
The width of a convex set on the sphereF.J. Cobos J.C. Dana C.I. Grima A. M�arquezDepartamento de Matem�atica Aplicada IUniversidad de Sevilla (Spain)e-mail:fcobos|dana|grima|almarg@cica.esFax: +34-5-4557878AbstractWe study the relationship between some alter-native de�nitions of the concept of the widthof a convex set on the sphere. Those relationsallow to characterize whether a convex set onthe sphere can pass through a spherical intervalby rigid motions. Finally, we give an optimalalgorithm to compute the width on the sphere.Key words: Width, sphere, rigid motions,convex sets.1 IntroductionIn the plane, the width of a �nite set of pointsis the minimum distance between parallel linesof support of the set [8]. This concept andthe computation of the width of a �nite set ofpoints have applications in several �elds suchas in robotic (more speci�cally in collision{avoidance problems [18]), in approximatingpolygonal curves (see [9], [10] and [11]), etc.Moreover, the width of a set is familiar in Op-erations Research as a minimax location prob-lem, in which we seek a line (the bisector tothe lines of support given the width) whosegreatest distance to any point of the set is aminimum.The de�nition of the width of a �nite set inthe plane can be extended to Euclidean spacesof dimension greater than two. So, if we con-sider a �nite set of points P in the space Rd,the width of P is the minimum distance be-tween parallel hyperplanes of support of P [8].As the width of a �nite set in the plane isthe width of its convex hull [8], many authors

have studied the width of convex polygons,because convex polygons are simple sets andthey have many applications in pattern recog-nition [1], image processing [14] and stock cut-ting and allocation (see [5], [16] and [6]). Byusing the rotating caliper technique [15] or ge-ometric transforms [3] it is possible to �nd thewidth of a convex polygons in linear time andspace.We will see that it is possible to adapt therotating caliper technique to design an algo-rithm for computing the width of a set in thesphere. The study of the width in non-planarsurfaces is motived by motion plannig [13], andmore concretely a sub�eld of motion planningof considerable practical interest as it is plan-ning the motion of an articulated robot arm,since, as it is well known, in most cases thepoints accessible by them are not, in general,in the plane but in a non{planar surface.G. Strang [17] proved that the width of aconvex set in the plane is equivalent to the con-cept of door of the set. The door of a set isthe minimum closed interval such that the setcan pass through it by a continuous family ofrigid motions (translations combined with ro-tations). Nevertheless, in dimension three thisis not true and H. Stark has constructed con-vex sets which can pass through a door, eithersquare or circular, although no projection ofthe set will �t in the doorway (see [17]). Wewill see that, with regard to this problem, thebehavior of the sphere is exactly the same asin the plane.In addition to the problem of the door ofa set, there exist another problems that can1



be solved knowing the width of a set. For in-stance, it is easy to see that the line center(that line minimizing the maximum distance toeach point of a set) is the median (the equidis-tance parallel to the a pair of parallels) of thepair of support giving the width.The goal of this paper is to try to general-ize these concepts to convex sets on the sphereand, in addition, to seek necessary and suf-�cient conditions that those convex sets mayverify to pass through a spherical interval byrigid motions on this surface, and the relation-ships between the concepts described above.These conditions and relationships allow us todesign an algorithm which solves the problemof the width of a �nite set of points on thesphere.Our generalizations will use the concept ofconvex set on the sphere. We can de�ne asin [12] that a set C in the sphere is convex ifgiven two points of C the minimum geodesicjoining these points is contained in C.The angular length of a geodesic arc joiningthe points P and Q on the sphere is the anglebetween the two radii joining the center of thesphere with the points P and Q respectively.Observe that no convex set on the sphere con-tains a geodesic arc with angular length greaterthan �2 .2 Width on the sphereBefore trying to generalize the concept of widthof a �nite set in the plane to the sphere, if wewant to give a similar treatment of this idea, wewill examine several alternative de�nitions thatare considered in the plane, keeping in mindthat we will try to preserve those propertieswhen trying the extension to the sphere. So,�rstly, we would replace the idea of lines ofsupport of a set by geodesics of support of aset. In this way, if given a convex set C onthe sphere, we will call meridians of supportof C to the meridians which intersect C andleave the set on one hemisphere. We will calllune of support of C to the region delimited bytwo meridians of support of C that containsC. As, in the sphere, two di�erent meridians

