Diameter of a set on the cylinder

F.J. Cobos J.C. Dana

C.I. Grima

A. Marquez

Departamento de Matematica Aplicada I
Universidad de Sevilla (Spain)

e-mail:{cobos|dana|grimalalmar}@cica.es

Fax:434-5-4557878

Abstract

We present an algorithm that computes the
diameter of a set of n points in the cylin-
der in optimal time O(nlogn); this algo-
rithm uses as a fundamental tool the far-
thest point Voronoi diagram.

1 Introduction

A well-known measure of the spread of a set
is its diameter (i.e., the maximum distance
between two points of the set). Intuitively,
a cluster with small diameter has elements
that are closely related, while the opposite
is true when the diameter is large. This
concept has led to several related problems
producing a remarkable amount of litera-
ture (see, for instance, [1, 6, 7, 17, 18]).
But most of the efforts have been concen-
trated in the plane or euclidean spaces, and,
in many cases the set of points in which we
are interested are not in an euclidean space
but confined to some surface (or a more gen-
eral space) and the usual techniques are not
valid anymore.

It is known that the computation of the
diameter of a set of n points in every
Fuclidean space requires (nlogn) oper-
ations. The usual procedure to compute
in optimal time the diameter in the plane
uses the fact that the diameter of a set of
points is equal to the diameter of its con-
vex hull [9], then it is enough to compute

all antipodal pairs and, in a convex poly-
gon, this task can be completed in linear
time, thus the total running time of the al-
gorithm is O(nlogn). Unfortunately, this
method cannot be used in the space since
the number of antipodal pairs in the space
is O(n?). And, in fact it is not known a
O(nlogn) algorithm in dimension 3 (as far
as we know, the best result for the run-
ning time of a deterministic algorithm for
the three-dimensional diameter problem is
an (O(nlog®n) algorithm due to Amato,
Goodrich and Ramos [2]). In this paper,
we will show that although the procedure
followed in the plane cannot be applied in
the cylinder, it is possible to get an opti-
mal algorithm in that surface by using the
farthest point Voronoi diagram.

The main obstacle in the cylinder is that
the convex hull of a set of points is, in gen-
eral, too big [4], and therefore, it is not use-
ful as a tool for other problems. In fact,
it is not difficult to find examples of sets
of points in the cylinder such that their di-
ameters are not equal to the diameters of
their convex hulls. Therefore, it is needed
another technique to get an optimal algo-
rithm, in this paper our goal is achieved by
using the farthest point Voronoi diagram in
the cylinder. The structure of this work
is as follows, next section will be devoted
to summarize some results of [4] about the
convex hull of a set of point in the cylinder.
In Section 3 we will develop the farthest-



point Voronoi diagram in the cylinder, and
in Section 4 we will present our algorithm.
We will finish with some conclusions, re-
lated problems and open questions.

2 Convex hull in the

cylinder

Several extensions of convexity to non-
planar surfaces (or to non-euclidean spaces)
have been considered in the literature. Most
of them are based on metrical concepts, and
more concretely, in the family of geodesics
of the surface. In order to describe the fam-
ily of geodesics, as usual, we identify the
cylinder with the quotient space obtained
from the plane by identifying those points
with the same ordinate such that their ab-
scissae differ in an integer number. With
the metric obtained from this definition, the
geodesics joining two points in the cylinder
can be identified with the segments in the
plane joining a fixed representative of one
of the points and all of the representatives
of the other point. We say that generatrices
{(x,y) 2 = 2o} and {(z,y) : @ = 2o+ 1/2}
are opposile generatrices.

Using this representation, we can de-
fine the strip of a set of points P =
{(x1,91), (x2,92)s ..., (¥n, ys)} in the cylin-
der with y; < 3 < ... < vy, as the open
strip O delimited by the maximal circles in
the extreme points of P with respect to the
ordinates (O = {(z,y) : 11 < ¥y < Yn}).
Equally, we define the m-top of P as the
minimal arc containing all points of P with
the ordinate y,, if that arc is shorter than a
half of the circle or the whole maximal cir-
cle if that arc is greater than a half of the
circle or the single point (x,,y,) otherwise
(equivalently the m-bottom ).

Then, as Hopf-Rinow’s Theorem [10]
proves that there exists always the shortest
geodesic joining two points, we can define

as in [14] that C' C S is metrically convex if
given two points of C' the minimum geodesic
in S joining those points is contained in C'.
And, as usual, given a set P of points in 5,
the metrically convex hull of P is the small-
est metrically convex set containing P.

It is possible to give the following charac-
terization of the metrically convex hull

Theorem 1 [4]. The metrically convex
hull of a set of N points P in the cylinder
is

1. The convex hull of P in the plane if P
is contained between two opposite gen-
eratrices.

2. The open strip delimited by the points
P union the m-top and the m-bottom
of P otherwise.

Moreover, this metrically convex hull can be
computed in O(Nlog N) time in the first
case and in linear time in the second case,
and it can be decided in which one of the
cases we are in linear time.

Thus, Theorem 1 says that in many cases
convex hull is too big for many purposes.
In fact Figure 1 shows a set of points in the
cylinder such that the diameter of the set is
not equal to the diameter of its convex hull.

/Q.

