

x0
2 : x0x2 − x2

1 : x1x2 : x2
2

)

TABLE 1. Orbits of quadratic parameterizations of quartic surfaces.

Let us say a word about the connection between this problem and the analogous problem
in the complex setting. Denote withFC the complexification ofF : that is the space of
families of four complex quadratic forms. ThenP(FC) represents the space of quadratic
rational maps from the complex projective plane,CP

2 to the complex projective three–
dimensional space,CP

3. Let UC be the subset of those parameterizations whose image is
a quartic surface. ThenU is the trace ofUC onP(F). This means thatU = UC ∩ P(F).

Let GC = GL(3, C) × GL(4, C). This group acts naturally onFC andP(FC), and
also onUC. The classification of the orbits ofP(F) underG is obtained by refining the
classification ofP(FC) into orbits underGC (see [Apery, 1987] for a modern reference
about this classification in the complex setting). Precisely: if O is an orbit inP(FC) under
GC, then its trace (intersection withP(F)) is a union of orbits underG. For instance,UC

decomposes in three orbits: IC, IIC and IIIC, and their respective traces onU are Ii∪Iii ∪Iiii,
IIi ∪ IIii, and III.

It happens that there is one dense orbit inP(FC): that is Orbit IC. Then acomplex
Steiner surfaceis just the image inCP

3 of a parameterization in this orbit4. It is always a
Zariski closed quartic surface. By extension, the name “Steiner surface” is sometimes used

2We consider the set–theoretical image, and rule out the cases when the Zariski closure of the image is a
double quadric (case 7 in Proposition 5 of [Aries et al., 2004]) or a plane counted four times.

3The determination of the orbits outsideU is a different problem. See the references in [Coffman et al., 1996].
4One could, following some sources in the literature, refer to surfaces in Orbits IIC and IIIC as “degenerate”

Steiner surfaces, but we will use the term Steiner surface only for the non–degenerate case,i.e. only for the
elements of Orbit IC.
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for the set of its real points5; that is a real quartic surface, Zariski closure of the imageof a
parameterization in Orbit Ii, Iii or Iiii.

3. PRELIMINARIES ON CLASSICAL INVARIANT THEORY

The objects we will introduce in Section 5 arepolynomial covariantsfor the action ofG
onF . We wish now to recall the general definition (we point out [Kraft and Procesi, 1996]
and [Popov and Vinberg, 1994] as modern references for Classical Invariant Theory).

Let G be a group (we will apply what follows forG = G), and letW be some finite-
dimensionalG–module, that is: a vector space on whichG acts linearly (we will have
W = F ). Let V be another finite-dimensionalG–module. Apolynomial covariant6 of W
of typeV is a polynomial mapC from W to V , equivariant with respect toG. This means
that:

(6) C(g(w)) = g(C(w)) ∀w ∈ W, ∀g ∈ G.

This includes the (relative) invariants, which are the polynomial functionsI on W such
that for allg ∈ G, there exists some scalarc(g) such that:

(7) I(g(w)) = c(g) · I(w) ∀w ∈ W.

For G = G acting onW = F , a polynomial covariant for the action ofG on F is a
polynomial map fromF to someG–module such that

(8) C(ρ ◦ f ◦ θ−1) = (ρ, θ) (C(f))

for all θ ∈ GL(3, R) and allρ ∈ GL(4, R).
Note that the zero set of any covariant is aG–invariant set, that is a union of orbits.
We finish this section with some remarks. The covariants forF underG are essentially

the same as those ofFC underGC: the former are obtained by complexification of the
latter7. From a classical theorem of Invariant Theory (see [Popov and Vinberg, 1994]), we
know that the homogeneous covariants separate the orbits ofP (FC) underGC: this means
that for any two orbitsO1 andO2, there exists some homogeneous covariant vanishing on
O1 and not onO2, orvice–versa. On the contrary, there is no guarantee in advance that we
can separate the orbits ofP(F) underG using equations and inequalities involving only
the covariants. We will be able to do it in Section 6 by using some derived objects.

4. SOME ELEMENTS OF GEOMETRY OF THESTEINER SURFACE

To each of the covariants we will introduce is attached a simple geometric object asso-
ciated to the quadratic parameterizations of the complex Steiner surface. This is, actually,
what will guide us in the construction of the covariants.

