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Abstract

In this work, three problems arising in geometric net-
work design theory are considered using the {; metric.
We first study the values of 8 for which the 6-Yao graph
(using the metric above) contains the M ST of a collec-
tion of sites in the plane, and additionally, we consider
the same problem with other [, metrics. Secondly, we
give upper bounds for the dilation of #-Yao in the [
metric. And finally, we study the size of a graph with
dilation 1 in the {; metric.

Key words: Spanner, MST, dilation, complete geo-
metric graph, Minkowski metrics.

1 Introduction

The quality of a network interconnecting points can be
measured in different ways. Typically some minimal
conditions are imposed to the network; for instance,
it is usually desired that the Minimum Spanning Tree
(MST) must be contained in the network. But when
one tries to design a good network for connecting com-
ponents of a VLSI circuit such that uses little surface
area on the chip, draws little power and propagates
signals quickly, it could be interesting to find a sparse
graph which approximates shortest paths between all
pairs of vertices. Those graphs are called spanners and
they have been extensively studied [1] [2] [3] [4] [7].
More precisely, given a set of points S in the plane, the
dilation of a subgraph of the complete geometric graph
is the largest ratio between the length of the shortest
path from a pair of points of .S to the distance of those
points in the plane. A graph with dilation ¢ is called a
(t)-spanner of S. But, although the metric that reflexes
the distance between components in an electronic cir-
cuit is the /; metric, all cited works are focused on the
Euclidean metric. We try, in this work, to study some
of the first questions that arise in the study of spanners
but with the {; metric (obtaining some results for the
loo metric as well). Remind that the {1 and [, met-
rics are the Manhattan and the Supreme metrics, re-
spectively; that is, given two points 4 = (a1, a2), B =

(b1,bs) € R*, d; (A, B) = |by — ai| + |bs — as| and
di (A, B) = maz{|by — a1}, b2 — aa|}.

It 1s possible to find sparse graphs approximating
the complete Euclidean graph arbitrary closely. Thus,
Keil [6] showed that a class of graphs called Yao graphs
produces graphs with dilation arbitrary closed to 1,
with O(n) edges and that they can be constructed in
time O(nlogn). Thus, the first question, treated in
the next section, will be to study whether a Yao graph
contains the MST in both the {; or the [, metrics. Sec-
ondly, we will study the dilation of those graphs. And,
finally, we will see that in the /; metric graphs with
dilation 1 have much less edges that in the Euclidean
distance.

2 ©-Yao graphs and MST of a
collection of sites in the /; met-
ric.

As 1t was pointed out in the Introduction, in this section
we study which are the Yao graphs that contain the
MST of a collection of sites in the metric /. First of all,
we will give the 6-Yao graph construction in any metric.
Let S be a collection of sites in  R*. We partition the
space around each point into wedges with a given fixed
opening angle, #, and connect the point to the nearest
neighbor in each wedge with the given metric. The
graph obtained is called the #-Yao graph of S.

In this work, we extend this definition and we will
call (o, #)-Yao graph to the 6-Yao graph constructed by
placing the borders of the first wedge forming an angle
« with the abscissae axis, as we can see in Figure 1.

Figure 1: Construction of a («, #)-Yao graph.

With this new concept we want to know the values
of o and @ for which the («, 8)-Yao graph contains the
MST of a collection of sites. This problem was studied
by Yao [8] for the Euclidean metric and he proved that
any 7/3-Yao graph of a set of sites contains the MST
of the sites. In this work we give similar results for the



100 CCCG 2000, Fredericton, New Brunswick

Session C3.2

metrics {; and (.

Theorem 1 Let S be a set of sites in R>. Any
(o, m/4)-Yao graph of S contains the MST of the sites
m the {{ metric.

Proof:

Without loss of generality, we can suppose that o €
[0,7/4).

We know that the MST of a set of sites S can be
built incrementally by adding the shortest edge joining
S1 and S5 not explored yet, which also maintains the
acyclicity, (where S is the subset of sites that have
already been taken and Sy = S — 57).