Figure 1

3 Voronoi diagrams on
the cylinder

As it has been said in the introduction, the
main tool in our algorithm to compute the



diameter will be the farthest point Voronoi
diagram. As in the euclidean spaces, given
a set of points S in the cylinder, we de-
note by V(i) the locus of points farther
to x; € S than to any other point of 5.
The set of all those loci is called the far-
thest point Voronoi diagram of S, vors(S).
Several methods to compute that structure
are known in the plane and there exists
a direct method, based on the divide and
conquer scheme analogous to the algorithm
for the closest-point diagram, which achieve
the result in optimal O(nlogn) time. On
the other hand, Mazén presented in [13] an
optimal algorithm to compute the closest-
point Voronoi diagram of a set of points in
the cylinder. Her method to considers three
copies of the cylinder,and it constructs the
diagram of the sets of 3n points, the dia-
gram in the cylinder is the resulting dia-
gram in the central copy. Therefore, it is
not difficult to see that this method can-
not be used to generate the farthest-point
Voronoi diagram in the cylinder. Then we
will try the divide and conquer approach.
Obviously, the first step will be to con-
struct the bisector between two points.
This can be done using Mazén’s methods

Lemma 2 The bisector of the points P =
(x1,91), @ = (x2,y2) in the cylinder with
ry < g with y1 < ya, s given by the bi-
sectors in the plane of the points P and
Q, @ and P' = (21 + 1,11) and P and
Q' = (x2—1,y2) (see Figure 2).

Figure 2

As far as the key step in the divide and
conquer algorithm is to construct the divid-
ing chain, we give some properties of that

chain. In this order, we suppose that the
original set S has been split in two parts
Sy and Sy by a parallel ¢ and if z; € S
J = 1,2, we denote by V{(z;) to its region
in vors(S;). Then,

Lemma 3 if Vi (2;) N Vi(x;)Ne#0, then
the section of the bisector between x; and z;
contained in Vi (x;) NV (x;) appears in the
dividing chain of S1 and Ss.

Lemma 4 The orthogonal projection of the
dividing chain of S1 y Se on ¢ is a homeo-
morphism

Lemma 3 is the key to construct an al-
gorithm in the cylinder similar to the algo-
rithm in the plane.

Algorithm DIVID-CHAIN(S7, S2, ¢):

(1) Find an initial point in the dividing
chain by using Lemma 3.

(2) Construct the bisector between x and y.
(3) Determine the portion of bisector com-
puted in (2) that is in V! (2) N V7(y).

(4) Compute the extremes of the portion
already computed of the dividing chain and
update the points = and y.

Lemma 5
Algorithm DIVID-CHAIN (51, Sa, ¢) computes
the dividing chain between Sy and S,, sub-
sets of S linearly separated by parallel ¢ in
linear time.

Then we conclude

Theorem 6 The farthest-point Voronoi di-
agram of n points in the cylinder can be con-
structed in optimal O(nlogn) time.

4 Diameter of a sets of
points in the cylinder

Obviously, if the diameter of S is d(u, v) for
certain u,v € S then u € V¢(v). Therefore,



the algorithm to compute the diameter will
be
Algorithm DIAMETER(.S)
(1) Construct the farthest-point Voronoi di-
agram of S.
(2) Localize in which region of the diagram
is each point of S.
(3) Compute the distance between each
point of S and the point defining the re-
gion obtained in (2).
(4) Report the maximum obtained in (3) as
the diameter.

It is straightforward to check the validity
of the algorithm DIAMETER(S) and then we
have

Theorem 7 [t is possible to compute the
diameter of a set of n points in the cylinder
in optimal O(nlogn).

5 Open questions

Although an optimal algorithm to compute
the diameter is presented, some open ques-
tion arise related to the problem considered
in this work.

First of all, it would be interested to find
a structure that, as the convex hull in the
plane, allows to find from it the diameter
in the cylinder in linear time (observe that
from the farthest-point Voronoi diagram we
find the diameter in O(n log n) time). More-
over, it seems to be that our technique can
be applied to other surfaces but building the
farthest-point Voronoi diagram could be a
difficult task.

Another interesting question that has
been studied extensively in Euclidean
spaces is, how many times can the maxi-
mum distance between n points occur? It
is known that in the plane it can occur at
most n times [5], and in the space 2n — 2
times [8].
the same as in the plane since it is possi-
ble to give a structure where the maximum

The case of the cylinder is not

can occur 4/3n. This structure split the
n points in three subsets of n/3 points each
and each of those subsets are a regular poly-
gon in a parallel in such a way that those
polygons in the top and in the bottom par-
allels have their vertices on the same merid-
ians and the other polygon has its vertices
on the equidistant meridians to those con-
sidered before, see Figure 3.

Figure 3

It remains to solve if this example is op-
timal or to find better bounds.

On the other hand, it is possible to
answer completely a related question how
many times can the maximum distance be-
tween n points occur?

Theorem 8 The minimum distance be-
tween n points in the cylinder can occur at
most 3n — 6 times.

Proof: Tt is easy to see that the graph of the
minimum distance between points in the
cylinder is planar. Thus, by Euler’s formula
3n—6 is an upperbound and Figure 4 shows
that this upperbound can be achieved. O

Figure 4
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