
99Session C3.2 12th Canadian Conference on Computational GeometrySpanners in l1J. C�aceres1 , C.I. Grima2 , A. M�arquez2and A. Moreno-Gonz�alez2[1] Departamento de Estad��stica y Matem�atica Aplicada,Universidad de Almer��a (Spain).jcaceres@ualm.es[2] Departamento de Matem�atica Aplicada I, Universidad deSevilla (Spain).grima@cica.es, almar@cica.es, amoreno@euler.fie.us.esAbstractIn this work, three problems arising in geometric net-work design theory are considered using the l1 metric.We �rst study the values of � for which the �-Yao graph(using the metric above) contains the MST of a collec-tion of sites in the plane, and additionally, we considerthe same problem with other lp metrics. Secondly, wegive upper bounds for the dilation of �-Yao in the l1metric. And �nally, we study the size of a graph withdilation 1 in the l1 metric.Key words: Spanner, MST, dilation, complete geo-metric graph, Minkowski metrics.1 IntroductionThe quality of a network interconnecting points can bemeasured in di�erent ways. Typically some minimalconditions are imposed to the network; for instance,it is usually desired that the Minimum Spanning Tree(MST) must be contained in the network. But whenone tries to design a good network for connecting com-ponents of a VLSI circuit such that uses little surfacearea on the chip, draws little power and propagatessignals quickly, it could be interesting to �nd a sparsegraph which approximates shortest paths between allpairs of vertices. Those graphs are called spanners andthey have been extensively studied [1] [2] [3] [4] [7].More precisely, given a set of points S in the plane, thedilation of a subgraph of the complete geometric graphis the largest ratio between the length of the shortestpath from a pair of points of S to the distance of thosepoints in the plane. A graph with dilation t is called a(t)-spanner of S. But, although the metric that re
exesthe distance between components in an electronic cir-cuit is the l1 metric, all cited works are focused on theEuclidean metric. We try, in this work, to study someof the �rst questions that arise in the study of spannersbut with the l1 metric (obtaining some results for thel1 metric as well). Remind that the l1 and l1 met-rics are the Manhattan and the Supreme metrics, re-spectively; that is, given two points A = (a1; a2); B =

(b1; b2) 2 R2, dl1 (A;B) = jb1 � a1j + jb2 � a2j anddl1 (A;B) = maxfjb1 � a1j; jb2 � a2jg.It is possible to �nd sparse graphs approximatingthe complete Euclidean graph arbitrary closely. Thus,Keil [6] showed that a class of graphs called Yao graphsproduces graphs with dilation arbitrary closed to 1,with O(n) edges and that they can be constructed intime O(n logn). Thus, the �rst question, treated inthe next section, will be to study whether a Yao graphcontains the MST in both the l1 or the l1 metrics. Sec-ondly, we will study the dilation of those graphs. And,�nally, we will see that in the l1 metric graphs withdilation 1 have much less edges that in the Euclideandistance.2 �-Yao graphs and MST of acollection of sites in the l1 met-ric.As it was pointed out in the Introduction, in this sectionwe study which are the Yao graphs that contain theMST of a collection of sites in the metric l1. First of all,we will give the �-Yao graph construction in any metric.Let S be a collection of sites in R2. We partition thespace around each point into wedges with a given �xedopening angle, �, and connect the point to the nearestneighbor in each wedge with the given metric. Thegraph obtained is called the �-Yao graph of S.In this work, we extend this de�nition and we willcall (�; �)-Yao graph to the �-Yao graph constructed byplacing the borders of the �rst wedge forming an angle� with the abscissae axis, as we can see in Figure 1.
uFigure 1: Construction of a (�; �)-Yao graph.With this new concept we want to know the valuesof � and � for which the (�; �)-Yao graph contains theMST of a collection of sites. This problem was studiedby Yao [8] for the Euclidean metric and he proved thatany �=3-Yao graph of a set of sites contains the MSTof the sites. In this work we give similar results for the