We now introduce the main features of the Steiner surface (they can be found in [Salmon, 1915],
parag. 554a). Forf ∈ F , denote withS(f) the associated complex Steiner surface, that is
the image ofCP

2 under[f ]. Then:

• It is a quartic (its implicit equation has degree4).
• Its singular locus is the union of three lines, that are double lines. They are con-

current: their intersection is the unique triple point of the Steiner surface.

5NeverthelessSteiner’s Roman surfaceproperly said corresponds to the Zariski closure of the image of a
parameterization in Orbit Ii; see [Coffman et al., 1996].

6This is the modern meaning forcovariant, which includes the classical notions of covariants, contravariants
and mixed concomitants.

7For such issues of field of definition, see [Kraft and Procesi,1996].
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• The intersection ofS(f) with a tangent plane is a quartic curve that either decom-
poses as the union of two conics intersecting at four points,or as a double conic.
The latter situation happens only for four tangent planes, that Salmon callstropes.
In the former situation, one of the four intersection pointsis the point of tangency;
the three remaining points are the intersections of the plane with each of three
double lines.

• Each trope is tangent to the Steiner surface along a conic, called a torsal conic8.
There are thus four torsal conics.

• There is a unique quadric going through the four torsal conics. Let us call itthe
Associated Quadric.

• The dual (or “reciprocal”) surface toS(f) (the surface of(CP
3)∗ that is the Zariski

closure of the set of all tangent planes toS(f)) is a cubic surface, known as the
Cayley Cubic Surface(see [Salmon, 1915]).

Also of interest are some facts connected to the quadratic parameterization[f ] (rather than
to the Steiner surfaceS(f) itself):

• It is defined on the wholeCP
2.

• The direct image of each line ofCP
2 is a conic onS(f).

• The preimage of each conic drawn onS(f) is a straight line ofCP
2. As a conse-

quence, the preimage of any tangent plane is a pair of lines. The lines are distinct,
unless the plane is a trope.

• The four lines obtained as preimages of the four tropes (equivalently: of the tor-
sal conics; yet equivalently: of the Associated Quadric) form a non–degenerate
quadrilateral.

• The preimage of each of the singular lines ofS(f) is a straight line ofCP
2. The3

lines obtained this way are non concurrent: they form a (non–degenerate) triangle,
that we call theExceptional Triangle.

• The preimage of the triple point is the union of the vertices of the Exceptional
Triangle.

• The parameterization is faithful (i.e. generically injective). Precisely, it is injective
on the complement of the Exceptional Triangle inCP

2.

5. A COLLECTION OF COVARIANTS

5.1. Preliminaries. This section presents the new contribution of the paper: a collection
of homogeneous covariants for the action ofG onF , with a simple geometric interpretation
for each of them.

Let us start with some notations. Denote the canonical basisof C3 with λ0, λ1, λ2 and
its dual basis withx0, x1, x2. Denote also the canonical basis ofC4 with α0, α1, α2, α3

and its dual basis withy0, y1, y2, y3. Given two complex vector spacesW andV , denote
with Poln(W, V ) the space of homogeneous polynomial maps fromW to V of degreen.
Denote alsoPoln(W ) the space of polynomial homogeneous functions of degreen over
W . Otherwise stated,

(9) Poln(W ) = Poln(W, C).

Forf = (f0, f1, f2, f3) ∈ F , denote the coefficients offi with aij andbij , as follows:

(10) fi = ai0 x2
0 + ai1 x2

1 + ai2 x2
2 + 2 bi0 x1 x2 + 2 bi1 x0 x2 + 2 bi2 x0 x1.

8This is called aparabolicconic in [Coffman et al., 1996].
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Each of the homogeneous covariants we will present, considered up to a scalar, repre-
sents some geometric object associated to the parameterization [f ], according to its type
(its space of values9). Note that the definition of this geometric object will be valid only in
the case when[f ] parameterizes a Steiner surface.

We will meet covariants of the following types:

• Type Poln(C4): such a covariantC associates to[f ] a surface inCP
3 (the zero

locus ofC(f)).
• TypePoln(C3): such a covariant associates to[f ] a curve inCP

2.
• TypePoln((C4)∗): such a covariant associates to[f ] a surface in(CP

3)∗. If this
surface is decomposable, that is a union of hyperplanes of(CP

3)∗, then it also
represents a finite collection of points inCP

3 (the points corresponding to the
hyperplanes by duality).

• Type Poln((C3)∗): such a covariant associates to[f ] a curve in(CP
2)∗. If this

curve is decomposable, then it also represents a finite collection of points inCP
2.

