
New hard benchmark for the 2-stage multi-machine
assembly scheduling problem: Design and

computational evaluation

February 5, 2021

Abstract

The assembly scheduling problem is a common layout with many applications in
real manufacturing scenarios. Despite the high number of studies dealing with this
problem, no benchmark has been proposed up-to-now in the literature generating
neither hard nor balanced instances. In this paper we present two extensive sets of
instances for two variants of the 2-stage assembly scheduling problem. The first set
is composed of 240 instances for the variant with one assembly machine in the second
stage, while in the second set 960 instances are proposed for the variant with several
assembly machines. An exhaustive experimental procedure, generating several pre-
liminary testbeds with different processing times and number of jobs and machines,
is carried out in order to identify the most representative instances of the problem
under study. A total of 120,000 instances are generated and, among them, 1,200
are selected ensuring that the new benchmarks satisfy the desired characteristics of
any benchmark: adequacy, empirical hardness, exhaustiveness, and amenity for sta-
tistical analysis. Finally, two computational evaluations are performed comparing
and evaluating the existing heuristics in the literature, thus establishing the set of
efficient heuristics for this assembly problem.

Keywords: scheduling, assembly, benchmark, testbed, instances generator, total
completion time

1

1 Introduction

Assembly scheduling problems have many applications in the industry (Sheikh et al., 2018),

since many products are made up of different components that need to be manufactured in the

earlier stages and then assembled in a later stage. Some examples of applications are: personal

computer manufacturing (Potts et al., 1995), fire engine assembly plants (Lee et al., 1993),

circuit board production (Cheng and Wang, 1999), food and fertilizer production (Hwang and

Lin, 2012), car assembly industry (Fattahi et al., 2013), motor assembly industry (Liao et al.,

2015), or plastic industry (Allahverdi and Aydilek, 2015). Other examples can also be found in

services/IT, including distributed database systems (Allahverdi and Al-Anzi, 2006; Al-Anzi and

Allahverdi, 2006b, 2007), or multi-page invoice printing systems (Zhang et al., 2010).

Among the different assembly scheduling problems, in this paper we focus on the so-called

2-stage assembly scheduling problem. This problem consists of m1 (m1 > 1, fixed) dedicated

parallel machines (DPm1
1) in the first stage (to manufacture the components) and m2 (m2 ≥ 1,

fixed) assembly machines in the second stage. The objective considered is the minimization of

the total completion time. The variant with one assembly machine (labelled as SA or Single

Assembly in the following) is denoted as DPm1 → 1||
∑
Cj by Framinan et al. (2019), and is

equivalent to the regular two-machine flow-shop scheduling problem if there is only one machine

in the first stage. Since the F2||
∑
Cj problem is strongly NP-hard (Garey et al., 1976), our

problem is also NP-hard. The variant with several identical parallel machines in the last stage

is denoted as DPm1 → Pm2||
∑
Cj , and is referred as MA (from Multi machine Assembly) in

the following. Obviously, this problem is also strongly NP-hard (Garey et al., 1976).

Despite the considerable number of papers published so far proposing constructive and im-

provement heuristics to solve both variants (for more details see the reviews by Hwang and Lin,

2018; Sheikh et al., 2018; Framinan et al., 2019), the state of the art regarding solution methods

for the problem is unclear. One of the causes might be the lack of a standard and representative

testbed since:

• Every time that a new approximate method for the problem is proposed, it is tested in
1An alternative notation is PDm1, used in Leung et al. (2005) and Roemer (2006).

2

different different sets of instances with different parameters and processing times. There-

fore, it might occur that a method obtains a good performance in a set of instances and

a bad performance in another one. This fact may lead to an unclear knowledge about the

state-of-the-art algorithms for this problem (see Section 4, where some results are different

from those obtained in Talens et al., 2020 where the same heuristics are compared using a

different testbed).

• Since the scheduling problems are very sensitive to the input data of the instance

(Fernandez-Viagas and Framinan, 2015b), in some cases the methodologies adopted to

generate the processing times of the instances do not guarantee that the researchers are

solving their specific problems. More specifically, we will show that there is a strong re-

lationship among the variants under study and the customer order and the traditional

parallel machine problem, among others (see Section 3.1.1 for more details). In other

words, the good performance of some approximate methods might have been established

by solving, in fact, instances of a different (albeit related) scheduling problem. As a conse-

quence, to fulfil this requirement, the procedure to design a new benchmark has to follow a

methodology which ensures the adequacy of the instances to the scheduling problem under

study such as e.g. in Fernandez-Viagas and Framinan (2020).

• The procedures adopted to generate the instances do not ensure that the resulting in-

stances represent the hardest ones. This is an important aspect (see Vallada et al., 2015;

Fernandez-Viagas and Framinan, 2020) since, for a given scheduling problem, using a so-

lution procedure that outperforms others in the hardest instances ensures an excellent

performance of this procedure when applied to easier instances, whereas the opposite does

not have to be true.

This paper is aimed to tackle these issues. More specifically, the contribution is twofold:

First, a computational analysis is performed in order to determine the relationship among our

variants and the related scheduling problems. Then, using this information, we propose two

comprehensive benchmarks for the 2-stage multi-machine scheduling problem with total com-

pletion time criterion (one for each variant considered). Secondly, a computational evaluation

3

is performed in order to compare and evaluate the existing heuristics in the literature in both

considered variants.

The paper is organised as follows: in Section 2 we define the 2-stage assembly scheduling

problem, and review the different sets of instances proposed in the literature; in Section 3 the pro-

cedure to generate the proposed instances is detailed; the computational evaluation of heuristics

is carried out in Section 4; and, finally, Section 5 presents the conclusions of the paper.

2 Background

The problem studied in this paper can be stated as follows: there are n jobs to be scheduled

in a layout composed of two stages. Each job has m1 + 1 operations. In the first stage, there

are m1 dedicated parallel machines, where the first m1 operations are conducted, one in each

machine i, with a processing time given by pij . In the assembly stage there are m2 identical

parallel machines, which execute the last of the m1 + 1 operations, being m2 ≥ 1. Only after the

first m1 operations are completed, the assembly operation may start in a machine of the second

stage with a processing time denoted as atj . The decision problem consists on scheduling the

jobs on each machine so the sum of the completion times of the jobs is minimised.

Regarding the relation with similar scheduling problems, the SA variant is highly connected

to two scheduling problems. On the one hand, it can be considered that the Customer Order

scheduling problem, denoted CO, is tantamount to the one under consideration if the processing

times of the jobs in the assembly stage are zero. Even if this is not the usual case, it could be

interesting to analyse the similarity between both problems if the processing times in the first

stage are much higher than in the assembly stage, as in this case the solution methods for the

CO scheduling problem could potentially be applied to our problem. On the other hand, if the

processing times in the second stage are much higher than those in the first stage, it can be

assumed that SA is similar to the Single Machine scheduling problem, denoted SM. Note that

the two-machine flowshop scheduling problem is a particular case of this problem if m1 = 1. As

with SA, depending on the influence of the processing times on each stage, the MA variant is

connected to the CO scheduling problem, or to the Parallel Machine scheduling problem, denoted

4

as PM in the following.

Next, we present a literature review for our problem, which is divided into two parts: one

related to the existing solution procedures; and another one related to the sets of instances used

in the literature to test the different proposed methods.

2.1 Heuristics for the considered problems

In this section, we review the literature and analyse the existing solution procedures for the SA

and MA variants under consideration. In addition, we incorporate a review of the CO, SM and

PM problems due to their relation with the variants under study, as discussed previously.

Concerning the SA variant, Tozkapan et al. (2003) prove that there exists an optimal solution

where the jobs are processed in the same sequence for all the machines, and propose two heuristics

to find an upper bound for their branch and bound algorithm. Al-Anzi and Allahverdi (2006a)

derive a number of theoretical properties and propose three simple constructive heuristics based

on the idea of sorting the jobs according to the Shortest Processing Time (SPT) rule, and two

additional constructive heuristics. Framinan and Perez-Gonzalez (2017b) develop a constructive

heuristic which outperforms the previous ones. Finally, Lee (2018) propose six lower bounds,

which are tested in a branch and bound algorithm, and four greedy-type constructive heuristics.

The branch and bound algorithm is compared against the proposal by Tozkapan et al. (2003),

while the heuristics are not contrasted with the previous literature.

Regarding the MA variant, there are some references addressing the assembly scheduling

problem with several machines in the second stage. Sung and Kim (2008) and Al-Anzi and

Allahverdi (2012) consider two identical parallel machines in the second stage. Sung and Kim

(2008) develop an heuristic applying a processing time-based pairwise exchange mechanism, while

in Al-Anzi and Allahverdi (2012), a mathematical model and three metaheuristics are proposed.

Recently, Talens et al. (2020) consider the problem with several identical parallel machines in

the second stage and design two constructive heuristics, which outperforms the previous ones.

Regarding the CO problem (or equivalently the Concurrent Open Shop scheduling problem,

see Wagneur and Sriskandarajah, 1993; Roemer, 2006), which is NP-hard according to Roemer

and Ahmadi (1997) for more than one machine, Sung and Yoon (1998) propose two constructive

5

heuristics based on the SPT rule. The first one schedules the order (equivalent to a job in our

context) with the smallest total processing time across all m machines and the second one selects

the order with the smallest maximum processing time across the m machines. Ahmadi et al.

(2005) characterize the optimal schedule, derive tight lower bounds, and propose several heuris-

tic solutions. Leung et al. (2005) present some optimality properties and propose a constructive

heuristic that selects as the next order to be sequenced the one that would be completed the

earliest, that is, the order with the Earliest Completion Time (ECT). Based on this idea and in-

cluding some look-ahead concepts, Framinan and Perez-Gonzalez (2017a) propose a constructive

heuristic and two specific local search mechanisms for the problem.

With respect to the other related problems, SM can be optimally solved in polynomial time

by the Shortest Processing Time (SPT) rule, as established in Smith (1956), and PM can be

solved in polynomial time (Conway et al., 1967) by the SPT plus ECT rule, as established in

Pinedo (2008). As we will see in Section 4, most of the methods analysed in this section are

re-implemented in this study and a comparison among them is carried out to determine the most

efficient ones.