100 CCCG 2000, Fredericton, New Brunswick Session C3.2metrics l1 and l1.Theorem 1 Let S be a set of sites in R2. Any(�; �=4)-Yao graph of S contains the MST of the sitesin the l1 metric.Proof:Without loss of generality, we can suppose that � 2[0; �=4).We know that the MST of a set of sites S can bebuilt incrementally by adding the shortest edge joiningS1 and S2 not explored yet, which also maintains theacyclicity, (where S1 is the subset of sites that havealready been taken and S2 = S � S1).Suppose then that in a step of this algorithm, wehave to take the edge uw; u 2 S1; w 2 S2 and that thisedge is not an edge of the (�; �=4)-Yao graph of S withthe l1 metric. In this case, if we place the wedges in u,there is an edge uv, shorter than uw, that have beenselected before.Then, we only have to prove that d(u;w) � d(w; v)in the l1 metric. The worst case occurs when uv anduw are similar in length but widely separated in angle,as we see in Figure 2.
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cFigure 2: The worst case for the proof of d(u;w) �d(w; v), (see text).In Figure 2 we can also see thattan� = ba+ c ; tan(�+ �=4) = a+ bc :But, by other side we have thattan(�+ �=4) = sin(�+ �=4)cos(� + �=4) = 1 + tan�1� tan�:So, we get a + bc = 1 + ba+c1� ba+c ;and, simplifying we have a2 = b2 + c2. Now, it is easyto see that a � b+ c, so the result holds. 2

The bound obtained in Theorem 1 is tight, and sogiven � > �=4 it is possible to �nd a �-Yao graph for aset of sites that does not contain the MST.Theorem 2 Let S be a set of sites in R2. The(�=4; �=2)-Yao graph of S contains the MST of the sitesin the l1 metric, but there exists collections of sites Ssuch the (0; �=2)-Yao graph does not contain the MSTof S in that metric.Proof: Firstly, we prove that the (�=4; �=2)-Yao graphcontains the MST of any set of sites. The proof issimilar to that of Theorem 1, so we only have to provethat the edge vw is shorter than uw in the l1 metric,being w a site in the wedge where v is, (see Figure 3).
u

vFigure 3: w is a site in the colored region.But, as we can see in Figure 3, any site in the borderof the disc with center u and radio d(u; v) is at thesame distance from u than from v. So, it is trivial tosee that the distance between w and u is not smallerthan the distance between w and v. So, the (�=4; �=2)-Yao graph contains the MST of any set of sites.Now, we give an example of a collection of sites Ssuch the (0; �=2)-Yao graph does not contain the MSTof S in the l1 metric. We consider the set S = fx =(0; 0); y = (1025;�0025); z = (2; 1); u = (005; 105); v =(1; 1025). Then, in Figure 4 we see that the (0; �=2)-Yao graph does not contain the MST of S.
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Yao graph MSTFigure 4: vy is an edge of the MST of S but it is notan edge of the (0; �=2)-Yao graph of S. 2



101Session C3.2 12th Canadian Conference on Computational GeometryOur next step is to study the same problem for thel1 metric. Firstly, we consider the problem of �ndingan angle � that satis�es that any (�; �)-Yao graph ofa set of sites contains the MST of the sites. Here, theresult is similar to that given for the l1 metric.Theorem 3 Let S be a set of sites in R2. Any(�; �=4)-Yao graph of S contains the MST of the sitesin the l1 metric.Proof: The proof of this result is similar to those ofTheorems 1 and 2. As in Theorem 1, we only prove theresult for � 2 [0; �=4). We have to prove that the edgeuw is longer than vw with the l1 metric, (see Figure 5).
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cFigure 5: uw is not shorter than vw.But, as we can see in Figure 5, it is trivial that b; c <a, so the result holds. 2Secondly, we study what happens for the �=2-Yaographs of a collection of sites and we see that the situ-ation is completely di�erent.Theorem 4 Let S be a set of sites in R2. The(0; �=2)-Yao graph of S contains the MST of the sitesin the l1 metric, but there exists collections of sitesS such the (�=4; �=2)-Yao graph does not contain theMST of S in that metric.Proof: Firstly, we prove that the (0; �=2)-Yao graph ofaany set of sites S contains its MST. The proof of thisresult is similar to that of Theorem 3, so we only haveto prove that the edge uw is not shorter than the edgevw in the l1 metric, where w is a site in the wedgewhere v is, (see Figure 6).But, it is easy to see that any site in the border ofthe disc with center v and radio d(u; v) is nearer to vthan to u, so the result holds.Now, we give an example of a collection of sitesS such the (�=4; �=2)-Yao graph does not contain

