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Abstract

We study the relationship between some alter-
native definitions of the concept of the width
of a convex set on the sphere. Those relations
allow to characterize whether a convex set on
the sphere can pass through a spherical interval
by rigid motions. Finally, we give an optimal
algorithm to compute the width on the sphere.
Key words: Width, sphere, rigid motions,
convex sets.

1 Introduction

In the plane, the width of a finite set of points
is the minimum distance between parallel lines
of support of the set [8]. This concept and
the computation of the width of a finite set of
points have applications in several fields such
as in robotic (more specifically in collision—
avoidance problems [18]), in approximating
polygonal curves (see [9], [10] and [11]), etc.
Moreover, the width of a set is familiar in Op-
erations Research as a minimax location prob-
lem, in which we seek a line (the bisector to
the lines of support given the width) whose
greatest distance to any point of the set is a
minimum.

The definition of the width of a finite set in
the plane can be extended to Euclidean spaces
of dimension greater than two. So, if we con-
sider a finite set of points P in the space RY,
the width of P is the minimum distance be-
tween parallel hyperplanes of support of P [8].

As the width of a finite set in the plane is
the width of its convex hull [8], many authors

have studied the width of convex polygons,
because convex polygons are simple sets and
they have many applications in pattern recog-
nition [1], image processing [14] and stock cut-
ting and allocation (see [5], [16] and [6]). By
using the rotating caliper technique [15] or ge-
ometric transforms [3] it is possible to find the
width of a convex polygons in linear time and
space.

We will see that it is possible to adapt the
rotating caliper technique to design an algo-
rithm for computing the width of a set in the
sphere. The study of the width in non-planar
surfaces is motived by motion plannig [13], and
more concretely a subfield of motion planning
of considerable practical interest as it is plan-
ning the motion of an articulated robot arm,
since, as it is well known, in most cases the
points accessible by them are not, in general,
in the plane but in a non—planar surface.

G. Strang [17] proved that the width of a
convex set in the plane is equivalent to the con-
cept of door of the set. The door of a set is
the minimum closed interval such that the set
can pass through it by a continuous family of
rigid motions (translations combined with ro-
tations). Nevertheless, in dimension three this
is not true and H. Stark has constructed con-
vex sets which can pass through a door, either
square or circular, although no projection of
the set will fit in the doorway (see [17]). We
will see that, with regard to this problem, the
behavior of the sphere is exactly the same as
in the plane.

In addition to the problem of the door of
a set, there exist another problems that can



be solved knowing the width of a set. For in-
stance, it is easy to see that the line center
(that line minimizing the maximum distance to
each point of a set) is the median (the equidis-
tance parallel to the a pair of parallels) of the
pair of support giving the width.

The goal of this paper is to try to general-
ize these concepts to convex sets on the sphere
and, in addition, to seek necessary and suf-
ficient conditions that those convex sets may
verify to pass through a spherical interval by
rigid motions on this surface, and the relation-
ships between the concepts described above.
These conditions and relationships allow us to
design an algorithm which solves the problem
of the width of a finite set of points on the
sphere.

Our generalizations will use the concept of
convex set on the sphere. We can define as
in [12] that a set C in the sphere is convex if
given two points of €' the minimum geodesic
joining these points is contained in C'.

The angular length of a geodesic arc joining
the points P and ) on the sphere is the angle
between the two radii joining the center of the
sphere with the points P and () respectively.
Observe that no convex set on the sphere con-
tains a geodesic arc with angular length greater

than i.
2

2 Width on the sphere

Before trying to generalize the concept of width
of a finite set in the plane to the sphere, if we
want to give a similar treatment of this idea, we
will examine several alternative definitions that
are considered in the plane, keeping in mind
that we will try to preserve those properties
when trying the extension to the sphere. So,
firstly, we would replace the idea of lines of
support of a set by geodesics of support of a
set. In this way, if given a convex set C' on
the sphere, we will call meridians of support
of C' to the meridians which intersect C' and
leave the set on one hemisphere. We will call
lune of support of C' to the region delimited by
two meridians of support of € that contains
C'. As, in the sphere, two different meridians

have two points in common and they define
only one great circle called equator, thus a lune
of support defines one equatorial arc.

According to these definitions, we can say
that, given a convex set ' on the sphere, the
time width H(C') of C' is the minimum length
between the equatorial arcs defined associated
to lunes of support of C'.

The main difference between this definition
and the definition of width in the plane is that,
in the plane, two parallel lines of support have
empty intersection, whereas on the sphere two
meridians of support have two points in com-
mon. If we want to preserve the property that
the arcs of support of a convex set have empty
intersection, similarly as in the plane, we could
give another possible definition. Given a con-
vex set (' on the sphere, we will call parallel
of support of C' to a parallel which intersects
(' and leaves the set on one cap, where a cap
is a part of the sphere divided by this paral-
lel. If we use the idea of pair of parallels of
support, we will conserve the concept of par-
allelism that we had in the plane (in the sense
that they have empty intersection), but note
that parallels in the sphere are not geodesics.

According to the definition above, we can
say that given a convex set C' on the sphere,
the tropical width 7(C') of C' is the minimum
distance between all possible pairs of parallels
of support of C'. Observe, that with this defi-
nition the tropical width of a set in the sphere
can be used, as in the plane, in Operations Re-
search as a minimax location problem, in which
we seek a great circle (the equator of the paral-
lels of support given the tropical width) whose
greatest distance to any point of the set is a
minimum.