• Type some space of functionsPoln(W, V ) between spacesW , V amongC3, C4

and their duals. Then the covariant associates to[f ] some family of curves or
surfaces inP(V )∗ parameterized byP(W ).

• TypeC: such a homogeneous covariant is just an invariant for the groupSL(3, C)×
SL(4, C). We will see that there is essentially only one invariant.

The geometric objects attached to some of the covariants we will present will be clear from
their construction; for the rest, they can be found merely byevaluating the covariant on the
representative of Orbit IC:

(11)
(

2 x1x2 : 2 x0x2 : 2 x0x1 : x0
2 + x1

2 + x2
2

)

.

Table 2 recapitulates the list of covariants that will be nowpresented individually. The
reader will findMaple procedures implementing the formulas that follow on the webpage:
http://emmanuel.jean.briand.free.fr/publications/steiner/

5.2. Derivation of the covariants. Here we suppose that[f ] is in IC, that is its image
S(f) in CP

3 is a complex Steiner surface.
For each covariant we indicate its type, and its degree with respect to the coefficients of

thefi’s.

Tangent plane at the image of a point.Given a generic point[x] in the parameter space
CP

2, we can consider the tangent plane to the Steiner surfaceS(f) at its image by[f ]. It
has equationΦ1(f)(x) = 0, where

(12) Φ1 =
1

8

∣

∣

∣

∣

∣

∣

∣

∣

∂0f0 ∂1f0 ∂2f0 y0

∂0f1 ∂1f1 ∂2f1 y1

∂0f2 ∂1f2 ∂2f2 y2

∂0f3 ∂1f3 ∂2f3 y3

∣

∣

∣

∣

∣

∣

∣

∣

.

Here∂i stands for∂
dxi

.
This covariantΦ1 has degree3 and typePol3(C3, (C4)∗). The geometric object asso-

ciated toΦ1(f) is a parameterization of the dual surface toS(f).

9Strictly speaking, the type should mention also the action of G on this space. In all the cases we will
meet, this action is a canonical action ofG on the space, or its product by some powers of the determinants of
θ ∈ GL(3, R) andρ ∈ GL(4, R). These powers are easily determined from the degree of the covariant.
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Symbol Name Degree Type
Invariants C

∆ Discriminant 24 C

Families of objects
Φ1 Tangent plane at the image of a point 3 Pol3(C3, (C4)∗)
Φ2 Linear plane spanned by the image of a line 3 Pol3((C3)∗, (C4)∗)
Φ3 Correspondence line–line 4 Pol2((C3)∗, (C3)∗)
Φ6 Preimage of a point onS(f) 10 Pol2(C4, C3)

Associated surfaces in CP
3 Poln(C4)

Φ4 Implicit Equation 12 n = 4
Φ5 Associated Quadric 6 n = 2
Φ9 Union of the Tropes 12 n = 4
Φ10 Trihedron defined by the Double Lines 21 n = 3
Φ12 Polar PlaneΠ of the Associated Quadric and the Triple

Point
15 n = 1

Associated surfaces in (CP
3)∗ Poln((C4)∗)

Φ7 Dual surface 3 n = 3
Φ8 Triple Point 9 n = 1

Associated curves in CP
2 Poln(C3)

Φ11 Exceptional Triangle 12 n = 3
Φ13 Conic preimage ofΠ 16 n = 2
Φ15 Quadrilateral preimage of the torsal conics 8 n = 4

Associated surfaces of (CP
2)∗ Poln((C3)∗)

Φ14 Dual conic to the preimage ofΠ 8 n = 2

TABLE 2. List of the covariants presented in the paper.

Plane spanned by the image of a line.Consider a generic lineL in CP
2, given by an

equation

(13) λ(x) = λ0x0 + λ1x1 + λ2x2 = 0.

Its image underf is a conic inCP
3, spanning a plane, that is an element of(CP

3)∗. This
plane is always a tangent plane toS(f). It admitsΦ2(f)(λ) = 0 as an equation, with

(14) Φ2 =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a00 a01 a02 2 b00 2 b01 2 b02 y0

a10 a11 a12 2 b10 2 b11 2 b12 y1

a20 a21 a22 2 b20 2 b21 2 b22 y2

a30 a31 a32 2 b30 2 b31 2 b32 y3

λ0 0 0 0 λ2 λ1 0
0 λ1 0 λ2 0 λ0 0
0 0 λ2 λ1 λ0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that the lines of the matrix in the determinant correspond to the equations:

(15)
fi(x) = yi, i = 0, 1, 2, 3,

xjλ(x) = 0, j = 0, 1, 2,

seen as linear inx2
0, x0x1, . . .