u
vFigure 6: w lies in the colored region.the MST of S in the l1 metric. We consider theset S = fx = (0; 0); y = (105; 1); z = (1; 3); u =(�0025; 2025); v = (�1; 2). Then, in Figure 7 we seethat the (�=4; �=2)-Yao graph does not contain theMST of S.
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vFigure 7: uy is an edge of the MST of S but it is notan edge of the (�=4; �=2)-Yao graph of S. 23 Dilation in �-Yao graphs.In this section we study the dilation in the (�; �)-Yaographs of a collection of sites. As we did in the previoussection, we give a similar result to one given by Keil [6]for the Euclidean metric. In this way, we have foundupper bounds for the dilation in the (�; �)-Yao graphsof a set of sites in the l1 metric.Theorem 5 Let S be a set of sites in R2. The (�; �)-Yao graph of the sites has dilation arbitrary closed to 1when � tends to 0.Proof: To �nd a path in this graph from u to v, one ateach step determines the wedge containing v and movesalong a graph edge to the nearest vertex, w, in that



102 CCCG 2000, Fredericton, New Brunswick Session C3.2wedge. The worst case for the algorithm occurs whenuv and uw are similar in length but widely separatedin angle, as we see in Figure 8, but with propertiesof angles and triangles we can bound the dilation, asfollows.
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2Figure 8: The worst case for the dilation.We denote by d(�;�)(S) the dilation of the (�; �)-Yaograph of the set S. We know thatd(�;�)(S) = juvj+ jvwjjuwj :But, as we can see in Figure 8, juvj = juwj = a+ l1+ l2and jvwj = 2a, so we have thatd(�;�)(S) = 1 + 2al1 + l2 + a:On the other hand, we havesin �h = sin(� � �=4� �� �)de(u; v) � sin(� � �=4� �� �)juvj :So, as a � h, we get thatd(�;�)(S) � 1 + 2 sin �sin(� � �=4� �� �) ;that tends to 1 when � tends to 0. 2With this result, we provide a way to construct span-ners with dilation as closed to 1 as we want.4 Graphs with dilation 1 in thel1 metric.As we mentioned in the Introduction, in this sectionwe see that in the l1 metric graphs with dilation 1 havemuch less edges that in the Euclidean distance. We also

give three di�erent algorithms for constructing thesegraphs.Let S be a set of n sites in R2. We denote by Mna graph of minimal size of S with dilation 1. In theEuclidean metric, except if the sites are on a straightline, Mn is the complete geometric graph of the sitesKn. That is, Mn has n(n�1)2 edges.With the l1 metric this result can be improved byvirtue of a result by Erd�os and Szekeres [5]: In anysequence of pq + 1 integers, there exists an increasingsubsequence of length p or a decreasing subsequence oflength q.We order the sites by their �rst coordinates and then,we can use the result by Erd�os and Szekeres takingthe second coordinates as a sequence, obtaining threedi�erent cases:� If (bnc+1)bnc+1 � n, then there exist an increas-ing subsequence of length bnc+1 and a decreasingsubsequence of the same length.� If bncbnc + 1 � n, then there exists a decreasingor increasing subsequence of length bnc + 1.� In other case, there exists a decreasing subsequenceof length bnc and an increasing subsequence of thesame length.In these cases, all the edges that form the completegeometric graph of the subsequences are not needed inMn, except the ones that join the correlative sites. InFigure 9 we can see an example with 7 sites, where wehave two subsequences of length 3. The edges that wesave in each subsequence are marked.
(a) (b)Figure 9: (a) Two subsequences of length 3; (b) edgessaved in each subsequence.Now, we can use the result again with the sites thathave not been taken in the decreasing or increasing sub-sequences, so we obtain di�erent subsequences of di�er-ent size in which we can erase edges. We can even takea site in each subsequence and use the result by Erd�osand Szekeres again.Then, with this method, we have a way to approxi-mate the number of edges of Kn�Mn. In fact we havegot a function that produces this number and we have