2.2 Sets of instances in the related literature

In this section, we analyse the sets of instances used in the literature to test the solution meth-

ods applied to the considered problem. We also incorporate in the analysis related scheduling

problems with different constraints, which can be easily adapted to the problem under study.

In Table 2, we summarize the characteristics of the different sets of instances. The table is

organised as follows: the first column indicates the problem for which the set of instances is

designed and the second column indicates the paper in which the set of instances is tested. The

number of instances is shown in the third column and, the number of jobs, n, is considered in

the fourth column. The number of machines in the first stage, m1, and in the second stage, m2,

are shown in the fifth and sixth column, respectively. Finally, the last two columns show the

different distributions adopted to generate the processing times in the first stage, pij , and in the

second stage, atj .

Some observations about the characteristics of the different sets of instances can be made:

6

• Regarding the number of jobs, n, some papers (see Sung and Kim, 2008 and Lee, 2018)

consider a number of jobs smaller than 15, while others (see Leung et al., 2005; Al-Anzi

and Allahverdi, 2006a; Lin et al., 2008) consider a higher number of jobs, being 120, 200

and 500 the maxima, respectively. For the most commonly used testbeds (Al-Anzi and

Allahverdi, 2006a; Allahverdi and Al-Anzi, 2012), the maximum number of jobs considered

are 120 and 70, respectively. There are other cases using higher values of the number of

jobs (e.g. Leung et al., 2005; Blocher and Chhajed, 2008; Shi et al., 2018), but these sets

of instances have been scarcerly used.

• Concerning the number of machines in both stages, there are some papers which consider

only one level of m1, such as Sung and Yoon (1998), Wu et al. (2018) and Sung and Kim

(2008) with m1=2 or Lee (2018) with m1=5. However, the rest of the works consider

different levels of m1. Regarding the SA variant, the most used testbeds are those by Al-

Anzi and Allahverdi (2006a) and Allahverdi and Al-Anzi (2012), where m1 ∈ {2, 4, 6, 8}.

With respect to the number of machines in the second stage, Allahverdi and Al-Anzi (2009)

and Tozkapan et al. (2003) consider one assembly machine. There are also papers which

consider different levels of m2 (see Nejati et al., 2016; Mozdgir et al., 2013).

• Regarding the processing times, some papers (see Leung et al., 2005 or Al-Anzi and Al-

lahverdi, 2006a) follow a uniform distribution U [1, 100] in both stages. Other works (see

Sung and Yoon, 1998; Tozkapan et al., 2003; Sung and Kim, 2008) generate separately

the processing times in different classes (see Table 1) in order to incorporate what the

respective authors consider as dominance between the two stages 2. In Sung and Yoon

(1998), the first class represents the balance between the stages. In the second class, the

workload in the first stage is slightly higher than that in the second stage. Finally, the

third class represents the extremely unbalanced case. Tozkapan et al. (2003) represents

the non-dominance case between the stages in the first class; in the second class the second

stage dominates the first one, while in the third case, the opposite occurs. Sung and Kim

(2008) represents the balance between the stages in the first class and, in the second class,
2In the cited works it can be checked that no study has carried out to ensure that the generated

instances are representative of the different classes.

7

Class 1 Class 2 Class 3

Paper Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Sung and Yoon (1998) U[1,30] U[1,30] U[5,30] U[1,25] U[10,30] U[1,20]
Tozkapan et al. (2003) U[1,100] U[1,100] U[1,80] U[20,100] U[20,100] U[1,80]
Sung and Kim (2008) U[1,20] U[1,20] U[1,15] U[5,20]

Table 1: References with the generation of the processing times in different classes.

the case in which the workload on the second stage is higher than that in the first stage.

• There are some papers proposing two sets of instances with different sizes to test both

exact and approximate methods, e.g. two sets with 900 instances each one are proposed in

Sung and Yoon (1998) or one set with 360 instances and another one with 2,430 instances

are designed in Mozdgir et al. (2013).

After this analysis, some conclusions can be obtained:

• Compared to other testbeds designed for different scheduling problems (see Taillard, 1993;

Vallada et al., 2015; Fernandez-Viagas and Framinan, 2020), the levels of the number of

jobs considered in most testbeds are very small.

• Some sets of instances are not well-suited for a statistical analysis as they do not use the

same number of levels of the parameters (number of machines in both stages) for each

number of jobs (see Mozdgir et al., 2013).

• So far no study has been carried out to ensure that any of the so-generated instances are

representative of the problem under study.

• Since all proposals to solve the problem, approximate and exact algorithms, have been

tested using very different sets of instances, the conclusions obtained may be different

depending on the set used, i.e. the values of the quality of the solutions and computational

effort may become very different depending on the chosen set.

• To the best of our knowledge, no analysis of the hardness of the instances has been carried

out, so the instances generated might be relatively easy to solve.

8

T
ab

le
2:

Se
ts

of
in
st
an

ce
s
ge
ne
ra
te
d
to

so
lv
e
re
la
te
d
pr
ob

le
m
s.

Pr
ob

le
m

A
ut
ho

rs
N
um

be
r
of

in
st
an

ce
s

n
m

1
m

2
p

a
t

C
O

D
P

2
→

0|
|∑ w

j
C

j
Su

ng
an

d
Yo

on
(1
99
8)

90
0

{5
,6
,7
,8
,9
,1

0}
2

0
U

[1
,3

0]
U

[1
,3

0]

90
0

{1
3,

15
,2

0,
30
,4

0,
50
}

U
[5
,3

0]
U

[1
,2

5]
U

[1
0,

30
]

U
[1
,2

0]

D
P

m
→

0|
|∑ C

j
Le

un
g
et

al
.(

20
05
)a

48
0

{2
0,

50
,1

00
,2

00
}
{2
,5
,1

0,
20
}

0
U

[1
,1

00
]

U
[1
,1

00
]

SA

D
P

3
→

1|
le
ar
ni
ng

-e
ffe

ct
|∑ C

j
W
u
et

al
.(

20
18
)

72
00

{8
,1

0,
12
,1

4}
2

1
U

[1
,1

00
]

U
[1
,1

00
]

U
[1
,1

00
]

U
[1
,5

0]
72
00

{3
0,

40
,5

0,
60
}

U
[1
,1

00
]

U
[1
,2

5]

D
P

m
→

1|
|∑ C

j
A
l-A

nz
ia

nd
A
lla

hv
er
di

(2
00
6a
)b

72
0

{2
0,

40
,6

0,
80
,1

00
,1

20
}

{2
,4
,6
,8
}

1
U

[0
,1

00
]

U
[1
,1

00
]

D
P

m
→

1|
|∑ C

j
B
lo
ch
er

an
d
C
hh

aj
ed

(2
00
8)

60
00

{6
,9
,1

2,
15
,1

8}
{2
,4
,6
}

1
c

c

48
00

{2
0,

50
,1

00
,2

00
}

c
c

D
P

m
→

1|
|∑ C

j
A
lla

hv
er
di

an
d
A
l-A

nz
i(
20
12
)d

60
0

{3
0,

40
,5

0,
60
,7

0}
{2
,4
,6
,8
}

1
U

[1
,1

00
]

U
[1
,1

00
]

D
P

m
→

1|
|∑ C

j
Le

e
(2
01
8)

12
0

{6
,8
,1

0,
12
}

5
1

U
[1
,1

00
]

U
[1
,1

00
]

U
[1
,8

0]
U

[2
0,

10
0]

U
[2

0,
10

0]
U

[1
,8

0]

D
P

m
→

1|
S
T

s
i|

∑ C
j

A
lla

hv
er
di

an
d
A
l-A

nz
i(
20
09
)

27
00

{2
0,

30
,4

0,
50
,6

0,
70
}

{3
,6
,9
}

1
U

[1
,1

00
]

U
[1
,1

00
]

D
P

m
→

1|
|∑ w

j
C

j
To

zk
ap

an
et

al
.(
20
03
)

12
0

{1
0,

15
}

{5
,1

0}
1

U
[1
,1

00
]

U
[1
,1

00
]

U
[1
,8

0]
U

[2
0,

10
0]

U
[2

0,
10

0]
U

[1
,8

0]

F
2|
s i

j
|∑ C

j
/n

A
lla

hv
er
di

(2
00
0)

21
0

{1
0,

15
,2

0,
25
,3

0,
35
}

1
1

U
[1
,1

00
]

U
[1
,1

00
]

F
2|
|L
ex

(C
m

a
x
,∑ C

j
)

T
’k
in
dt

et
al
.(

20
02
)

30
0

{5
0,

80
,1

10
,1

40
,1

70
,2

00
}

1
1

U
[1
,1

00
]

U
[1
,1

00
]

20
0

{1
0,

15
,2

0,
25
}

F
2|
p
rm

u
|∑ C

j
Li
n
et

al
.(
20
08
)

30
0

{5
0,

10
0,

20
0,

30
0,

40
0,

50
0}

1
1

U
[1
,1

00
]

U
[1
,1

00
]

M
A

D
P

m
→

2|
|∑ C

j
Su

ng
an

d
K
im

(2
00
8)

60
0

{5
,7
,9
,1

1,
13
}

2
2

U
[1
,2

0]
U

[1
,2

0]
U

[1
,1

5]
U

[5
,2

0]

D
P

m
→
P

m
||B

S
ij
,w

or
k
-s

hi
ft

-l
ot
||

∑ w
j
C

j
N
ej
at
ie

t
al
.(

20
16
)

10
0

{1
0,

15
,2

0,
10

0}
{2
,3
}

{1
,2
,3
}

U
[1
,2

5]
U

[1
,2

5]

D
P

m
→
R

m
||F

l(
C

m
a

x
,∑ C

j
)

M
oz
dg

ir
et

al
.(

20
13
)

36
0

{6
,7
,8
}

{3
,5
,7
}
{2
},
{2
,3
}

U
[1
,1

00
]

U
[1
,1

00
]

24
30

{1
5,

30
,4

5}
{3
,5
,7
}

{2
,3
,4
}

PM

P
m
→

0|
|∑ w

j
C

j
Le

un
g
et

al
.(

20
08
)

16
00

{2
0,

50
,1

00
,2

00
}
{2
,5
,1

0,
20
}

0
U

[0
,1

00
]

U
[0
,1

00
]

P
m
→

0|
|p
-b
at
ch
,i
nc
om

pt
||

∑ w
j
C

j
Sh

ie
t
al
.(

20
18
)

19
20

{2
0,

40
,6

0,
80
,1

00
,2

00
,3

00
,4

00
}

{1
,2
,5
,1

0}
0

U
[3

0,
70

]
U

[3
0,

70
]

a F
or

ex
am

pl
e,

th
is

se
t
of

ist
an

ce
s
is

al
so

us
ed

in
Fr
am

in
an

an
d
Pe

re
z-
G
on

za
le
z
(2
01
7a
).

b F
or

ex
am

pl
e,

th
is

se
t
of

in
st
an

ce
s
is

al
so

us
ed

in
Fr
am

in
an

an
d
Pe

re
z-
G
on

za
le
z
(2
01
7b

).
c T

he
di
st
rib

ut
io
ns

ar
e
ex
pl
ai
ne
d
in

th
e
te
xt
.

d F
or

ex
am

pl
e,

th
is

se
t
of

in
st
an

ce
s
is

al
so

us
ed

in
A
l-A

nz
ia

nd
A
lla

hv
er
di

(2
01
2,

20
13
);
A
lla

hv
er
di

an
d
A
l-A

nz
i(
20
12
).