have two points in common and they de�neonly one great circle called equator, thus a luneof support de�nes one equatorial arc.According to these de�nitions, we can saythat, given a convex set C on the sphere, thetime width H(C) of C is the minimum lengthbetween the equatorial arcs de�ned associatedto lunes of support of C.The main di�erence between this de�nitionand the de�nition of width in the plane is that,in the plane, two parallel lines of support haveempty intersection, whereas on the sphere twomeridians of support have two points in com-mon. If we want to preserve the property thatthe arcs of support of a convex set have emptyintersection, similarly as in the plane, we couldgive another possible de�nition. Given a con-vex set C on the sphere, we will call parallelof support of C to a parallel which intersectsC and leaves the set on one cap, where a capis a part of the sphere divided by this paral-lel. If we use the idea of pair of parallels ofsupport, we will conserve the concept of par-allelism that we had in the plane (in the sensethat they have empty intersection), but notethat parallels in the sphere are not geodesics.According to the de�nition above, we cansay that given a convex set C on the sphere,the tropical width T (C) of C is the minimumdistance between all possible pairs of parallelsof support of C. Observe, that with this de�-nition the tropical width of a set in the spherecan be used, as in the plane, in Operations Re-search as a minimax location problem, in whichwe seek a great circle (the equator of the paral-lels of support given the tropical width) whosegreatest distance to any point of the set is aminimum.On the other hand, and following the pa-per of Strang [17] who proved that the widthof a convex set in the plane is the minimumlength of an closed interval for the set can passthrough it by a continuous family of rigid mo-tions, we can give other de�nitions of width inthe sphere as follows, given a convex set C onthe sphere, the door P(C) of C is the mini-mum length between all possible closed arcs ofmeridians for the set C can pass through them2



by continuous family of rigid motions (transla-tions combined with rotations) on the sphere.G. Strang proved that the width of a con-vex set coincides with its door in the plane.But, as it was pointed out in the introduc-tion, in dimension three this is not true and H.Stark has constructed convex sets which canpass through a door, either square or circular,although no projection of the set will �t in thedoorway (see [17]. Thus it is interesting to askif the behavior of the sphere is, in this point,similar to the plane or to the three dimensionalspace.In the sphere, we have the following proper-tiesLemma 1 Let C be a convex set on the sphere.Then, P(C) � T (C).Proof: It su�ces to consider the arc of meridi-ans orthogonal and contained between the par-allels which de�ne T (C). The length of this arcis greater or equal than P(C) and, obviously,less or equal than T (C). 2Lemma 2 Let C be a convex set on the sphere.Then, T (C) � H(C).Proof: Let H be the lune that de�nes H(C).This lune is de�ned by meridian arcs whichintersect C in two points P and Q. We considerthe parallels tangent to C in the points P andQ. The distance T � between these parallels isequal to H(C), so T (C) � T � = H(C). 2Therefore, P(C) � T (C) � H(C). Nexttheorem says, that, as it happens in the plane,these three numbers agree in the sphere.Theorem 3 A convex set C on the sphere canpass through a meridian arc of length P(C) ifand only if H(C) � P(C).Proof: If H(C) � P(C) and as C is containedin the lune which its equatorial arc has lengthH(C), obviously C can pass through this equa-torial arc by rigid motions. To prove the con-verse, assume �rst that the boundary @C of Cis smooth, through every boundary point thereis a unique tangent line on the sphere, and it