103Session C3.2 12th Canadian Conference on Computational Geometrycompared it with other functions obtaining that thatfunction is in O(n3=2).Now, we present a result in which we give an upperbound for the size of Kn �Mn.Theorem 6 Let S be a collection of n sites in R2.With the l1 metric, jKn �Mnj 2 O(n3=2).Proof: Let S be a set of sites in R2 and let L1 : : :Lkits convex layers. In any of these layers we have fourdi�erent decreasing or increasing chains of sites, (seeFigure 10).
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4Figure 10: An example of the four chains in a convexlayer.In Figure 10 we can also see that in each chain weonly need the edges joining correlative sites, that is, ineach chain Ci we do not usejCij(jCij � 1)2 � (jCij � 1)edges.Given any convex layer Li, the worst case is when wehave jLij=4 sites in each chain. In this case, we do notuse jLij4 ( jLij4 � 1)2 � ( jLij4 � 1)edges in each chain, so the number of edges not neededin a lawyer is four times the previous one.Then, as we have k convex layers, it is trivial to seethat the total number of edges that we do not use iskXi=1 jLij4 ( jLij4 � 1)2 � ( jLij4 � 1):Now, if we study the previous expression, we see thatthe worst case is when k = pn and there are pn sitesin each layer. So, we get that at leastpn(n8 � 3pn2 + 4)

edges are not needed in Mn.On the other side, we can consider a site in the lastconvex layer and then partition the space around thispoint into four wedges with borders parallel to the axis.Then, we do not need the edges joining sites in the�rst wedge and the third one and edges joining sitesin the second wedges and the fourth one. This hap-pens because we have a path between these sites, (seeFigure 11).
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zFigure 11: We do not need the edges uv and wz.Now, in the last convex layer there are pn sites andif we study the position of the rest of sites we obtainthat the worst case is when we have pn=2 sites in the�rst and second wedges and (n � 2pn)=2 in the thirdand fourth wedges. So, we save 2pn2 (n�2pn2 ) edges.In conclusion, jKn �Mnj has at least 58npn� 52n+4pn edges, so jKn �Mnj 2 O(n3=2). 2Corollary 7 Let S be a set of sites in R2. With thel1 metric, jKn �Mnj 2 O(n3=2).Proof: The proof of this result is based in the relationbetween the l1 and the l1 metrics: if we consider a discwith center u 2 R2 and radio r with the l1metric andwe rotate the plane an angle of �=4, we get the discwith center u and radio r in the l1 metric.Then, to construct the graphKn�Mn of a set of sitesS in the l1 metric, we only have to rotate the plane anangle of �=4, construct Kn �Mn in the l1 metric androtate the plane again an angle of ��=4, as we can seein Figure 12. 2The question that arises now is to compare the twomethods we have given to approximate the size of jKn�
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Figure 12: (a) A set of sites S; (b) S rotated an angleof �=4, S0; (c) the graph Kn�Mn of S0 in the l1 metric;(d) the graph Kn �Mn of S in the l1 metric.Mnj. In this way, we introduce now some results fordi�erent sets of sites, as we can see in Figure 13, wheren is the size of S, E1 the edges we save using the resultby Erd�os and Szekeres and E2 the edges we do not usewith the method given in the proof of Theorem 6.
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Figure 13: Some results of the size of Kn �Mn.4.1 Three algorithms to construct Mn.As it was pointed out above, we give here three di�er-ent algorithms for constructing the graph Mn of anyset of sites in the plane. But, as Kn �Mn and Mn arecomplementary graphs, these algorithms let us to con-struct the graph Kn�Mn, too. In this way, we presentthe �rst and the second algorithms to get Kn�Mn andthe third one to construct Mn.We must say that these three algorithms let us toconstruct the graphs Mn and Kn�Mn of a set of sitesin the l1 metric. As we did in Corollary 7, we only