9

After carrying out this analysis, it is clear that an extensive testbed for each variant of the

problem is relevant, verifying the characteristics that the previous sets of instances do not fulfil.

Therefore, the issues identified previously in Section 1 have to be handled.

3 New benchmarks generation

In the previous sections, the testbeds from the literature have been analysed and some disad-

vantages have been identified. To overcome these issues, we propose two new large benchmarks,

one for the SA variant, and other for the MA variant, which are detailed in this section. Ac-

cording to the works by Hall and Posner (2001), Vallada et al. (2015) and Fernandez-Viagas and

Framinan (2020), the following characteristics of a testbed for scheduling problems are desirable:

• Adequacy: The way in which the processing times in both stages are generated is an

important aspect to comply with the adequacy of the instances. This characteristic is

highly connected to the concept of balance between the stages and, depending on how the

processing times are generated, three scenarios can be distinguished:

1. 1st stage unbalance if the processing times in the first stage are higher than those

in the second stage. It should be studied if the generated instances for SA and MA

in that way can be efficiently solved by methods designed for the CO scheduling

problem, since the assembly times might not greatly influence the total completion

time.

2. 2nd stage unbalance if the processing times in the second stage are higher than those

in the first stage. In this case, it should be studied if the generated instances for SA

and MA in that way can be efficiently solved by methods designed for the SM and

PM scheduling problems, respectively, since the processing times of the dedicated

machines might not greatly influence the total completion time.

3. Balance if the workload in both stages are similar. In this case we can assume that

the instances generated are representative of the two variants under study, SA and

MA.

10

• Exhaustiveness: The benchmarks should include a large number of instances and these

instances should cover different sizes of the parameters of the problem.

• Amenability for statistical analysis: In order to perform suitable statistical tests, all the

levels of all the parameters must be combined and the levels should be equidistant.

• Hardness: The proposed instances have to be hard to be solved by approximate algorithms,

i.e. if two methods can find the optimal solution for most of the instances, the benchmark

will not be interesting since it does not have discriminant power and it could not be used

to compare the methods. This characteristic, together with the exhaustiveness, lead us to

obtain a more discriminant benchmark.

The methodology adopted to select the most suitable instances is explained in Section 3.1.

The experiments needed to apply the methodology are included in Section 3.2.

3.1 Methodology

In this section, the procedure generated to design the new benchmarks and satisfy the previous

characteristics is described. Figure 1 shows the outline of the procedure. Firstly, the adequacy

characteristic is determined by using exact and approximate methods selected from the problem

under consideration and from the related scheduling problems. Sets of small and medium size

preliminary testbeds are solved by these methods, and the solutions are evaluated for SA and

MA. Both sets of instances depend on a parameter α (see Section 3.1.1). Once the most suitable

value for this parameter is established, a large size preliminary testbed is generated to select

the hardest ones to be included in the benchmark of each variant, SA and MA (see Section

3.1.2). This procedure is carried out evaluating the distance between a near optimal solution

(solution obtained by applying an iterated greedy algorithm) and a lower bound of the problem.

The description of the preliminary testbeds and the selection procedure to select the suitable

instances for the final benchmarks, denoted B1 and B2 in Figure 1, are explained in Section 3.1.3.

Finally, after the methodology has been determined, the experimental analysis is carried out in

Section 3.2.

11

The use of a generic representation of the solutions (permutation based) is a key aspect in this

methodology. For each one of the considered variants, the representation of a solution to provide

a schedule is given by: For SA, the same sequence of jobs on all of the machines, including the

assembly machine (Al-Anzi and Allahverdi, 2006a), and, for MA, a sequence on all the dedicated

machines in the first stage and applying the ECT rule to assign the jobs to the assembly machines

(Al-Anzi and Allahverdi, 2012; Talens et al., 2020). Regarding the related problems, for CO, the

solution is given by a permutation of n components (Framinan and Perez-Gonzalez, 2017a); for

SM, the schedule is given by a sequence (Smith, 1956) and, for PM, the solution is given by a

sequence and assigning the jobs to the machines using a dispatching rule (Conway et al., 1967)

as seen in Section 2. As it can be observed, the use of a sequence provides a generic solution for

all the considered scheduling problems.

Exact

methods

Approximate

methods

fixed

Adequacy

Iterated Greedy

algorithm

SA

MA

Hardness

Figure 1: Diagram of the methodology designed to propose the new benchmarks.

3.1.1 Adequacy

In order to guarantee the adequacy of the generated benchmarks for each variant, SA

and MA, the balance between the stages is analysed to determine the relationship among the

problems. As usual in the problem under consideration (see Table 2) and in the scheduling

literature (see Taillard, 1993; Vallada et al., 2015; Fernandez-Viagas and Framinan, 2020), the

processing times are randomly generated from a uniform distribution. Therefore, we consider

pij ∼ U [1, 100] on all m1 machines in the first stage. Regarding the second stage, in order

to control the aforementioned different scenarios of balance/unbalance, the processing times

are generated using atj ∼ U [1, α · m2 · 100], where α is a parameter representing the existing

relationship between the workload of the two stages. Based on preliminary results in which a

12

wider range of α values are evaluated, the instances consider α ∈ {1, 2, 3} for SA and MA. The

objective is to determine the value of α that makes the instances suitable to be included in the

benchmarks, avoiding those that can be efficiently solved by methods designed for CO, SM and

PM.

To accomplish with the adequacy, small instances are first solved using exact methods (ex-

plained below), developed for CO, SM, PM, SA and MA. Secondly, some approximate methods

are re-implemented for the same problems, and their solutions and conclusions are validated in

the same small instances. Finally, the approximate algorithms are also tested in medium size

instances to cover a wider extension of the problem under consideration. In the case that a

(exact or approximate) method is specific for CO, SM or PM, the instances need to be adapted

by making pij = 0 or atj = 0, depending on each case. Let ST denote the solution obtained from

an algorithm specific for problem T , with T ∈ {SA,MA,CO,PM,SM}. Then, this solution is

evaluated for other related problem by computing
∑
CT ′

j (ST), i.e. the total completion time of

the solution obtained by a specific method of the problem T , ST , evaluated for the problem T ′.

Three different cases can be defined depending on the value of α:

• Instances for which specific methods designed for CO yield a good performance indicate

that there is unbalance and the workload in the first stage is higher than in the second

stage.

• Instances for which specific methods designed for SM/PM yield a good performance

indicate that there is unbalance and the workload in the second stage is higher than in the

first stage.

• Instances for which specific methods designed for SA/MA yield a good performance and

specific methods designed for CO and SM/PM yield a bad performance indicate that are

suitable and eligible for the benchmark.

Regarding the exact methods to solve the small size instances, the following have been em-

ployed:

• For SA and MA: the MILP model by Navaei et al. (2013).

13

• For CO: an adaptation of the previous model, removing the constraints related to the

second stage.

• For SM and PM : SPT and SPT+ECT rules, respectively.

Regarding the approximate (heuristics) methods to solve the small and medium size instances:

• For SA: the best-known constructive heuristic for the DPm1 → 1||
∑
Cj , FAP , by Fram-

inan and Perez-Gonzalez (2017b). .

• For MA: the best-known constructive heuristic for the DPm1 → Pm2||
∑
Cj , CHMMA,

by Talens et al. (2020).

• For CO: the best-known constructive heuristic for solving the CO problem, NEW −ECT ,

by Framinan and Perez-Gonzalez (2017a).

• For SM and PM : SPT and SPT+ECT rules, respectively, since both problems are poly-

nomially solvable.

The evaluation procedure of the adequacy is illustrated by an example, with four jobs to

be scheduled in a 2-stage assembly system. The first stage consists of three dedicated parallel

machines and the second stage has two identical parallel machines. The processing times of

the jobs are shown in Table 3. Different methods are applied to the instance: First, the exact

method for MA is applied, providing the solution SMA = (2, 1, 3, 4) with objective function∑
CMA

j (SMA)=136 (see Figure 2a). Then, processing times in the second stage are considered

equal to zero, and the exact method for CO is applied, providing the solution SCO = (1, 2, 3, 4).

The sequence obtained is evaluated for MA using the data of the original instance (see Figure

2b), yielding
∑
CMA

j (SCO)=138. Finally, the SPT+ECT rule is applied to the instance assuming

that the processing times in the dedicated machines are equal to zero (SM/PM case), obtaining

SP M = (1, 4, 2, 3). As in the previous case, the sequence is evaluated for MA using the data of

the original instance (see Figure 2c), with the value of the objective function
∑
CMA

j (SP M)=142.

14

j p1j p2j p3j atj

1 2 9 7 3
2 10 5 5 18
3 5 4 8 25
4 4 5 9 17

Table 3: Processing times of the jobs in both stages.