This functionΦ2 is a covariant of degree3 of typePol3((C3)∗, (C4)∗). The geometric
object associated toΦ2(f) is a (non–proper) parameterization of the the dual surface to
S(f).
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Line whose image spans the same plane.As already mentioned, any section ofS(f) by
some of its tangent planes is a union of two conics. The preimage of each is a straight line
in CP

2.
Thus we have the following construction: take a generic lineL drawn inCP

2, consider
its image inCP

3, this is a conic spanning a tangent plane. The preimage of this plane is
made of the original lineL, plus another one,L′. The mapL 7→ L′ is given by a covariant
Φ3 of typePol2((C3)∗, (C3)∗). This covariant is defined by the formula

(16) Φ3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a00 a01 a02 2 b00 2 b01 2 b02 0
a10 a11 a12 2 b10 2 b11 2 b12 0
a20 a21 a22 2 b20 2 b21 2 b22 0
a30 a31 a32 2 b30 2 b31 2 b32 0
λ0 0 0 0 λ2 λ1 x0

0 λ1 0 λ2 0 λ0 x1

0 0 λ2 λ1 λ0 0 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It has degree4.

Implicit equation.The implicit equation ofS(f) can be obtained as follows. Consider
Φ1(f) as a cubic polynomial inx:

(17)
Φ1 = `300(y)x3

0 + `030(y)x3
1 + `003(y)x3

2 + 3 `210(y)x2
0x1 + 3 `201(y)x2

0x2

+3 `120(y)x2
1x0 + 3 `021(y)x2

1x2 + 3 `102(y)x2
2x0 + 3 `012(y)x2

2x1

+ 6`111(y)x0x1x2.

Here the coefficients̀ijk are linear forms iny, depending polynomially onf . Set

(18) Φ4 = 63

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a00 a01 a02 b00 b01 b02 y0

a10 a11 a12 b10 b11 b12 y1

a20 a21 a22 b20 b21 b22 y2

a30 a31 a32 b30 b31 b32 y3

`300 `120 `102 `111 `201 `210 0
`210 `030 `012 `021 `111 `120 0
`201 `021 `003 `012 `102 `111 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

ThenΦ4(f) is an implicit equation ofS(f). And Φ4 is also a covariant. it has degree
12 and typePol4(C4). The attached geometric object is its zero locus, that is merely the
surface itself.

This covariant has another property: it vanishes if and onlyif the parameterization
admits a base point (this means that thefi’s have a common zero inCP

2; thus it is revealed
to be a resultant).

Formula (18) has been proposed in [Aries and Senoussi, 1997]. See [Brill, 1872], [Jouanolou, 1996],
[Aries and Senoussi, 2001] for formulas close to this one, and proofs.

Associated Quadric.One produces a new covariant by the followingcontraction (see
[Kraft and Procesi, 1996]) ofΦ1 andΦ2:

(19) Φ5 =
1

6

∑

i,j,k

∂3Φ1

dxi dxj dxk

∂3Φ2

dλi dλj dλk

.

It has degree6 and typePol2(C4). One finds (by evaluation on the representative of the
dense orbit) thatΦ5(f) = 0 is an equation for the Associated Quadric.
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Preimage of a point of the Steiner surface.The map[f ] from CP
2 to CP

3 induced byf is
birational onto its imageS(f): its inverse is induced by the rational map[Φ6(f)] : CP

3
→

CP
2 where

(20) Φ6 = 63

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a00 a01 a02 b00 b01 b02 0
a10 a11 a12 b10 b11 b12 0
a20 a21 a22 b20 b21 b22 0
a30 a31 a32 b30 b31 b32 0
`300 `120 `102 `111 `201 `210 λ0

`210 `030 `012 `021 `111 `120 λ1

`201 `021 `003 `012 `102 `111 λ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This is a covariant of degree10 and typePol2(C4, C3).

The dual surface.Consider the quadratic formα0f0 + · · ·+α3f3 and take its discriminant
(that is the determinant of its matrix):

(21) Φ7 = Disc (α0f0 + α1f1 + α2f2 + α3f3) .

The object obtained this way,Φ7, is a covariant. It has degree3 and typePol3((C4)∗). The
zero locus ofΦ7(f) is the dual surface toS(f).

Triple point. A covariant of degree9 and typeC4 ∼= Pol1((C4)∗) is produced by contrac-
tion of Φ7 andΦ5:

(22) Φ8 =
∑

i,j

∂2Φ5

dyi dyj

∂2Φ7

dαi dαj

.

