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Abstract

The products of linear forms in N variables are a subvariety of the space of the
degree forms of degree n in IV variables. At the end of the nineteenth century, Brill
and Gordan used invariant theory to design a method to derive a system of equations
defining this subvariety (Brill’s equations). We show how to compute efficiently Brill’s
equations, and compare them with the ideal of the subvariety of products of linear
forms.

Introduction

In the affine space of the forms of degree n in IV variables with complex coefficients, the
set of the products of n linear forms is a closed algebraic subvariety. It is proper as soon
as N > 2. We denote this subvariety with V(N;n) and its ideal with I(N;n). The affine
subvariety V (N, n) is the affine cone over a projective variety that we denote with C'(N;n).

At the end of the nineteenth century, Alexander von Brill looked for several ways of
deriving systems of equations of V(N;n).

His first solution uses invariant theory ([3]): a set of covariants is produced, whose
simultaneous vanishing is a necessary and sufficient condition for the complete factorizability
of a form. Gordan ([6]) distinguished in Brill’s set of covariants a particular one (Brill’s
covariant) that gives already a necessary and sufficient condition for complete factorisability.
He also gave geometric insight on the meaning of this covariant. More recently, the modern
representation-theoretic meaning of Brill’s covariant was exposed in [5].

Brill’s second idea (|2]), mainly developped by his student Junker ([8]) , consists in
using the diagonal invariants of the symmetric groups &, (often called multisymmetric
polynomials now). They are some kind of analogues of the symmetric polynomials. There
exist elementary multisymmetric polynomials that, contrary to the elementary symmetric
polynomials, are connected by algebraic relations. The latter are very closely related to the
equations of V(N;n). In [1], an algorithm to compute these relations was presented, and
it was explained how to deduce from it a generating set of I(N;n) through Grobner-basis
methods.

Brill’s covariant depends of, besides the coefficients of the basis form f, three sets of N
variables: z = (21,...,2n5),y = (Y1,---,YN),2 = (21,-..,2N), so it has has the following
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where the «, 3,y are multi-exponents of length N. The necessary and sufficient condition
for complete factorisability of f is given by the identical vanishing of B(f,z,y,z), that is
the simultaneous vanishing of all the coefficients by g (f), that are all forms of degree n 41
in the coefficients of f. These conditions are Brill’s equations.

In this article, after shortly recalling how is built Brill’s covariant, we explain how to
compute Brill’s equations efficiently. The problem is the following: Brill’s covariant is a
big polynomial, and we are only interested in knowing its coefficients separetely. In a naive
computation, the derivation of the whole covariant is a bottleneck. We show that classical
invariant theory gives the tool to bypass the bottleneck. Last, we exploit the results of the
achieved computations to compare Brill’s equations to I(N;n).

1 Brill’s covariant

We recall how Brill’s covariant is defined.
Before, we need to introduce a definition. Let g a from of degree k in the vector variable

z = (z1,...,zy). Introduce a twin vector variable y = (y1,...,yn) and decompose
k .
gz +y) => g (z,y),
i=0

where ¢(¥) (z, y) is the degree i homogeneous part in the z-variables (equivalently: the degree
(k — ) homogeneous part on the y variables). The ¢(*) are the polarizations of g.
Then:

e consider the polynomial in a variable u, monic, of degree n, whose term of degree i
has as coefficient:

Ci(f;2) = (1) fD(w;2) f(2) .
e Compute Py, (x), its power sum of degree n (for instance using the Newton identities).

e Brill’s covariant is the apolar covariant of f(x) and ps.(x), that is the object defined
from the polarizations of f and Py, as follows:

> (= 1)il(n — ) D (@5 9) P (s ).

=0

1

B(f;z;y;2) = i

Brill’s covariant is a polynomial, homogeneous of degree n + 1 in the coefficients of the
basis form f, homogeneous of degree n in the z-variables, homogeneous of degree n in the
y-variables and homogeneous of degree n(n — 1) in the z-variables.