DP1

DP2

DP3

A1

A2

(a)

DP1

DP2

DP3

A1

A2

(b)

DP1

DP2

DP3

A1

A2

(c)

Figure 2: Gantt charts of the different optimal sequences evaluated for the MA variant. Figure 2a Gantt
chart of the optimal sequence of the MA variant, SMA. Figure 2b Gantt chart of the optimal sequence of
the CO problem, SCO, when it is evaluated for MA. Figure 2c Gantt chart of the optimal sequence of the
PM problem, SP M , when it is evaluated for MA.

3.1.2 Hardness

The empirical hardness of the instances has been measured by the difference between the perfor-

mance of a metaheuristic and a lower bound, as in similar studies (see Taillard, 1993 and Vallada

et al., 2015). The metaheuristic selected is the Iterated Greedy, denoted as IG, developed by

Ruiz and Stützle (2007), which is among the most effective metaheuristics in the scheduling

literature (see some IG based algorithms in Hatami et al., 2015; Lin, 2018; Pan et al., 2019) and

it is also used to determine the empirical hardness in Vallada et al. (2015) and Fernandez-Viagas

and Framinan (2020). Following the literature (see Hatami et al., 2015; Vallada et al., 2015),

the stopping criterion is set to n ·m/2 · 90/1000 seconds, where m is equal to m1 + 1, since the

number of machines in the second stage does not have influence since the ECT rule is applied.

The parameters of the IG are set as in the original paper (Ruiz and Stützle, 2007).

The lower bound used in this study is proposed by Blocher and Chhajed (2008), where the

authors addressed the problem DPm1 → 1||
∑
Cj . This lower bound is computed following

Equation (1), where wj =
∑m

i=1 pij/m1 and w[k] is the average processing time of job in position

k with the jobs ordered according to w[1] ≤ w[2] ≤ · · · ≤ w[n]. Similarly, pi[k] is the processing time

of job in position k in machine i and the jobs are ordered according to pi[1] ≤ pi[2] ≤ · · · ≤ pi[n],

15

with 1 ≤ i ≤ m1. The sum in Equation (1) is an estimate of the completion time of each job j

in the system: On the one hand, the completion time of each job j in the dedicated machines is

computed as the maximum between the sum of the (largest integer value given by the) average

processing times of the jobs scheduled prior to job j given in the order defined by w[k]; and

the maximum among all the dedicated machines of the processing times of the jobs scheduled

previously to job j given in the order defined by pi[k]. On the other hand, the processing time in

the second stage is added. Note that, since our lower bound proposed for the DPm1 → 1||
∑
Cj

does not consider job waiting time between the first and the second stage, it is clear that it is also

a LB for the DPm1 → Pm2||
∑
Cj problem. Besides, since the total completion time cannot

increase with the number of machines in the second stage, then this LB is tighter for the MA

variant.

LB =
n∑

j=1

max

j∑
k=1

⌈
w[k]

⌉
, max

i=1,...,m1

j∑

k=1
pi[k]

 + atj

 (1)

The difference between the performance of the metaheuristic and the lower bound is deter-

mined using the Relative Percentage Deviation computed as follows:

RPDMT (T ′) =
∑
CT ′

j (h)−MIN

MIN
(2)

where MIN is the solution obtained by the lower bound and
∑
CT ′

j (h) is the evaluation for

T ′ ∈ {SA,MA} of the solution provided by metaheuristic h, in this case IG. Following the idea

by Vallada et al. (2015), the higher the RPDIG, the harder the instance is, i.e. the best known

solution is further from the theoretical lower bound. On the contrary, a low value of RPDIG

means that the instance is easy, since the method is able to provide an objective function value

close to the lower bound. The instances with the highest RPD values will be selected to be part

of the new benchmark.

16

3.1.3 Preliminary testbeds and selection procedure

In this section, the procedure to select the final sets of instances, denoted as B1 and B2, is

explained. The selection procedure is carried out using different preliminary testbeds: S1, M1

and L1 for SA including small, medium and large size instances, respectively; and S2, M2

and L2 for MA, equivalently. Regarding the parameters for the preliminary instances, the levels

considered are (always verifying the equidistance and thus ensuring the amenability for statistical

analysis):

• Number of jobs: n ∈ {8, 10, 12} for S1 and S2, n ∈ {30, 40, 50, 60, 70} forM1 andM2, and

n ∈ {50, 100, 150, 200, 250, 300} for L1 and L2. Although the maximum number of jobs

considered in the literature is equal to 200 (see Table 2), it seems appropriate to consider

a higher number of jobs following the literature of other benchmarks (see Vallada et al.,

2015; Fernandez-Viagas and Framinan, 2020).

• Number of machines in the first stage: m1 ∈ {2, 4} in S1 and S2, and m1 ∈ {2, 4, 6, 8}

(based on the literature, see Table 2) inM1,M2, L1, L2.

• Number of machines in the second stage: m2 = 1 in S1, M1 and L1, m2 ∈ {2, 3} in S2,

m2 ∈ {2, 4, 6, 8} inM2 and L2. In the literature (see Table 2) the maximum value of m2

is 4, so here it has been extended.

• Number of replicates: 30 is established for S1 and S2, 10 forM1 andM2, and finally 1,000

for L1 and L2.

• Values of parameter α: α ∈ {1, 2, 3} for S1, S2, M1 and M2 (see Section 3.1.1). For L1

and L2, α is equal to 2, according to the results obtained in Section 3.2.

Considering these parameters, S1 and S2 have 540 and 1,080 instances, respectively; M1

and M2 600 and 2,400 instances, respectively; and L1 and L2 24,000 and 96,000 instances,

respectively.

As far as the selection procedure is concerned, it consists of two steps:

Step 1. Analysis of the small and medium size preliminary testbeds: In order to obtain the

adequacy of the instances, the most suitable values of α should be identified for SA and MA.

17

• For the SA variant, S1 is solved by the exact methods. Additionally, S1 and M1 are

solved with the approximate methods. All the methods have been previously described

in Section 3.1.1. Next, for each preliminary testbed, an Analysis of Variance (ANOVA)

is carried out with the following factors: n, m1, m2, α and T , where T is the problem

considered. The factor T has the levels SA, CO and SM . When exact methods are used,

the dependent variable employed is the total completion time obtained after evaluating the

optimal sequence of CO and SM in the SA variant for S1. For the approximate methods,

the dependent variable is the total completion time obtained after evaluating the best

sequence provided for the related problems in SA, in this case for S1 and M1. Next, a

post-hoc Tukey’s Honest Significant Difference test is applied to determine the statistical

significant differences between the levels of each factor. In this study, the differences

between the levels of the factor T are tested, contrasting the hypotheses H1 : SA = CO

and H2 : SA = SM , for each value of α.

• For the MA variant, the procedure is the same using S2 andM2. In this case the levels of

T are MA, CO and PM , and the hypotheses H3 : MA = CO and H4 : MA = PM .

The value of α for which all the hypotheses are rejected is chosen to generate the balanced

instances of the corresponding variant, SA and MA.

Step 2. Selection of the most suitable instances: The hardness is determined by selecting

the most suitable instances of the preliminary large size testbeds, L1 and L2, for SA and MA,

respectively. These testbeds have been generated for the value of α provided in the previous

step. The high number of replicates ensures that the hardest instances are included in the

benchmark. In this case, as explained in Section 3.1.2, the instances are solved by the Iterated

Greedy, and the lower bound for each one is computed. For each instance size, the Average RPD

obtained is sorted in decreasing order and the 10 first instances are selected to be part of the

new benchmark. The instances selected for each variant form the benchmark B1 for SA, with

240 large size instances (Section 3.2.1), and B2 for MA, with 960 large size instances (Section

3.2.2).

As B1 and B2 are selected from the testbeds L1 and L2, respectively, it is ensured that the

18

instances are amenable for statistical analysis since all the levels of the parameters are combined

and they are equidistant. In addition, as the benchmarks consist of a high number of instances,

their exhaustiveness is also fulfilled. The instances files of benchmarks B1 and B2 are published

as additional material in the following link: http://grupo.us.es/oindustrial/en/research/

results/.

3.2 Experimental results

In this section, the results obtained applying the procedure of Section 3.1 are presented. Sec-

tion 3.2.1 presents the results for SA, and Section 3.2.2 for MA. In each case, the ANOVA shows

the statistical significant influence of all the factors in the response variable. For each value of α,

we are interested in the differences among the levels of the factor T (problem). The results from

the Tukey’s HSD test are presented in a simplified way. All detailed results are available in Anova

& Tukey Test Experimental Results files in http://grupo.us.es/oindustrial/en/research/results/.

3.2.1 Results for the SA variant

This section shows the results provided for the SA variant. Regarding the adequacy, the

preliminary testbed S1 has been solved by exact methods, and both, S1 andM1 by approximate

methods. Table 4 shows the conclusions provided by the Tukey’s HSD test for each value of

α. On the one hand, the hypothesis H1 : SA = CO contrasts the equality of the mean total

completion time provided by the optimal solution of SA, and by the optimal solution of CO

evaluated for SA when the exact methods are applied to S1. When the approximate methods

are applied to S1 and M1, the equality of the mean total completion time of the best solution

provided for SA and the best solution provided for CO is contrasted. On the other hand, the

hypothesis H2 : SA = SM is similar comparing SA to SM. Therefore, in Table 4 it is shown

if the hypothesis is rejected (R), or if there is not significant evidence to reject it (-), and the

significance provided by the test (Sig.).

From the results for H1, it can be observed that there are not statistical differences between

SA and CO for α = 1 when exact methods are applied to S1. Although for approximate methods

the hypothesis is rejected, instances generated with α = 1 are not suitable for SA since the exact

19

http://grupo.us.es/oindustrial/en/research/results/
http://grupo.us.es/oindustrial/en/research/results/

method of CO provides good results. Additionally, for α = 2 and α = 3, CO and SA are not

similar regardless the method applied to small and medium size instances. From the results for

H2, α = 1 and α = 2 indicate that SA and SM are not similar for all the cases. For α = 3, there

are not statistical differences between SA and SM when approximate methods are applied to S1.