Write

(23) Φ8(f) = τ0α0 + τ1α1 + τ2α2 + τ3α3.

Then the associated geometric object is a point(τ0 : τ1 : τ2 : τ3) of CP
3. One checks that

this is exactly the triple point ofS(f).

Discriminant. By evaluatingΦ5(f), the equation of the Associated Quadric, atΦ8(f), the
Triple Point, one gets a scalar:

(24) ∆(f) = Φ5(f)(Φ8(f)).

This object∆ is a homogeneous covariant of degree24 and typeC. Otherwise stated, this
is a homogeneous invariant forSL(3, C) × SL(4, C). One checks by direct computation
that it is irreducible. From this and the existence of a denseorbit, it is not difficult to
deduce that∆ is essentially the only invariant. This means that∆ generates the algebra of
the invariants underSL(3, C) × SL(4, C).

Union of the tropes.Set

(25) Φ9 = Φ4 + Φ2
5.

This is a covariant of degree12 and typePol4(C4), and thusΦ9(f) represents some quartic
surface inCP

3. One checks that this surface is the union of the four tropes.
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Trihedron of the double lines.Remember the classical notion of polar: given an hypersur-
face of degreed > 1 given by an equationF (z0, . . . , zr) = 0 and a point(Z0 : · · · : Zr),
the polar of the hypersurface and the point is the hypersurface of degreed − 1 defined by
the equation

(26)
∑

i

Zi

∂F

dzi

= 0.

Then the polar ofS(f) and the triple pointτ(f) has equationϕ5(f) = 0, where

(27) Φ10 =

3
∑

i=0

τi(f)
∂Φ4

dyi

.

(Theτi’s are defined in Equation (23).) This way we get a covariant ofdegree21 with type
Pol3(C4). One checks that its zero locus inCP

3 is a union of three planes: they are the
faces of the trihedron drawn by the singular lines ofS(f).

Exceptional Triangle.Consider the discriminant ofΦ3, quadratic form on(C3)∗:

(28) Φ11 =
1

8

∣

∣

∣

∣

∣

∣

∣

∣

∂2Φ3

dλ2

0

∂2Φ3

dλ0λ1

∂2Φ3

dλ0λ2

∂2Φ3

dλ0λ1

∂2Φ3

dλ2

1

∂2Φ3

dλ1λ2

∂2Φ3

dλ0λ2

∂2Φ3

dλ1λ2

∂2Φ3

dλ2

2

∣

∣

∣

∣

∣

∣

∣

∣

.

This is a covariant of degree12 and typePol3(C3). The zero locus ofΦ11(f) in CP
2 is

the Exceptional Triangle10.

Polar planeΠ of the Associated Quadric and the Triple Point.The polar surface of the
Associated Quadric and the Triple Point is a plane, call itΠ. It has equationΦ12(f) = 0,
where

(29) Φ12 =

3
∑

i=0

τi

∂Φ5

dyi

.

This is a covariant of degree15 and type(C4)∗ = Pol1(C4).

Conic, preimage ofΠ. By merely substitutingyi with fi(x) in Φ12, one finds a new co-
variantΦ13:

(30) Φ13(f)(x) = Φ12(f)(f(x)).

The covariantΦ13 has degree16 and typePol2(C3). Naturally,Φ13(f) = 0 is the equation
of the conic that is the preimage by[f ] of the section ofS(f) by Π(f).

Dual conic to the preimage ofΠ. In [Salmon, 1884], parag. 377 is shown a covariant
Ψ(q1, q2, λ) of forms onC3 (q1 andq2 quadratic,λ linear), whose vanishing is a necessary
and sufficient condition for the traces of the conics of equationsq1(x) = 0 andq2(x) = 0
on the line of equationλ(x) = 0 to be a harmonic system of points.

Set

(31) Φ14 =
∑

i,j

∂Φ5

dyidyj

Ψ(fi, fj , λ)

10The equation obtained this way is of smaller degree than the one obtained by simply substituting theyi’s
with thefi’s in Φ10. Actually, this latter is proportional to the square ofΦ11.
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where
λ(x) = λ0x0 + λ1x1 + λ2x2.

ThenΦ14 is a covariant of degree8 and typePol2((C3)∗). One checks thatΦ14(f) = 0 is
an equation for the conic of(CP

2)∗ dual to the conic of equationΦ13(f) = 0 of CP
2. Note

that the equation we find this way has lower degree than the oneobtained by computing
the comatrix of the matrix ofΦ13(f) (that would have degree32).