2 The differential equation

Because B is a covariant, it fulfills some linear partial differential equations that can be used
to compute its coefficients by induction. This kind of properties has been well-known for a
long time in invariant theory (see [7], and [9] for a modern interpretation).

We shall here write the basis form f as

f= Zawl‘w,
w

where the w are multi-exponents of length N with coordinate sum n.
The fact that B is a covariant means precisely that for any linear automorphism 6 with
determinant 1 of CV, one has:

B(fe0,z,y,2) = B(f,0(z),0(y),0(2)). (1)
Specially, this holds when 6 is the one-parameter automorphism:
9t : (1)1, sy V1,0V, V541, - ) — (’Ul, ey V-1, + t’l)l,vj+1, .. )

for some j.
If Equality (1), with 6 = 6,, is derivated with respect to ¢, and if next it is set ¢ = 0,
then the following linar partial differential equations come:
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where

0
Aj= Z(l + wj) Aw+¢i—& E,
w

with §; the j-th vector of the canonical basis of Z". Extract from the last equation the
coefficient of z*y® 27, it is obtained:

Aj(basy) = (1 + @j)bate;—6 .8y + (14 Bj)basre;—e17 + (14 7j)basyre;—6r-

Now one can write it as follows:

(L +9)ba,g e -6 = Djbagy — (1 + @j)bate;—6 87y — (L4 Bi)basie; 617

It gives a way to compute all the by g, successively, from the b, g (n(n-1),0,..0))’s. These
quantities are precisely the xz,y-coefficients of B(f,z,y,&1); by analogy with the classical
case of the covariants of binary forms ([7]), we call it the source of Brill’s covariant.

This way the size of the biggest object in the computation has been considerably reduced:
the z-variables (in which there was a dependance of degree n(n — 1)) have been eliminated.



3 Experimental study of Brill’s equations

Some questions about Brill’s equations are:

e do they generate the ideal I(N,n) 7

e if not, do they at least define the projective subvariety C'(N;n) locally ? That is: do,
in any affine chart, the restrictions of Brill’s equations generate the ideal of the trace
of C(N,n) ?

One can use the achieved computations to investigate these properties.
For the first question, remark that all of Brill’s equations have degree exactly n + 1.
One can show ([4]) that the dimension of the degree n + 1 component of I(N;n) is at least

KI_KZ with
K1:<k1+n>, K2:<k2+n—1>,
n+1 n

n+N-1 n+ N
k1 = ko = .
=) e ()

When (N, n) = (3,4), Brill’s equations span a space of dimension 396, while K; — Ky = 1002.
When (N, n) = (4,3), they span a space of dimension 875, while K1 — Ky = 1085. So in both
cases, Brill’s equations don’t span the degree n + 1 component of I(N;n), and, a fortiori,
don’t generate the ideal.

Using Brill’s second idea, it is possible to compute a Grobner base for the ideal of the
trace of C(N;n) in an affine chart. This is detailed in [1|. By comparing this Grobner base
with the restrictions of Brill’s equations to the chart, one observes that when (N, n) = (3,4),
Brill’s equations cut out C'(N,n) locally, but when (N,n) = (4,3) they don’t (see [1] for the
computations, and [4] for an alternative way of obtaining this).

When (N, n) = (3,3), the span of Brill’s equations has dimension K; — Ko = 35. From
a Grobner base for the ideal of the trace of C'(N;n) one can always (in principle) compute
another Grobner base (through a Grébner walk) from which a Grobner base for I(N;n) is
then straightforwardly deduced. This is easy when (N,n) = (3,3) and shows that Brill’s
equations generate I(3;3).

This experiments can be (and will be) continued for bigger values of (N,n). Actually
the biggest step in the computation of Brill’s equations in the cases (N,n) = (4,4), (5, 3)
has already been performed.

where
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