Therefore, instances generated with α = 3 are not suitable for SA. As conclusions, the instances

generated with α = 1 and α = 3 are not suitable (unbalanced) for the SA variant, and α = 2 is

consistently balanced because of the rejection of the hypotheses in all the cases.

H1 : SA = CO
Method Instances α=1 Sig. α=2 Sig. α=3 Sig.

Exact S1 - 0.993 R 1.000 R 1.000
Approximate S1 R 1.000 R 1.000 R 1.000
Approximate M1 R 1.000 R 1.000 R 1.000

H2 : SA = SM
Method Instances α=1 Sig. α=2 Sig. α=3 Sig.

Exact S1 R 1.000 R 1.000 R 1.000
Approximate S1 R 1.000 R 1.000 - 0.150
Approximate M1 R 1.000 R 1.000 R 1.000

Table 4: Conclusions from HSD Tukey tests for SA.

Regarding the hardness, testbed L1 has been solved by IG. Then, the ARPDSA
IG with

respect to the lower bound has been computed. In Table 5, the values of ARPD of the 10

hardest instances of each combination are shown in the rows labelled as “Selected instances”,

while in the rows labelled as “Total instances” the values of ARPD of the total instances of each

combinations is computed.

3.2.2 Results for the MA variant

In this section, the results for the MA variant are shown. Similar to the previous section, the

adequacy is analysed. The preliminary testbed S2 is solved by exact and approximate methods,

and M2 by approximate methods. Table 6 has the same structure that Table 4. In this case,

the hypotheses are H3 : MA = CO and H4 : MA = PM .

Hypothesis H3 shows that there are not statistical differences between MA and CO for α = 1

when approximate methods are applied to S1. Although the hypothesis is rejected in the rest

20

n

m1 50 100 150 200 250 300 Average

Selected
instances

2 114.54 109.90 112.70 108.23 102.77 101.73 108.31
4 100.52 96.18 89.93 86.69 85.85 84.17 90.56
6 95.30 90.40 83.71 79.39 77.56 77.65 84.00
8 89.86 82.65 78.14 76.82 74.83 74.43 79.46
Average 100.05 94.78 91.12 87.78 85.25 84.49 90.58

Total
instances

2 62.71 69.24 72.26 73.39 73.38 74.07 70.84
4 54.96 59.55 60.61 61.32 61.83 62.49 60.13
6 50.80 54.87 56.25 56.84 57.28 57.62 55.61
8 50.53 53.59 54.27 55.02 54.91 55.34 53.94
Average 54.75 59.31 60.85 61.64 61.85 62.38 60.13

Table 5: Values of ARP D for the 10 hardest instances and for the total instances of each combination of
parameters in testbed L1.

of the cases, instances generated with α = 1 are not suitable for MA. Additionally, for α = 2

and α = 3, CO and MA are not similar regardless the method applied to small and medium

size instances. For H4, MA and PM are not similar for all the cases when α = 1 and α = 2.

However, there are not statistical differences when α = 3 and approximate methods are applied

to S2. Therefore, instances generated with α = 3 are not suitable for MA. In the same way that

the previous case, instances generated with α = 1 and α = 3 are unbalanced for the MA variant,

being α = 2 the suitable value again.

H3 : MA = CO
Method Instances α=1 Sig. α=2 Sig. α=3 Sig.

Exact S2 R 1.000 R 1.000 R 1.000
Approximate S2 - 0.184 R 1.000 R 1.000
Approximate M2 R 1.000 R 1.000 R 1.000

H4 : MA = PM
Method Instances α=1 Sig. α=2 Sig. α=3 Sig.

Exact S2 R 1.000 R 1.000 R 1.000
Approximate S2 R 1.000 R 1.000 - 0.317
Approximate M2 R 1.000 R 1.000 R 1.000

Table 6: Conclusions from HSD Tukey tests for MA

Regarding the hardness of the instances, testbed L2 has been solved by IG and the same

procedure as in the previous section is followed. Table 7 has a structure similar to Table 5,

including a column for the number of jobs in the second stage m2. As in the SA variant, the

21

values of ARPD of the hardest instances are higher than the average of all instances.

Finally, after following the procedure detailed throughout Section 3, the hardest instances

of L1 and L2 form the proposed two new benchmarks, whose parameters can be summarised as

follows:

• B1: n ∈ {50, 100, 150, 200, 250, 300}, m1 ∈ {2, 4, 6, 8}, m2 ∈ {1}. 240 instances in total.

• B2: n ∈ {50, 100, 150, 200, 250, 300}, m1 ∈ {2, 4, 6, 8}, m2 ∈ {2, 4, 6, 8}. 960 instances

instances.

In summary, these benchmarks fulfil the required characteristics of a benchmark. The ad-

equacy is achieved by generating instances with both stages balanced and, thus, representative

of the SA and MA variants. The benchmarks are hard since the hardest instances have been

selected after solving a huge number of instances with the Iterated Greedy algorithm and eval-

uating the solutions with respect to a lower bound. The exhaustiveness is ensured by the large

number of instances, 240 and 960 respectively, in which different sizes of the parameters have

been considered. Finally, the benchmarks are amenable for statistical analysis since the levels of

the parameters are equidistant and all the levels have been combined to generate the instances.

4 Computational evaluation of heuristics

In this section, we analyse the efficiency, in the proposed benchmarks, of the heuristics

reviewed in Section 2.1 and enumerated in Section 4.1. Then, in Section 4.2, a comparison

among the heuristics is performed and the results are analysed. All methods have been coded in

C# using Visual Studio and carried out in an Intel Core i7-3770 PC with 3.4 GHz and 16 GB

RAM, using the same common functions and libraries. Finally, in Section 4.3, upper bounds of

the problem are computed in order to compare the algorithms.

4.1 Heuristics

The existing heuristics developed to solve SA, MA and the related problems are adapted, if

required, and implemented to solve each one of the considered variants.

22

n

m1 m2 50 100 150 200 250 300 Average

Selected
instances

2

2 98.15 100.64 105.70 102.85 95.26 96.52 99.85
4 75.17 86.65 95.12 94.68 81.25 79.61 85.41
6 59.47 78.06 81.78 85.70 74.26 72.44 75.29
8 47.96 68.56 74.64 79.80 72.48 69.86 68.88

4

2 87.31 88.56 84.72 82.49 92.04 90.95 87.68
4 68.23 77.02 76.89 76.58 76.36 76.29 75.23
6 54.82 66.07 72.22 74.58 69.91 70.98 68.10
8 44.87 58.66 66.36 69.88 67.77 67.69 62.54

6

2 83.30 83.60 79.05 75.64 86.39 84.87 82.14
4 65.80 73.26 71.95 70.53 70.60 73.61 70.96
6 53.10 61.50 65.45 67.22 66.59 67.72 63.60
8 43.54 54.89 60.30 63.17 63.39 64.17 58.25

8

2 78.64 76.51 73.84 73.37 81.58 83.18 77.85
4 62.46 67.31 67.38 68.25 67.19 68.63 66.87
6 50.67 60.04 62.45 63.25 62.27 64.55 60.54
8 41.88 53.78 57.59 59.49 61.38 60.29 55.73

Average 61.15 70.30 72.65 73.64 72.90 72.99 70.60

Total
instances

2

2 53.76 63.33 67.67 69.58 70.54 71.64 66.09
4 41.30 54.75 61.10 64.29 59.25 59.85 56.76
6 32.39 48.80 54.86 59.43 55.05 55.10 50.94
8 25.75 42.96 50.18 55.46 52.46 53.38 46.70

4

2 47.61 54.70 56.89 58.21 65.93 67.51 58.48
4 37.21 47.72 51.66 54.01 55.61 56.68 50.48
6 29.66 41.66 47.61 51.05 51.66 52.37 45.67
8 23.91 36.96 43.79 47.85 49.62 50.87 42.17

6

2 44.20 50.55 52.92 54.06 62.10 63.95 54.63
4 34.81 44.24 48.19 50.25 52.35 54.00 47.31
6 27.94 39.26 44.26 47.18 49.14 50.37 43.02
8 22.65 34.92 40.82 44.35 47.31 48.21 39.71

8

2 44.08 49.49 51.15 52.39 58.29 61.13 52.76
4 34.89 43.42 46.65 48.76 50.10 51.55 45.90
6 28.12 38.06 43.29 45.84 46.67 48.22 41.70
8 22.92 33.93 39.99 43.14 45.00 46.29 38.55

Average 34.45 45.30 50.06 52.87 54.44 55.70 48.80

Table 7: Values of ARP D for the 10 hardest instances and for the total instances of each combination of
parameters in testbed L2.

23

• All the following methods have been developed for the SA variant. The adaptation to

solve the MA variant can be consulted in Talens et al. (2020).

– TCK1 and TCK2 (Tozkapan et al., 2003).

– A1 and A2 (Al-Anzi and Allahverdi, 2006a).

– S1, S2 and S3 (Al-Anzi and Allahverdi, 2006a).

– FAP (Framinan and Perez-Gonzalez, 2017b).

– G1, G2, G3 and G4 (Lee, 2018).

• The following methods have been developed to solve the CO problem. The adaptations to

solve the MA variant are explained in Talens et al. (2020).

– STPT and SMPT (Sung and Yoon, 1998).

– ECT (Ahmadi et al., 2005; Leung et al., 2005).

– SHIFTk and SHIFTkOP T
(Framinan and Perez-Gonzalez, 2017a).

• The next heuristics have been developed to solve the MA variant. Their adaptation to

solve the SA variant is done by directly considering one assembly machine when the jobs

are scheduled in the second stage.

– SAK (Sung and Kim, 2008).

– CHMMA, BSCHV (x=2), BSCHV (x=n/10), BSCHV (x=5), BSCHV (x=10),

BSCHV (x=15), BSCHMMA (x=n) and BSCHMMA (x=n + n/2) (Talens et al.,

2020).

4.2 Evaluation in the new benchmarks, B1 and B2

The objective of this section is to analyse the actual state-of-the-art heuristics for the two

variants considered in this paper, SA and MA. Moreover, this experimentation can help us to

make a solid comparison of the existing approximate methods and to identify the most efficient

ones to solve the SA and MA variants.

