
Diameter of a set on the cylinderF.J. Cobos J.C. Dana C.I. Grima A. M�arquezDepartamento de Matem�atica Aplicada IUniversidad de Sevilla (Spain)e-mail:fcobos|dana|grima|almarg@cica.esFax:+34-5-4557878AbstractWe present an algorithm that computes thediameter of a set of n points in the cylin-der in optimal time O(n log n); this algo-rithm uses as a fundamental tool the far-thest point Voronoi diagram.1 IntroductionA well-known measure of the spread of a setis its diameter (i.e., the maximum distancebetween two points of the set). Intuitively,a cluster with small diameter has elementsthat are closely related, while the oppositeis true when the diameter is large. Thisconcept has led to several related problemsproducing a remarkable amount of litera-ture (see, for instance, [1, 6, 7, 17, 18]).But most of the e�orts have been concen-trated in the plane or euclidean spaces, and,in many cases the set of points in which weare interested are not in an euclidean spacebut con�ned to some surface (or a more gen-eral space) and the usual techniques are notvalid anymore.It is known that the computation of thediameter of a set of n points in everyEuclidean space requires 
(n log n) oper-ations. The usual procedure to computein optimal time the diameter in the planeuses the fact that the diameter of a set ofpoints is equal to the diameter of its con-vex hull [9], then it is enough to compute

all antipodal pairs and, in a convex poly-gon, this task can be completed in lineartime, thus the total running time of the al-gorithm is O(n log n). Unfortunately, thismethod cannot be used in the space sincethe number of antipodal pairs in the spaceis O(n2). And, in fact it is not known aO(n log n) algorithm in dimension 3 (as faras we know, the best result for the run-ning time of a deterministic algorithm forthe three-dimensional diameter problem isan (O(n log3 n) algorithm due to Amato,Goodrich and Ramos [2]). In this paper,we will show that although the procedurefollowed in the plane cannot be applied inthe cylinder, it is possible to get an opti-mal algorithm in that surface by using thefarthest point Voronoi diagram.The main obstacle in the cylinder is thatthe convex hull of a set of points is, in gen-eral, too big [4], and therefore, it is not use-ful as a tool for other problems. In fact,it is not di�cult to �nd examples of setsof points in the cylinder such that their di-ameters are not equal to the diameters oftheir convex hulls. Therefore, it is neededanother technique to get an optimal algo-rithm, in this paper our goal is achieved byusing the farthest point Voronoi diagram inthe cylinder. The structure of this workis as follows, next section will be devotedto summarize some results of [4] about theconvex hull of a set of point in the cylinder.In Section 3 we will develop the farthest-1



point Voronoi diagram in the cylinder, andin Section 4 we will present our algorithm.We will �nish with some conclusions, re-lated problems and open questions.2 Convex hull in thecylinderSeveral extensions of convexity to non-planar surfaces (or to non-euclidean spaces)have been considered in the literature. Mostof them are based on metrical concepts, andmore concretely, in the family of geodesicsof the surface. In order to describe the fam-ily of geodesics, as usual, we identify thecylinder with the quotient space obtainedfrom the plane by identifying those pointswith the same ordinate such that their ab-scissae di�er in an integer number. Withthe metric obtained from this de�nition, thegeodesics joining two points in the cylindercan be identi�ed with the segments in theplane joining a �xed representative of oneof the points and all of the representativesof the other point. We say that generatricesf(x; y) : x = x0g and f(x; y) : x = x0+1=2gare opposite generatrices.Using this representation, we can de-�ne the strip of a set of points P =f(x1; y1); (x2; y2); : : : ; (xn; yn)g in the cylin-der with y1 � y2 � : : : � yn as the openstrip O delimited by the maximal circles inthe extreme points of P with respect to theordinates (O = f(x; y) : y1 < y < yng).Equally, we de�ne the m-top of P as theminimal arc containing all points of P withthe ordinate yn if that arc is shorter than ahalf of the circle or the whole maximal cir-cle if that arc is greater than a half of thecircle or the single point (xn; yn) otherwise(equivalently the m-bottom ).Then, as Hopf-Rinow's Theorem [10]proves that there exists always the shortestgeodesic joining two points, we can de�ne

as in [14] that C � S is metrically convex ifgiven two points of C the minimumgeodesicin S joining those points is contained in C.And, as usual, given a set P of points in S,the metrically convex hull of P is the small-est metrically convex set containing P .It is possible to give the following charac-terization of the metrically convex hullTheorem 1 [4]. The metrically convexhull of a set of N points P in the cylinderis1. The convex hull of P in the plane if Pis contained between two opposite gen-eratrices.2. The open strip delimited by the pointsP union the m-top and the m-bottomof P otherwise.Moreover, this metrically convex hull can becomputed in O(N logN) time in the �rstcase and in linear time in the second case,and it can be decided in which one of thecases we are in linear time.Thus, Theorem 1 says that in many casesconvex hull is too big for many purposes.In fact Figure 1 shows a set of points in thecylinder such that the diameter of the set isnot equal to the diameter of its convex hull.s ssss s sQP Figure 13 Voronoi diagrams onthe cylinderAs it has been said in the introduction, themain tool in our algorithm to compute the2