On the other hand, and following the pa-
per of Strang [17] who proved that the width
of a convex set in the plane is the minimum
length of an closed interval for the set can pass
through it by a continuous family of rigid mo-
tions, we can give other definitions of width in
the sphere as follows, given a convex set (' on
the sphere, the door P(C') of C is the mini-
mum length between all possible closed arcs of
meridians for the set C' can pass through them



by continuous family of rigid motions (transla-
tions combined with rotations) on the sphere.

G. Strang proved that the width of a con-
vex set coincides with its door in the plane.
But, as it was pointed out in the introduc-
tion, in dimension three this is not true and H.
Stark has constructed convex sets which can
pass through a door, either square or circular,
although no projection of the set will fit in the
doorway (see [17]. Thus it is interesting to ask
if the behavior of the sphere is, in this point,
similar to the plane or to the three dimensional
space.

In the sphere, we have the following proper-
ties

Lemma 1 Let C be a convez set on the sphere.

Then, P(C) < T(C).

Proof: 1t suffices to consider the arc of meridi-
ans orthogonal and contained between the par-
allels which define 7(C'). The length of this arc
is greater or equal than P(C') and, obviously,
less or equal than 7(C). O

Lemma 2 Let C' be a convez set on the sphere.

Then, T(C') < H(CO).

Proof: Let 'H be the lune that defines H(C').
This lune is defined by meridian arcs which
intersect C'in two points P and (). We consider
the parallels tangent to €' in the points P and
). The distance 7* between these parallels is
equal to H(C'), so T(C) < T* = H(C). 0

Therefore, P(C) < 7(C) < H(C). Next
theorem says, that, as it happens in the plane,
these three numbers agree in the sphere.

Theorem 3 A convex set C' on the sphere can
pass through a meridian arc of length P(C') if
and only if H(C) < P(C).

Proof: If H(C') < P(C') and as C' is contained
in the lune which its equatorial arc has length
H(C'), obviously C can pass through this equa-
torial arc by rigid motions. To prove the con-
verse, assume first that the boundary 0C of ¢
is smooth, through every boundary point there
is a unique tangent line on the sphere, and it

varies continuously along 0C'. Let I be an arc
of meridian of length P(C') and denote by S
the spherical surface. As C' can pass through
I, it is possible to define a continuous compo-
sition of motions M : [0,1] — S where M (0)
is the situation of C' before going into [ and
M(1) the situation after passing through I.
For all t € [0, 1], we can define two applications
f1:10,1] = [0,7] and f3 : [0,1] — [0, 7] as fol-
lows: fi(t) and fi(t) are the angular lengths
between the points P; and P and the points
P, and P respectively, where P; and P, are
the intersection of dC with the arc I and P is
the intersection between the tangents to €' in
the points Py and P, (see Figure 1).

f1(¥)

f2(t)

Figure 1

The application f; + f5 : [0,1] — [0,27] is
continuous and f1(0) + f2(0) = 0 and fi(1) +
f2(1) = 27, so there exists t* € [0, 1] such that
[it) + fo(t) = 7

If f1(t") = fo(t") =

arc which defines H(C') is contained in I, so

, then the meridian

N3

H(C) < P(C). Else, fi(t*) — g = g_ Falt).
Suppose that fi(t*) > g and so fo(t7) < g

Then, the situation is as in Figure 2.



Py

Figure 2

As the angles in the points A and B are of
ninety degree, the length of the meridian arc
joining P and @ is greater or equal than the
length of the meridian arc joining A and B.
So, H(C') < P(C)

The conclusion remains true for a convex set
(' even if C is not smooth. We will proceed
introducing a sequence of smooth convex sub-
sets (), converging to C'. As (' passes through
I so do the €, and their time widths must sat-
isty H(C,,) < P(C). Therefore, H(C) < P(C)

and the theorem is proved. |

Then, the three definitions of width we have
considered agree and we can talk about the
width of a set.

As an immediate consequence of Theorem 3
we get

Corollary 4 The minimum equatorial arc of
a convex set C' is included in C'.

3 Algorithm of the width on
the sphere

Recall, that in the plane the width of a con-
vex polygon is the minimum distance between
parallel lines of support passing through an
antipodal vertex-edge pair (to each antipodal
vertex-edge pair, we associated the lune define
by the meridian containing the edge and that
containing the vertex such that the equator arc
joins the vertex with the edge). In the sphere
this is not true and it can be achieved in an an-
tipodal edge-edge pair as Figure 3 shows, but
we have

Lemma 5 The width of a convex polygon is
the minimum distance between meridians of
support passing through either an antipodal
vertex-edge pair or an edge-edge pair.

Proof: It is an immediate consequence of
Corollary 4. O

Figure 3

In any case, Lemma 5 says us that it is pos-
sible to adapt the rotating caliper algorithm
to find the width of a convex polygon C' (the
number of events is linear). Thus we can give
the following algorithm
WipTH((C')

1.- Find an initial antipodal vertex-edge pair.
2.- If the associated lune to the vertex-edge pair
contains C', compute its equator arc, otherwise
compute the equator arc of the pair edge-edge
associated to the original vertex-edge pair (this
edge-edge pair is defined from the vertex-edge



pair by considering the edge incident with the
vertex that is not contained in the lune).
3.- Use rotating caliper to generate all pairs as
in (1)-(2).
4.- Compute the minimum obtained in previ-
ous steps.

It is straightforward to check the following
result

Theorem 6 Algorithm wiDTH(C') computes
the width of a convex polygon C' in optimal lin-
ear time.
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