24

To evaluate the efficiency of the different heuristics, the ARPD is computed following the

Equation (2), where
∑
CT ′

j (h) is the value of the objective function found by each heuristic h

and MIN is the minimum known solution for each instance. Moreover, the following indicator,

RPT ′
M (similarly as in Fernandez-Viagas and Framinan, 2015a), is computed in order to evaluate

heuristics with different number of steps in their procedure:

RPT ′
M = TM − T

T
(3)

where TM is the time (in seconds) required by heuristic method M to obtain a solution,

and T is the average time needed by all the methods. Table 8 shows the average results, and

it is organised as follows: column 1 and column 2 indicates the problem and the heuristics for

each variant. Results for the benchmark of SA, B1, are presented in columns 3 to 10. More

specifically, columns 3 to 8 show the values of ARPD for the different number of jobs, column 9

indicates the Total ARPD and column 10 the Total ARPT ′. Results for the benchmark of MA,

B2, are presented in the columns 11 to 18, and the columns are organised in the same way as for

B1. The Pareto set for each variant is indicated in bold in Table 8.

Figure 3 shows the confidence intervals for the ARPD of the heuristics designed to solve the

SA variant, providing good results solving benchmarks B1 and B2. In the case of Figure 4, it

shows the confidence intervals for the values of ARPD of the best heuristics, designed to solve

the MA variant, solving both benchmarks. The figures show the values of ARPD per levels of n

in B1 and per levels of n and m2 in B2. From the analysis of Table 8 and Figures 3 and 4, some

comments can be made:

• The heuristics designed to solve the SA variant performs similarly in both benchmarks,

B1 and B2. Regarding the results shown in Table 8, there is slight variation in the ARPD

of the heuristics, with an average absolute difference between the ARPD values equal to

1.83. Some reasons for this behaviour may be the way in which these heuristics have been

adapted to solve the MA variant (see Talens et al., 2020 for the details) and the fact that

parallel machines at the second stage flatten the significance of assembly operations. The

best heuristics of this group are FAP , TCK2 and G1 with an ARPD equal to 2.96, 5.72

25

and 7.20, respectively, for the SA variant, and 1.51, 5.40 and 8.92, respectively, for the MA

variant. The performance of these heuristics is graphically shown in Figure 3.

• The heuristics designed for CO are not suitable to solve SA and MA, as they are not as

good as some of the heuristics of the other two groups. However, it becomes clear that, for

both variants, the best results are achieved by the heuristic SHIFTkOP T
with an ARPD

equal to 6.14, for SA and for MA.

• Regarding the methods proposed to solve the MA variant, on the one hand, the heuristic

CHMMA yields a good performance in both benchmarks, with an ARPD lower than 1 in

both cases (see Table 8). Taking into account the results shown in Figure 4, regarding

the number of jobs, CHMMA shows a considerable difference between n = 50 and n =

100 in benchmark B2, while it performs similarly for n ≥150 in both benchmarks, B1

and B2. CHMMA performs also similarly for m2, being its ARPD around 1 for all the

levels. On the other hand, the best performance of the beam search-based constructive

heuristic is achieved by BSCHV (x=2) and BSCHMMA (x=n) for B1, and BSCHV

(x=2) and BSCHV (x=n) for B1, providing the lowest values of ARPD and consuming

less computational time. Regarding the number of jobs, these methods yield good results

in both benchmarks, with an ARPD lower than 0.5 for all the levels. Moreover, the worst

ARPD of the three heuristics is obtained for n = 50 and, as n increases, their performance

become similar. Note that, with respect to m2, the values of ARPD of BSCHV (x=2),

BSCHV (x=n) and BSCHMMA (x=n) increases, but in all the cases, it is lower than 1.

Therefore, it can be pointed out that these versions are the best heuristics for solving the

variants SA and MA.

• Comparing the results obtained from this evaluation and that carried out in Talens et al.

(2020), several changes in the relative performance of some heuristics can be observed,

possibly due to the lack of adequacy in the testbed used in the referred work. In this

evaluation, heuristics G1 and G4 are more efficient than G2 and G3, while in Talens

et al. (2020) G2 and G3 yield better results. Heuristic A2 performs better than A1 in

benchmarks B1 and B2, while in Talens et al. (2020) the opposite happens. Regarding S1,

26

S2 and S3, in benchmarks B1 and B2, S3 is more efficient than S1 and S2, being similar

the performance of the two latter. On the contrary, in Talens et al. (2020), S2 yields a

better result than S1 and S3, and S3 is also more efficient than S1.

Finally, to summarize the main aspects of these results, it is worth noting that, regarding the

number of jobs, the performance of the beam search-based constructive heuristics improves as n

increases. On the contrary, all the other heuristics worsen their performance when n is equal to

250 and 300 than with lower number of jobs. Note that this behaviour had not been previously

detected, as existing testbeds did not include instances with such large number of jobs. Taking

into account this information, the methods recommended to solve the considered variants are:

• For SA: the dispatching rules STPT/SMPT and S3, and the heuristics TCK2, CHMMA

and BSCHV (x=2) and BSCHMMA (x=n).

• For MA: the dispatching rules S1 and STPT/SMPT , and the heuristics CHMMA and

BSCHV (x=2) and BSCHV (x=n).

(a) Per levels of n in B1. (b) Per levels of n in B2. (c) Per levels of m2 in B2.

Figure 3: 95% Confidence Intervals for ARP D of the best SA heuristics.

(a) Per levels of n in B1. (b) Per levels of n in B2. (c) Per levels of m2 in B2.

Figure 4: 95% Confidence Intervals for ARP D of the best MA heuristics.

27

To establish the statistical significance of the results, a Holm’s procedure (Holm, 1979) is per-

formed where each hypothesis is evaluated using a non-parametric Mann-Whitney test assuming

a 95% confidence level (i.e. α=0.05). In Holm’s test, the hypotheses are formed by a heuristic

in the Pareto frontier and the closer dominated heuristic (in terms of ARPD) which provides

higher ARPT ′. The hypotheses are sorted in non-descending order of the p-values obtained in

the Mann-Whitney test, evaluating the RPD of each heuristic. Each hypothesis Hi is rejected

if p ≤ /(k − i + 1) where k is the total number of hypotheses. The objective of this procedure

is to establish if there are significant differences between the two heuristics compared in each

hypothesis. The results are shown in Table 9. It can be checked that, for both SA and MA, all

the hypotheses are rejected, indicating that there are statistically significant differences between

the heuristic considered, and validating the composition of the Pareto set.

4.3 Upper bounds

Finally, the experimentation carried out in this section is aimed towards the generation of refer-

ence upper bounds to be used by practitioners and researchers in order to compare their propos-

als. In order to obtain these bounds, the iterated greedy algorithm by Ruiz and Stützle (2007) has

been run following the same procedure as Vallada et al. (2015) and Fernandez-Viagas and Frami-

nan (2020). The stopping criterion used is n ·m/2 ·600/1000 seconds, where m is equal to m1 +1.

More specifically, this algorithm is run 20 times for each instance and the best value is taken as the

reference upper bound of the instance. Then, the upper bounds are the minimum value between

the solution provided by the IG and all the experimentation carried out in this section. The upper

bounds are published as on-line materials in http://grupo.us.es/oindustrial/en/research/results/.

5 Conclusions

This paper considers the 2-stage assembly scheduling problem with several dedicated parallel

machines in the first stage and one assembly machine in the second stage, denoted as SA, and

also with several assembly machines in the second stage, denoted as MA. Due to the absence of a

commonly accepted set of instances ensuring that the instances are representative of the problem

28

T
ab

le
8:

P
er
fo
rm

an
ce

of
th
e
he
ur
is
ti
cs

in
be

nc
hm

ar
ks

B
1
an

d
B

2
.