diameter will be the farthest point Voronoidiagram. As in the euclidean spaces, givena set of points S in the cylinder, we de-note by Vf (i) the locus of points fartherto xi 2 S than to any other point of S.The set of all those loci is called the far-thest point Voronoi diagram of S, vorf(S).Several methods to compute that structureare known in the plane and there existsa direct method, based on the divide andconquer scheme analogous to the algorithmfor the closest-point diagram, which achievethe result in optimal O(n log n) time. Onthe other hand, Maz�on presented in [13] anoptimal algorithm to compute the closest-point Voronoi diagram of a set of points inthe cylinder. Her method to considers threecopies of the cylinder,and it constructs thediagram of the sets of 3n points, the dia-gram in the cylinder is the resulting dia-gram in the central copy. Therefore, it isnot di�cult to see that this method can-not be used to generate the farthest-pointVoronoi diagram in the cylinder. Then wewill try the divide and conquer approach.Obviously, the �rst step will be to con-struct the bisector between two points.This can be done using Maz�on's methodsLemma 2 The bisector of the points P =(x1; y1), Q = (x2; y2) in the cylinder withx1 < x2 with y1 < y2, is given by the bi-sectors in the plane of the points P andQ, Q and P 0 = (x1 + 1; y1) and P andQ0 = (x2 � 1; y2) (see Figure 2).s s s sP Q Q0P 0Figure 2As far as the key step in the divide andconquer algorithm is to construct the divid-ing chain, we give some properties of that

chain. In this order, we suppose that theoriginal set S has been split in two partsS1 and S2 by a parallel c and if xi 2 Sjj = 1; 2, we denote by V jf (xi) to its regionin vorf (Sj). Then,Lemma 3 if V 1f (xi)\ V 2f (xj) \ c 6= ;, thenthe section of the bisector between xi and xjcontained in V 1f (xi)\V 2f (xj) appears in thedividing chain of S1 and S2.Lemma 4 The orthogonal projection of thedividing chain of S1 y S2 on c is a homeo-morphismLemma 3 is the key to construct an al-gorithm in the cylinder similar to the algo-rithm in the plane.Algorithm divid-chain(S1; S2; c):(1) Find an initial point in the dividingchain by using Lemma 3.(2) Construct the bisector between x and y.(3) Determine the portion of bisector com-puted in (2) that is in V 1f (x) \ V 2f (y).(4) Compute the extremes of the portionalready computed of the dividing chain andupdate the points x and y.Lemma 5Algorithm divid-chain(S1; S2; c) computesthe dividing chain between S1 and S2, sub-sets of S linearly separated by parallel c inlinear time.Then we concludeTheorem 6 The farthest-point Voronoi di-agram of n points in the cylinder can be con-structed in optimal O(n log n) time.4 Diameter of a sets ofpoints in the cylinderObviously, if the diameter of S is d(u; v) forcertain u; v 2 S then u 2 Vf (v). Therefore,3



the algorithm to compute the diameter willbeAlgorithm Diameter(S)(1) Construct the farthest-point Voronoi di-agram of S.(2) Localize in which region of the diagramis each point of S.(3) Compute the distance between eachpoint of S and the point de�ning the re-gion obtained in (2).(4) Report the maximum obtained in (3) asthe diameter.It is straightforward to check the validityof the algorithmDiameter(S) and then wehaveTheorem 7 It is possible to compute thediameter of a set of n points in the cylinderin optimal O(n log n).5 Open questionsAlthough an optimal algorithm to computethe diameter is presented, some open ques-tion arise related to the problem consideredin this work.First of all, it would be interested to �nda structure that, as the convex hull in theplane, allows to �nd from it the diameterin the cylinder in linear time (observe thatfrom the farthest-point Voronoi diagram we�nd the diameter inO(n log n) time). More-over, it seems to be that our technique canbe applied to other surfaces but building thefarthest-point Voronoi diagram could be adi�cult task.Another interesting question that hasbeen studied extensively in Euclideanspaces is, how many times can the maxi-mum distance between n points occur? Itis known that in the plane it can occur atmost n times [5], and in the space 2n � 2times [8]. The case of the cylinder is notthe same as in the plane since it is possi-ble to give a structure where the maximum

can occur 4=3n. This structure split then points in three subsets of n=3 points eachand each of those subsets are a regular poly-gon in a parallel in such a way that thosepolygons in the top and in the bottom par-allels have their vertices on the same merid-ians and the other polygon has its verticeson the equidistant meridians to those con-sidered before, see Figure 3.s s ssss Figure 3It remains to solve if this example is op-timal or to �nd better bounds.On the other hand, it is possible toanswer completely a related question howmany times can the maximum distance be-tween n points occur?Theorem 8 The minimum distance be-tween n points in the cylinder can occur atmost 3n� 6 times.Proof: It is easy to see that the graph of theminimum distance between points in thecylinder is planar. Thus, by Euler's formula3n�6 is an upperbound and Figure 4 showsthat this upperbound can be achieved. 2ttt ttt ttt ttFigure 4References[1] S.G. Akl and G.T. Toussaint.E�cient convex hull algorithms for4
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