varies continuously along @C. Let I be an arcof meridian of length P(C) and denote by Sthe spherical surface. As C can pass throughI , it is possible to de�ne a continuous compo-sition of motions M : [0; 1] ! S where M(0)is the situation of C before going into I andM(1) the situation after passing through I .For all t 2 [0; 1], we can de�ne two applicationsf1 : [0; 1]! [0; �] and f2 : [0; 1]! [0; �] as fol-lows: f1(t) and f2(t) are the angular lengthsbetween the points P1 and P and the pointsP2 and P respectively, where P1 and P2 arethe intersection of @C with the arc I and P isthe intersection between the tangents to C inthe points P1 and P2 (see Figure 1).
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Figure 1The application f1 + f2 : [0; 1] ! [0; 2�] iscontinuous and f1(0) + f2(0) = 0 and f1(1) +f2(1) = 2�, so there exists t� 2 [0; 1] such thatf1(t�) + f2(t�) = �.If f1(t�) = f2(t�) = �2 , then the meridianarc which de�nes H(C) is contained in I , soH(C) � P(C). Else, f1(t�)� �2 = �2 � f2(t�).Suppose that f1(t�) > �2 and so f2(t�) < �2 .Then, the situation is as in Figure 2.3
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sFigure 2As the angles in the points A and B are ofninety degree, the length of the meridian arcjoining P and Q is greater or equal than thelength of the meridian arc joining A and B.So, H(C) � P(C)The conclusion remains true for a convex setC even if @C is not smooth. We will proceedintroducing a sequence of smooth convex sub-sets Cn converging to C. As C passes throughI so do the Cn and their time widths must sat-isfy H(Cn) < P(C). Therefore, H(C) � P(C)and the theorem is proved. 2Then, the three de�nitions of width we haveconsidered agree and we can talk about thewidth of a set.As an immediate consequence of Theorem 3we getCorollary 4 The minimum equatorial arc ofa convex set C is included in C.

3 Algorithm of the width onthe sphereRecall, that in the plane the width of a con-vex polygon is the minimum distance betweenparallel lines of support passing through anantipodal vertex-edge pair (to each antipodalvertex-edge pair, we associated the lune de�neby the meridian containing the edge and thatcontaining the vertex such that the equator arcjoins the vertex with the edge). In the spherethis is not true and it can be achieved in an an-tipodal edge-edge pair as Figure 3 shows, butwe haveLemma 5 The width of a convex polygon isthe minimum distance between meridians ofsupport passing through either an antipodalvertex-edge pair or an edge-edge pair.Proof: It is an immediate consequence ofCorollary 4. 2
Figure 3In any case, Lemma 5 says us that it is pos-sible to adapt the rotating caliper algorithmto �nd the width of a convex polygon C (thenumber of events is linear). Thus we can givethe following algorithmWidth(C)1.- Find an initial antipodal vertex-edge pair.2.- If the associated lune to the vertex-edge paircontains C, compute its equator arc, otherwisecompute the equator arc of the pair edge-edgeassociated to the original vertex-edge pair (thisedge-edge pair is de�ned from the vertex-edge4



pair by considering the edge incident with thevertex that is not contained in the lune).3.- Use rotating caliper to generate all pairs asin (1)-(2).4.- Compute the minimum obtained in previ-ous steps.It is straightforward to check the followingresultTheorem 6 Algorithm width(C) computesthe width of a convex polygon C in optimal lin-ear time.References[1] S. G. Akl and G. T. Toussaint. Ef-�cient convex hull algorithms for patternrecognition applications. Proc. 4th. Int.Joint Conf. on Pattern Recognition (Kyoto,Japan). 1978, pp. 483{487.[2] J. C. Dana, C. I. Grima and A.M�arquez. Convex hull in non{planar sur-faces. 13th European Workshop on Compu-tational Geometry (CG'97). University ofWuerzburg, Germany. 1997.[3] K. Q. Brown. Geometric transform forfast geometric algorithms. Dep. Comput.Sci., Carnegie{Mellon Univ. 1979.[4] L. Danzer, G. Grunbaum and V. L.Klee. Helly's theorem and its relatives.Proc. Symp. Pure Math. VII (Providence,R. I.), American Mathematical Society,1963.[5] H. Freeman. Computer processing ofline{drawing images. Comput. Surveys(1974), no. 6, pp. 57{97.[6] H. Freeman and R. Shapira. Determin-ing the minimum{area encasing rectanglefor an arbitrary closed curve. Comm. ACM.18 (1975), no. 7, pp. 409{413.[7] H. Hopf and W. Rinow. �Uber denBegri� der vollst�andigen di�erentialge-ometrischen Fl�ache. Math. Ann. (1931), no.63, pp. 209{225.
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