Quadrilateral, preimage of the four torsal conics.The union of the four torsal conics is
also the intersection between the Associated Quadric (defined by Φ5(f) = 0) and the
Steiner surface. Thus, its preimage is also the preimage of the quadric.

Substituteyi with fi in Φ5, this gives a new covariantΦ15 of degree8 and typePol4(C3):

(32) Φ15(f)(x) = Φ5(f)(f(x)).

The zero locus ofΦ15(f) in CP
2 is the quadrilateral, preimage of the union of the torsal

conics.

6. APPLICATION: EQUATIONS AND INEQUALITIES DEFINING THE TYPES OFSTEINER

SURFACES

We want to recognize the orbits inU , that is the orbits of parameterizations of quartic
surfaces (from those of surfaces of smaller degree), and next to discriminate between these
orbits.

We consider the first task. After [Aries et al., 2004] (Proposition 2 and Proposition 5),
there are three cases to rule out. The first case is when the parameterization[f ] admits a
base point (i.e. thefi’s have a common zero inCP

2). The second case corresponds to the
orbit of the parameterization

(33) (x2
0 : x2

1 : x2
2 : x1x2).

The Zariski closure of its image is a quadric. The third case is the case when the Zariski
closure of the image of the parametrization is a plane. A necessary and sufficient condition
for being in the first case is the identical vanishing ofΦ4(f), which translates into a system
of polynomial equations of degree12 in the coefficients off . The second case is isolated
by remarking (by mere evaluation on the representative) that Φ11 vanishes identically on
the orbit of (33), and not on the six orbits of parameterizations giving true quartics. This
gives another system of equations of degree12. The third case is detected by the vanishing
of the maximal minors of the4 × 6 matrix of the coefficients of thefi’s. This is a system
of equations of degree4.

Now we evaluate the covariants of our collection on the representatives of the six orbits
in U , and find thatΦ14 makes possible the discrimination. Let us explain how:Φ14(f) is a
quadratic form onR3. LetM(f) be its matrix. Then theinertia of Φ14(f) is the following
ordered pair: (number of positive eigenvalues ofM , number of negative eigenvalues of
M(f)). The covariance property ofΦ14 can be stated as follows:

(

Φ14(ρ ◦ f ◦ θ−1)
)

(λ) = det(θ)−6 det(ρ)2 (Φ14(f)) (λ ◦ θ−1)

Because the powers of the determinants involved in the formulas are even, the inertia of
Φ14(f) takes only one value on each orbit ofF underG. As a consequence, it defines a
function onU . Table 3 shows its values.

It is already an interesting result that the inertia of one quadratic form attached tof is
enough to discriminate between the six orbits inU .
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Orbit of [f ] inertia ofΦ14(f) equations and inequalities
Ii (0, 3) A3 > 0 ∧ A2 > 0 ∧ A1 > 0
Iii (2, 1) A3 > 0 ∧ (A2 ≤ 0 ∨ A1 ≤ 0)
Iiii (1, 2) A3 < 0
IIi (1, 1) A3 = 0 ∧ A2 < 0
IIii (0, 2) A3 = 0 ∧ A2 > 0
III (0, 1) A3 = A2 = 0

TABLE 3. Discrimination between the orbits.

Now, we want to go further and define the orbits by equations and inequalities. For this
we introduce the characteristic polynomial ofM(f):

(34) det(t · I − M(f)) = t3 + A1(f) t2 + A2(f)t + A3(f).

Any condition on the inertia can be translated into equations and inequalities involving the
coefficients ofAi(f). The formulas obtained are presented in the last column of Table
3. They are obtained trivially, except those for discriminating between inertias(2, 1) and
(0, 3), that makes use of Descartes’ law of signs [Basu et al., 2003].

Note thatA3(f) is a non–trivial invariant of degree24. Thus it should be proportional
to ∆. One finds (by evaluation on the representative of Orbit Ii) that the coefficient of
proportionality is positive. Thus in the sign conditions above, we are allowed to substitute
A3 with ∆.

CONCLUSION

In this paper, we have produced a collection of covariants for quadratic parameteriza-
tions of surfaces. We were guided by the geometry of the Steiner surface. In future work,
we wish to tackle the problem in a more systematic way: exploiting methods from Invari-
ant Theory, we will try to produce systems of generators for the covariants; or at least to
describe all the covariants of low degree.
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