Suppose then that in a step of this algorithm, we
have to take the edge uw,u € S1,w € S5 and that this
edge is not an edge of the (o, 7/4)-Yao graph of S with
the [; metric. In this case, if we place the wedges in u,
there is an edge wwv, shorter than ww, that have been
selected before.

Then, we only have to prove that d(u,w) > d(w,v)
in the {; metric. The worst case occurs when uv and
uw are similar in length but widely separated in angle,
as we see in Figure 2.
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Figure 2: The worst case for the proof of d(u,w) >
d(w,v), (see text).

In Figure 2 we can also see that

a+b

b
tan o = m,tan(a +7/4) =

But, by other side we have that

sin(a +7/4) 14 tana
cos(a +7/4)  1—tana’

tan(a + 7 /4) =

So, we get
a—l—b_ 1+a_1|7_c
= —,
¢ 1_a+c

and, simplifying we have a? = 6% 4+ ¢%. Now, it is easy
to see that a < b + ¢, so the result holds. a

The bound obtained in Theorem 1 is tight, and so
given § > /4 it is possible to find a 6-Yao graph for a
set of sites that does not contain the MST.

Theorem 2 Let S be a sel of sites in R*. The
(m/4,7/2)-Yao graph of S contains the MST of the sites
wmn the 1 metric, but there exists collections of sites S
such the (0,7/2)-Yao graph does not contain the MST
of S in that metric.

Proof: Firstly, we prove that the (x/4, 7/2)-Yao graph
contains the MST of any set of sites. The proof is
similar to that of Theorem 1, so we only have to prove
that the edge vw 1s shorter than uww in the {; metric,
being w a site in the wedge where v is, (see Figure 3).

Figure 3: w is a site in the colored region.

But, as we can see in Figure 3, any site in the border
of the disc with center w and radio d(w,v) is at the
same distance from u than from v. So, it is trivial to
see that the distance between w and u is not smaller
than the distance between w and v. So, the (7 /4, 7/2)-
Yao graph contains the MST of any set of sites.

Now, we give an example of a collection of sites S
such the (0, 7/2)-Yao graph does not contain the MST
of S in the /1 metric. We consider the set S = {z =
(0,0),y = (1'25,-025),z = (2,1),u = (0'5,1'5),v =
(1,1'25). Then, in Figure 4 we see that the (0,7/2)-
Yao graph does not contain the MST of S.

Yao graph MST

Figure 4: vy is an edge of the MST of S but it is not
an edge of the (0,7/2)-Yao graph of S.
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Our next step is to study the same problem for the
loo metric. Firstly, we consider the problem of finding
an angle @ that satisfies that any («,0)-Yao graph of
a set of sites contains the MST of the sites. Here, the
result is similar to that given for the /1 metric.

Theorem 3 Let S be a set of siles in R®. Any
(o, m/4)-Yao graph of S contains the MST of the sites
i the loo metric.

Proof: The proof of this result is similar to those of
Theorems 1 and 2. As in Theorem 1, we only prove the
result for o € [0, m/4). We have to prove that the edge
uw is longer than vw with the I, metric, (see Figure 5).
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Figure 5: uw is not shorter than vw.

But, as we can see in Figure b, it is trivial that b, ¢ <
a, so the result holds. a

Secondly, we study what happens for the x/2-Yao
graphs of a collection of sites and we see that the situ-
ation is completely different.

Theorem 4 Let S be a sel of sites in R*. The
(0, 7/2)-Yao graph of S contains the MST of the sites
m the I metric, but there exists collections of sites
S such the (w/4,7/2)-Yao graph does not contain the
MST of S in that metric.

Proof: Firstly, we prove that the (0, 7/2)-Yao graph of
aany set of sites S contains its MST. The proof of this
result is similar to that of Theorem 3, so we only have
to prove that the edge uw is not shorter than the edge
vw in the [, metric, where w 1s a site in the wedge
where v is, (see Figure 6).