have to rotate the plane an angle of �=4, construct thegraphMn or Kn�Mn of the new set of sites and rotatethe plane again an angle of ��=4.4.1.1 The �rst algorithm.The �rst algorithm runs in time O(n3) in the worstcase, but we think that the average-case running timeis much better. This algorithm is based in the followingassert: Let S be a set of sites in R2. Then if we placethe axis in u 2 S we save the edges that join sites inthe �rst quadrant with sites in the third one. The samehappens with the sites in the second and the fourthquadrant, as we saw in the proof of Theorem 6.So, if we place the axis in all the sites of S, we onlyhave to add the edges joining the sites in the positionwe said above for getting Kn �Mn. This is what thealgorithm does. Let S be a set of n sites in R2.Firstly, we order the sites by the second coordinatep1; p2; : : : ; pn, that can be done in time O(n logn).Secondly, we visit all the sites of S from p1 to pn.When we place the axis in a site pj we consider twolists, lT and lB . In lT we have the sites in the secondand the �rst quadrant ordered by the �rst coordinateand separated by a pointer M and in lB we have thepoints of the third and the fourth quadrant ordered bythe �rst coordinate and separated by a pointer N . wecan maintain the two lists in time O(n logn).In the �rst step, we have all the sites in lT with thepointer M in the place of p1 and in lB we only havethe pointer N . Then for k = 1; : : : ; n the lists changeas follows. In lT we put M in the place of pk. In lB weadd pk�1 in the place of N and we put N in the placeof pk. In Figure 14 we can see an example for a set of7 sites.At last we have to add the edges joining the sites onthe left of M with the sites on the right of N and thesites on the right of M with the sites on the left of Nthat have not been considered yet. Each step can bedone in quadratic time, so the whole algorithm runs intime O(n3).4.1.2 The second algorithm.The second algorithm we present to construct Kn�Mnruns in time O(n2 logn) and is based in the followingresult: given two sites u and v in the plane, we save theedge uv if there is a site, di�erent from u and v, in therectangle that u and v form, (see Figure 15).Then, let S be a set of sites in R2. We considera pair of sites u and v, we check if there is anothersite in the rectangle that they form and in a�rmativecase, we add the edge uv. Now, to check if there is anysite in a rectangle takes time O(logn + k), where k isthe number of points inside the rectangle. But we stopwhen we �nd one site, so each step of the algorithm can
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be done in O(logn). As we have n2 pairs of sites, thewhole algorithm runs in time O(n2 logn).4.1.3 The third algorithm.Here, we present a third algorithmwhich constructs thegraph Mn of a point set in the plane. This algorithmruns in optimal time O(n2) in the worst case but, wethink that the average-case running time is worst thanthe obtained by the two algorithms given above.Without loss of generality, suppose that the pointsfp1; p2; : : : ; png have been ordered from left to right(that can be done in O(n logn)). For simplicity, wesplit the algorithm in two steps but it is not neededthey are implemented separately.The �rst step consists of constructing a binary treeT with fp1; p2; : : : ; png as its vertices which records theorder of the points from up to down. Let p1 be theroot of the tree then, one of its descendant subtreescontains all the points which are higher than p1 andthe other subtree contains the points which are lower.The tree can be constructed simply by inserting thepoints successively in order and every insertion takestime at most O(logn) (see Figure 16 as an example),so the whole step can be done in O(n logn). We willreferred the subtrees of every non-leaf node as its highand low subtrees.Figure 16: An example of treeAs it was said above, the second step can be donesimultaneously with the �rst one. Consider a point pjwhich have been just inserted in the tree. Now, the goalis to �nd the previous points which are joined with pjin the graph Mn. Clearly, pj is joined in Mn with itsparent and with the parent of its parent if and only ifpj is a low son of a high son or vice versa. It is notdi�cult to check this claim and that no other ancestorof pj is joined with it in Mn.Now, for every ancestor pi of pj we will make someoperations. For the sake of simplicity, let us supposethat pj is containing in the low subtree of pi as youcan see in Figure 17 (the other case is treated in asymmetric way). Next we will �nd the highest leaf ofthe low subtree and the lowest one of the high subtreeand call them pk and pl respectively. If pk 6= pj, we setthe variable r as k, otherwise r := 0.
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subtreeFigure 17: For every ancestor pi of pj, this is one of thetwo possible situations.Finally, we will explore the nodes of the the highsubtree, beginning with pl in such a way that a node isvisited after all of its its descendants have been visited.For every such node pm, then:� If pm is a leaf and m > r, then the edge pjpmbelongs to Mn. Also, we set r := m.� If pm is not a leaf and it has no low subtree thenpjpm is an edge of the graph MnAdding the edges of the tree T to the �nal result, weget the graph Mn. Since in the worst case, every pointis needed to be checked with all the previous points inthe order, the whole algorithm runs in time O(n2) butthis is optimal.5 Conclusions and open prob-lemsIn this work we have proved that any (�; �=4)-Yaograph contains the MST of a collection of sites in thel1 and l1 metrics and we have studied what happenswith some (�; �=2)-Yao graphs. It could be interestingto study the rest of cases and try to generalize theseresults to other lp metrics. Other question related withYao graphs is to �nd upper bounds for the dilation inthose metrics, as we have done for the l1.We also have studied graphs with dilation 1 in the l1metric and the number of edges that we do not need toconstruct them. We have obtained that jKn �Mnj 2O(n3=2), so the open question is to �nd better upperbounds for the size of Kn�Mn. In fact, we have foundsome particular cases, for instance if the sites are inconvex position, where jKn �Mnj 2 O(n2).
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