B 1
B 2

n
Av

er
ag
e

n
Av

er
ag
e

Pr
ob

le
m

H
eu
ris

tic
50

10
0

15
0

20
0

25
0

30
0

A
R
P
D

A
R
P
T

′
A
C
P
U

50
10
0

15
0

20
0

25
0

30
0

A
R
P
D

A
R
P
T

′
A
C
P
U

SA

T
C
K

1
10
.1
3

10
.4
9

10
.9
9

11
.2
2

11
.4
7

11
.0
6

10
.8
9

0.
00

3
0.
00
4

7.
54

9.
81

10
.4
9

10
.9
4

11
.4
3

11
.3
9

10
.2
7

0.
00
3

0.
00

4
T

C
K

2
5.
77

5.
84

5.
76

5.
63

5.
82

5.
49

5.
72

0.
00
1

0.
00
2

4.
17

5.
32

5.
63

5.
54

5.
91

5.
84

5.
40

0.
00

1
0.
00
2

A
1

33
.0
2

35
.0
6

36
.7
2

37
.9
9

38
.3
5

38
.0
9

36
.5
4

0.
00
3

0.
00
3

24
.5
3

30
.9
6

33
.5
7

35
.4
3

36
.8
5

37
.3
4

33
.1
1

0.
00
3

0.
00

4
A

2
7.
35

7.
46

7.
64

7.
97

7.
75

7.
71

7.
65

0.
00
3

0.
00
3

5.
35

6.
90

7.
38

7.
81

7.
98

8.
00

7.
24

0.
00

3
0.
00
4

S
1

33
.4
9

35
.2
9

37
.6
4

39
.2
2

38
.6
3

38
.9
5

37
.2
0

0.
00

0
0.
00
0

26
.8
2

32
.4
5

35
.6
9

37
.6
7

37
.9
8

38
.4
9

34
.8
5

0.
00
0

0.
00
0

S
2

33
.5
3

36
.1
7

37
.7
9

38
.8
8

38
.8
7

38
.9
4

37
.3
6

0.
00
0

0.
00
0

26
.5
9

32
.8
0

35
.5
7

36
.8
7

37
.6
3

38
.1
8

34
.6
1

0.
00
0

0.
00

0
S

3
8.
60

9.
24

10
.1
0

10
.1
9

10
.0
9

9.
75

9.
66

0.
00
0

0.
00
0

6.
57

8.
79

9.
62

9.
86

10
.2
1

10
.2
5

9.
22

0.
00
0

0.
00
0

G
1

6.
44

6.
81

7.
29

7.
69

7.
53

7.
41

7.
20

0.
00
2

0.
00
3

6.
41

8.
49

9.
08

9.
64

9.
95

9.
95

8.
92

0.
00

3
0.
00
3

G
2

33
.0
3

35
.5
5

36
.9
3

38
.1
3

38
.3
6

38
.2
0

36
.7
0

0.
00

3
0.
00
3

24
.8
5

31
.2
8

33
.8
1

35
.6
9

37
.1
7

37
.6
1

33
.4
0

0.
00
3

0.
00

3
G

3
33
.9
8

34
.9
3

36
.8
2

38
.0
2

39
.0
9

38
.7
8

36
.9
4

0.
00

2
0.
00
3

25
.2
1

31
.0
1

34
.0
9

35
.6
3

36
.9
3

37
.7
8

33
.4
4

0.
00
3

0.
00

3
G

4
6.
64

6.
88

7.
29

7.
67

7.
51

7.
39

7.
23

0.
00
2

0.
00
3

6.
42

8.
49

9.
09

9.
65

9.
96

9.
95

8.
93

0.
00

3
0.
00
3

F
A
P

3.
92

3.
38

2.
81

2.
59

2.
59

2.
44

2.
96

1.
33
2

9.
01
2

2.
15

1.
60

1.
36

1.
30

1.
34

1.
29

1.
51

1.
31

6
8.
98
7

C
O

E
C
T

6.
44

6.
81

7.
29

7.
69

7.
53

7.
41

7.
20

0.
47
4

3.
09
5

6.
41

8.
49

9.
08

9.
64

9.
95

9.
95

8.
92

0.
48

8
3.
15
6

S
T
P
T
/S
M
P
T

11
.9
3

12
.4
2

12
.6
8

12
.6
0

12
.5
1

12
.1
2

12
.3
8

0.
00
0

0.
00
0

6.
80

8.
81

9.
05

9.
43

9.
83

9.
66

8.
93

0.
00
0

0.
00
0

S
H
I
F
T

k
3.
91

5.
51

6.
55

6.
98

7.
07

7.
08

6.
18

1.
73
7

11
.8
25

2.
87

6.
19

7.
61

8.
48

9.
09

9.
21

7.
24

1.
77

6
12
.0
11

S
H
I
F
T

k
O

P
T

3.
89

5.
48

6.
58

6.
87

7.
01

7.
00

6.
14

1.
75
1

11
.8
27

2.
14

5.
00

6.
43

7.
19

8.
00

8.
09

6.
14

1.
88

0
12
.2
28

M
A

S
A
K

10
.0
9

10
.9
1

11
.5
6

11
.5
0

11
.5
0

11
.3
2

11
.1
5

5.
13

8
35
.8
60

4.
06

5.
91

6.
14

6.
47

6.
96

6.
79

6.
06

5.
16

3
35
.2
84

C
H

M
M

A
0.
75

0.
59

0.
74

0.
83

0.
87

0.
83

0.
77

0.
00
3

0.
00
3

1.
19

0.
68

0.
89

0.
90

0.
97

0.
95

0.
93

0.
00
3

0.
00
4

B
S

C
H

V
(x
=
2)

0.
27

0.
14

0.
10

0.
07

0.
07

0.
06

0.
12

0.
49
4

2.
54
4

0.
44

0.
20

0.
21

0.
21

0.
21

0.
20

0.
25

0.
52

8
2.
69
8

B
S
C
H

V
(x
=
n
/1
0)

0.
32

0.
17

0.
10

0.
07

0.
08

0.
06

0.
13

1.
08
0

5.
64
5

0.
46

0.
17

0.
22

0.
20

0.
22

0.
20

0.
25

1.
15

2
5.
97
3

B
S
C
H

V
(x
=
5)

0.
32

0.
15

0.
09

0.
07

0.
07

0.
05

0.
12

1.
60
0

8.
25
7

0.
46

0.
16

0.
21

0.
24

0.
22

0.
20

0.
25

1.
70

7
8.
74
1

B
S
C
H

V
(x
=
10
)

0.
31

0.
17

0.
11

0.
07

0.
08

0.
05

0.
13

2.
16
6

10
.9
83

0.
46

0.
17

0.
24

0.
21

0.
20

0.
21

0.
25

2.
30

9
11
.6
28

B
S
C
H

V
(x
=
15
)

0.
28

0.
14

0.
10

0.
08

0.
08

0.
05

0.
12

2.
78
0

13
.8
27

0.
47

0.
18

0.
22

0.
22

0.
20

0.
21

0.
25

2.
96

2
14
.6
38

B
S

C
H

V
(x

=
n
)

0.
31

0.
16

0.
10

0.
04

0.
06

0.
06

0.
12

4.
80
1

25
.2
14

0.
50

0.
19

0.
19

0.
19

0.
17

0.
17

0.
23

5.
05
3

26
.4
01

B
S

C
H

M
M

A
(x

=
n
)

0.
25

0.
12

0.
08

0.
03

0.
04

0.
02

0.
09

0.
90
0

4.
96
3

0.
44

0.
19

0.
27

0.
30

0.
26

0.
31

0.
30

0.
90

7
5.
02
8

B
S
C
H

M
M

A
(x
=
n
+
n
/2
)

0.
24

0.
12

0.
08

0.
04

0.
04

0.
02

0.
09

2.
72
4

15
.4
19

0.
46

0.
18

0.
23

0.
24

0.
24

0.
24

0.
27

2.
73

5
15
.5
75

29

B1

Hi Hypothesis p-value Mann-Whitney α/(k − i− 1) Holm’s Procedure

H1
1 STPT/SMPT=S1 0.000 R 0.0125 R

H1
2 CHMMA=G1 0.000 R 0.0167 R

H1
3 BSCHMMA (x=n)=BSCH (x=n/10) 0.000 R 0.0250 R

H1
4 BSCHMMA (x=n+n/2)=BSCHV (x=15) 0.000 R 0.0500 R

B2

Hi Hypothesis p-value Mann-Whitney α/(k − i− 1) Holm’s Procedure

H2
1 STPT/SMPT=S2 0.000 R 0.0100 R

H2
2 STPT/SMPT=S3 0.000 R 0.0125 R

H2
3 TCK2=A2 0.000 R 0.0167 R

H2
4 CHMMA=ECT 0.000 R 0.0250 R

H2
5 BSCHV (x=2)=BSCHMMA (x=n) 0.027 R 0.0500 R

Table 9: Mann-Whitney’s procedure. (R indicates that the hypothesis can be rejected).

under study, there is a need of hard instances specifically designed for the variants SA and MA.

Therefore, two new benchmarks of instances are designed according to the following character-

istics found in the literature: empirical hardness, adequacy, exhaustiveness, and amenability for

statistical analysis.

Regarding the procedure followed to design the benchmarks, first, different scenarios, depend-

ing on the relation between stages have been generated using a parameter α. Two preliminary

testbeds for each variant have been generated and both exact and approximate methods have

been applied to identify the adequacy of the instances of the problem under study. Next, with the

most suitable value of α identified in the previous analysis, two additional preliminary testbeds,

with 24,000 and 96,000 instances, respectively, have been generated to determine the empirical

hardness of the testbeds. A lower bound of each instance has been computed and the iterated

greedy algorithm has been applied to solve the testbeds. Then, the instances whose solution

founded by the IG is further from the theoretical lower bound are selected to form the two new

benchmarks of 240 instances for SA, and 960 instances for MA. With this methodology, it is

ensured that the characteristics of adequacy and empirical hardness are achieved. The exhaus-

tiveness and amenability are also fulfilled by considering a large number of instances, equidistant

levels, and by combining all the levels of the parameters to obtain the instances.

All the heuristics designed to solve the variants SA and MA and the related problems CO,

SM and PM have been tested and compared in the new benchmarks. On the one hand, the

30

results obtained show that most of the heuristics designed to solve the SA variant perform slightly

better, in average, solving the MA variant than the SA variant. On the other hand, the beam

search-based constructive heuristics designed in Talens et al. (2020) yields the best results in

terms of ARPD, for both benchmarks. Finally, this computational experimentation has led us

to determine the best heuristics to solve each one of the considered variants. For SA, the group

of the most efficient heuristics is formed by the dispatching rules STPT/SMPT and S3, and

the heuristics TCK2, CHMMA, BSCHV (x=2) and BSCHMMA (x=n); and for MA, by the

dispatching rules S1 and STPT/SMPT , and the heuristics CHMMA and BSCHV (x=2) and

BSCHV (x=n). Regarding the most efficient heuristics for the MA variant, there are some

differences with respect to the conclusions obtained in the recent work by Talens et al. (2020),

showcasing the importance of the set of instances selected in a state-of-the-art study.

Note that, in designing the benchmarks, the total completion time has been adopted as

objective, since it was, by far, the most studied criterion for the 2-stage assembly problems.

Although this does not preclude using the benchmarks for different criteria, in view of the high

influence of the due dates in scheduling problems, new instances considering due-date oriented

objective functions (as e.g
∑

(wj)Uj and
∑

(wj)Tj) could be proposed, by either adding the

due dates of each job to the present instances or generating a completely new set benchmark.

Furthermore, the relationship between the problem under consideration and related problems

would be an interesting research line to explore when different data or constraints are used,

specially regarding the influence of using different distribution of processing times in the first

stage, or the addition of setup times.

References
Ahmadi, R., Bagchi, U., and Roemer, T. A. (2005). Coordinated scheduling of customer orders for quick

response. Naval Research Logistics, 52(6):493–512.
Al-Anzi, F. S. and Allahverdi, A. (2006a). A Hybrid Tabu Search Heuristic for the Two-Stage Assembly

Scheduling Problem. International Journal of Operations Research, 3(2):109–119.
Al-Anzi, F. S. and Allahverdi, A. (2006b). Empirically discovering dominance relations for scheduling

problems using an evolutionary algorithm. International Journal of Production Research, 44(22):4701–
4712.