But, it is easy to see that any site in the border of
the disc with center v and radio d(u,v) is nearer to v
than to u, so the result holds.

Now, we give an example of a collection of sites
S such the (w/4,7/2)-Yao graph does not contain

Figure 6: w lies in the colored region.

the MST of S in the [, metric. We consider the
set S = {o = (0,0),y = (I'5,1),z = (1,3),u =
(—=0'25,225),v = (—1,2). Then, in Figure 7 we see
that the (w/4,7/2)-Yao graph does not contain the
MST of S.

Yao graph MST

Figure 7: uy is an edge of the MST of S but it is not
an edge of the (7/4,7/2)-Yao graph of S.

3 Dilation in ©-Yao graphs.

In this section we study the dilation in the («, #)-Yao
graphs of a collection of sites. As we did in the previous
section, we give a similar result to one given by Keil [6]
for the FEuclidean metric. In this way, we have found
upper bounds for the dilation in the («, 6)-Yao graphs
of a set of sites in the [ metric.

Theorem 5 Let S be a set of sites in R*. The («,0)-
Yao graph of the sites has dilation arbitrary closed to 1
when 8 tends to 0.

Proof: To find a path in this graph from u to v, one at
each step determines the wedge containing v and moves
along a graph edge to the nearest vertex, w, in that
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wedge. The worst case for the algorithm occurs when
uv and uww are similar in length but widely separated
in angle, as we see in Figure 8, but with properties
of angles and triangles we can bound the dilation, as
follows.

Figure 8: The worst case for the dilation.

We denote by d(4,)(5) the dilation of the («, #)-Yao
graph of the set S. We know that

|uv| + |ow|
o o(S) = It lvwl
(2:0)() |uw]
But, as we can see in Figure 8, |uv| = |uw| = a+1{1 + 13

and |vw| = 2a, so we have that

2a

diagay(S) =14 —.
(2)(5) h+l+a
On the other hand, we have

sinf  sin(r—7/4—a—0) _ sin(r—7/4—a—0)
o d.(u,v) = vl '

So, as a < h, we get that

sin ¢
sin(m — /4 —a—0)’

d(a,&)(S) <1472

that tends to 1 when 6 tends to 0. O

With this result, we provide a way to construct span-
ners with dilation as closed to 1 as we want.

4 Graphs with dilation 1 in the
[{ metric.
As we mentioned in the Introduction, in this section

we see that in the {; metric graphs with dilation 1 have
much less edges that in the FEuclidean distance. We also

give three different algorithms for constructing these
graphs.

Let S be a set of n sites in R*. We denote by M,
a graph of minimal size of S with dilation 1. In the
Euclidean metric, except if the sites are on a straight
line, M, is the complete geometric graph of the sites
K,,. That is, M,, has ﬂnz—_lz edges.

With the /1 metric this result can be improved by
virtue of a result by Erdés and Szekeres [5]: In any
sequence of pq + 1 integers, there exists an increasing
subsequence of length p or a decreasing subsequence of
length ¢.

We order the sites by their first coordinates and then,
we can use the result by Erdos and Szekeres taking
the second coordinates as a sequence, obtaining three
different cases:

e If ([n|+1)[n]+1 < n, then there exist an increas-
ing subsequence of length [n| +1 and a decreasing
subsequence of the same length.

e If [n]|[n| + 1 < n, then there exists a decreasing
or increasing subsequence of length [n| + 1.

e In other case, there exists a decreasing subsequence
of length |n| and an increasing subsequence of the
same length.

In these cases, all the edges that form the complete
geometric graph of the subsequences are not needed in
M,,, except the ones that join the correlative sites. In
Figure 9 we can see an example with 7 sites, where we
have two subsequences of length 3. The edges that we
save in each subsequence are marked.

LU

Figure 9: (a) Two subsequences of length 3; (b) edges
saved in each subsequence.