Al-Anzi, F. S. and Allahverdi, A. (2007). A self-adaptive differential evolution heuristic for two-stage
assembly scheduling problem to minimize maximum lateness with setup times. European Journal of
Operational Research, 182(1):80–94.

31

Al-Anzi, F. S. and Allahverdi, A. (2012). Better Heuristics for a Two-Stage Multi- Machine Assembly
Scheduling Problem to Minimize Total Completion Time Better Heuristics for a Two-Stage Multi-
Machine Assembly Scheduling Problem to Minimize Total Completion Time. International Journal of
Operations Research, 9:66–75.

Al-Anzi, F. S. and Allahverdi, A. (2013). An artificial immune system heuristic for two-stage multi-
machine assembly scheduling problem to minimize total completion time. Journal of Manufacturing
Systems, 32(4):825–830.

Allahverdi, A. (2000). Minimizing mean flowtime in a two-machine flowshop with sequence-independent
setup times. Computers and Operations Research, 27(2):111–127.

Allahverdi, A. and Al-Anzi, F. (2012). A new heuristic for the queries scheduling problem on distributed
database systems to minimize mean completion time. In Proceedings of the 21st International Confer-
ence on Software Engineering and Data Engineering, SEDE 2012.

Allahverdi, A. and Al-Anzi, F. S. (2006). A PSO and a Tabu search heuristics for the assembly schedul-
ing problem of the two-stage distributed database application. Computers and Operations Research,
33(4):1056–1080.

Allahverdi, A. and Al-Anzi, F. S. (2009). The two-stage assembly scheduling problem to minimize total
completion time with setup times. Computers and Operations Research, 36(10):2740–2747.

Allahverdi, A. and Aydilek, H. (2015). The two stage assembly flowshop scheduling problem to minimize
total tardiness. Journal of Intelligent Manufacturing, 26(2):225–237.

Blocher, J. D. and Chhajed, D. (2008). Minimizing customer order lead-time in a two-stage assembly
supply chain. Annals of Operations Research, 161(1):25–52.

Cheng, T. E. and Wang, G. (1999). Scheduling the fabrication and assembly of components in a two-
machine flowshop. IIE Transactions, 31(2):135–143.

Conway, R. W., Miller, L. W., and Maxwell, W. L. (1967). Theory of scheduling. Addison-Wesley Pub.
Co.

Fattahi, P., Hosseini, S. M. H., and Jolai, F. (2013). A mathematical model and extension algorithm for
assembly flexible flow shop scheduling problem. The International Journal of Advanced Manufacturing
Technology, 65(5):787–802.

Fernandez-Viagas, V. and Framinan, J. (2020). Design of a testbed for hybrid flow shop scheduling with
identical machines. Computers and Industrial Engineering, pages 1–32.

Fernandez-Viagas, V. and Framinan, J. M. (2015a). A new set of high-performing heuristics to minimise
flowtime in permutation flowshops. Computers and Operations Research, 53:68–80.

Fernandez-Viagas, V. and Framinan, J. M. (2015b). Neh-based heuristics for the permutation flowshop
scheduling problem to minimise total tardiness. Computers and Operations Research, 60:27 – 36.

Framinan, J. M. and Perez-Gonzalez, P. (2017a). New approximate algorithms for the customer order
scheduling problem with total completion time objective. Computers and Operations Research, 78:181–
192.

Framinan, J. M. and Perez-Gonzalez, P. (2017b). The 2-stage assembly flowshop scheduling problem with
total completion time: Efficient constructive heuristic and metaheuristic. Computers and Operations
Research, 88:237–246.

Framinan, J. M., Perez-Gonzalez, P., and Fernandez-Viagas, V. (2019). Deterministic assembly scheduling
problems: A review and classification of concurrent-type scheduling models and solution procedures.
European Journal of Operational Research, 273:401–417.

Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 1(2):117–129.

Hall, N. G. and Posner, M. E. (2001). Testing With Machine Scheduling Applications. Operations
Research, 49(7):854–865.

32

Hatami, S., Ruiz, R., and Andrés-Romano, C. (2015). Heuristics and metaheuristics for the distributed
assembly permutation flowshop scheduling problem with sequence dependent setup times. International
Journal of Production Economics, 169:76–88.

Holm, S. (1979). Board of the Foundation of the Scandinavian Journal of Statistics. 6(2):65–70.
Hwang, F. J. and Lin, B. M. (2012). Two-stage assembly-type flowshop batch scheduling problem subject

to a fixed job sequence. Journal of the Operational Research Society, 63(6):839–845.
Hwang, F. J. and Lin, B. M. (2018). Survey and extensions of manufacturing models in two-stage flexible

flow shops with dedicated machines. Computers and Operations Research, 98:103–112.
Lee, C.-Y., Cheng, T. C. E., and Lin, B. M. T. (1993). Minimizing the makespan in the 3-machine

assembly-type flowshop scheduling problem. Management Science, 39(5):616–625.
Lee, I. S. (2018). Minimizing total completion time in the assembly scheduling problem. Computers and

Industrial Engineering, 122:211–218.
Leung, J. Y., Li, H., and Pinedo, M. (2008). Scheduling orders on either dedicated or flexible machines in

parallel to minimize total weighted completion time. Annals of Operations Research, 159(1):107–123.
Leung, J. Y. T., Li, H., and Pinedo, M. (2005). Order scheduling in an environment with dedicated

resources in parallel. Journal of Scheduling, 8(5):355–386.
Liao, C. J., Lee, C. H., and Lee, H. C. (2015). An efficient heuristic for a two-stage assembly schedul-

ing problem with batch setup times to minimize makespan. Computers and Industrial Engineering,
88(313):317–325.

Lin, B. M., Lu, C. Y., Shyu, S. J., and Tsai, C. Y. (2008). Development of new features of ant colony
optimization for flowshop scheduling. International Journal of Production Economics, 112(2):742–755.

Lin, W.-C. (2018). Minimizing the makespan for a two-stage three-machine assembly flow shop problem
with the sum-of-processing-time based learning effect. Discrete Dynamics in Nature and Society, 2018.

Mozdgir, A., Fatemi Ghomi, S. M. T., Jolai, F., and Navaei, J. (2013). Two-stage assembly flow-shop
scheduling problem with non-identical assembly machines considering setup times. International Jour-
nal of Production Research, 51(12):3625–3642.

Navaei, J., Fatemi Ghomi, S. M. T., Jolai, F., Shiraqai, M. E., and Hidaji, H. (2013). Two-stage flow-
shop scheduling problem with non-identical second stage assembly machines. International Journal of
Advanced Manufacturing Technology, 69(9-12):2215–2226.

Nejati, M., Mahdavi, I., Hassanzadeh, R., and Mahdavi-Amiri, N. (2016). Lot streaming in a two-stage
assembly hybrid flow shop scheduling problem with a work shift constraint. Journal of Industrial and
Production Engineering, 33(7):459–471.

Pan, Q.-K., Gao, L., Xin-Yu, L., and Framinan, J. (2019). Effective constructive heuristics and meta-
heuristics for the distributed assembly permutation flowshop scheduling problem. Applied Soft Com-
puting Journal, 81.

Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems. Springer Publishing Company,
Incorporated, 3rd edition.

Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., and Zwaneveld, C. M. (1995).
The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research,
43(2):346–355.

Roemer, T. A. (2006). A note on the complexity of the concurrent open shop problem. Journal of
Scheduling, 9(4):389–396.

Roemer, T. A. and Ahmadi, R. H. (1997). The Complexity of Scheduling Customer Orders. In IN-FORMS
conference 1997, Dallas.

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049.

Sheikh, S., Komaki, G., and Kayvanfar, V. (2018). Multi objective two-stage assembly flow shop with

33

release time. Computers and Industrial Engineering, 124:276–292.
Shi, Z., Huang, Z., and Shi, L. (2018). Customer order scheduling on batch processing machines with

incompatible job families. International Journal of Production Research, 56(1-2):795–808.
Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly,

3(1-2):59–66.
Sung, C. S. and Kim, H. A. (2008). A two-stage multiple-machine assembly scheduling problem for

minimizing sum of completion times. International Journal of Production Economics, 113(2):1038–
1048.

Sung, C. S. and Yoon, S. H. (1998). Minimizing total weighted completion time at a pre-assembly stage
composed of two feeding machines. International Journal of Production Economics, 54(3):247 – 255.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278–285.

Talens, C., Fernandez-Viagas, V., Perez-Gonzalez, P., and Framinan, J. (2020). New efficient constructive
heuristics for the two-stage multi-machine assembly scheduling problem. Computers and Industrial
Engineering, 140.

T’kindt, V., Monmarcheé, N., Tercinet, F., and Lauügt, D. (2002). An Ant Colony Optimization algorithm
to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research,
142(2):250–257.

Tozkapan, A., Kirca, Ö., and Chung, C. S. (2003). A branch and bound algorithm to minimize the total
weighted flowtime for the two-stage assembly scheduling problem. Computers and Operations Research,
30(2):309–320.

Vallada, E., Ruiz, R., and Framinan, J. M. (2015). New hard benchmark for flowshop scheduling problems
minimising makespan. European Journal of Operational Research, 240(3):666–677.

Wagneur, E. and Sriskandarajah, C. (1993). Openshops with jobs overlap. European Journal of Opera-
tional Research, 71(3):366–378.

Wu, C. C., Chen, J. Y., Lin, W. C., Lai, K., Liu, S. C., and Yu, P. W. (2018). A two-stage three-machine
assembly flow shop scheduling with learning consideration to minimize the flowtime by six hybrids of
particle swarm optimization. Swarm and Evolutionary Computation, 41(February):97–110.

Zhang, Y., Zhou, Z., and Liu, J. (2010). The production scheduling problem in a multi-page invoice
printing system. Computers and Operations Research, 37(10):1814–1821.

34

	Introduction
	Background
	Heuristics for the considered problems
	Sets of instances in the related literature

	New benchmarks generation
	Methodology
	Adequacy
	Hardness
	Preliminary testbeds and selection procedure

	Experimental results
	Results for the SA variant
	Results for the MA variant

	Computational evaluation of heuristics
	Heuristics
	Evaluation in the new benchmarks, B1 and B2
	Upper bounds

	Conclusions