Now, we can use the result again with the sites that
have not been taken in the decreasing or increasing sub-
sequences, so we obtain different subsequences of differ-
ent size in which we can erase edges. We can even take
a site in each subsequence and use the result by Erdos
and Szekeres again.

Then, with this method, we have a way to approxi-
mate the number of edges of K,, — M,,. In fact we have
got a function that produces this number and we have
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compared it with other functions obtaining that that
function is in O(n%/?).

Now, we present a result in which we give an upper
bound for the size of K,, — M,,.

Theorem 6 Let S be a collection of n sites in R>.
With the Iy metric, |K, — M,| € O(n3/2).

Proof: Let S be a set of sites in R? and let Ly ... Ly
its convex layers. In any of these layers we have four
different decreasing or increasing chains of sites, (see

Figure 10).
‘\Q
@/@//54/

;//Q

;\
Figure 10: An example of the four chains in a convex
layer.

In Figure 10 we can also see that in each chain we
only need the edges joining correlative sites, that is, in
each chain C; we do not use

GNICI=Y) 0,1,
edges.

Given any convex layer L;, the worst case i1s when we
have |L;|/4 sites in each chain. In this case, we do not
use

| ( L _ 1)

4 |Lz|

2
= ()
edges in each chain, so the number of edges not needed
in a lawyer is four times the previous one.

Then, as we have k convex layers, it is trivial to see
that the total number of edges that we do not use is

Z%(%_l) —(M—l).
P 2 4
Now, if we study the previous expression, we see that
the worst case is when k = \/n and there are \/n sites
in each layer. So, we get that at least

edges are not needed in M,.

On the other side, we can consider a site in the last
convex layer and then partition the space around this
point into four wedges with borders parallel to the axis.
Then, we do not need the edges joining sites in the
first wedge and the third one and edges joining sites
in the second wedges and the fourth one. This hap-
pens because we have a path between these sites, (see
Figure 11).

Figure 11: We do not need the edges uv and wz.

Now, in the last convex layer there are \/n sites and
if we study the position of the rest of sites we obtain
that the worst case is when we have \/n/2 sites in the
first and second wedges and (n — 2/n)/2 in the third
and fourth wedges. So, we save 24(#) edges.

In conclusion, |K,, — M,| has at least gn n— gn +

4y/n edges, so | K, — M| € O(n®/?). O

Corollary 7 Let S be a sel of sites in R*. With the
loo melric, | K, — M,| € O(n3/2).

Proof: The proof of this result is based in the relation
between the {1 and the [, metrics: if we consider a disc
with center v € R? and radio r with the {ymetric and
we rotate the plane an angle of 7/4, we get the disc
with center u and radio r in the [, metric.

Then, to construct the graph K,, — M, of a set of sites
S in the [, metric, we only have to rotate the plane an
angle of /4, construct K, — M,, in the l; metric and
rotate the plane again an angle of —# /4, as we can see

in Figure 12.
O

The question that arises now is to compare the two
methods we have given to approximate the size of | K, —
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©) (d)

Figure 12: (a) A set of sites S; (b) S rotated an angle
of /4, 5'; (¢) the graph K, — M, of S" in the [; metric;
(d) the graph K, — M,, of S in the ., metric.

M,|. In this way, we introduce now some results for
different sets of sites, as we can see in Figure 13, where
n is the size of S| Fy the edges we save using the result
by Erdos and Szekeres and E5 the edges we do not use
with the method given in the proof of Theorem 6.

n E, E.
10° 10.705 16.999
10* 345.118 600.400
10° | 10.789.476 | 19.501.264
10 ° | 338.247.777| 622.504.000

2.10° | 954.163.715[1.762.505.656

Figure 13: Some results of the size of K,, — M,.

4.1 Three algorithms to construct M,.

As it was pointed out above, we give here three differ-
ent algorithms for constructing the graph M, of any
set of sites in the plane. But, as K,, — M,, and M,, are
complementary graphs, these algorithms let us to con-
struct the graph K, — M,,, too. In this way, we present
the first and the second algorithms to get K,, — M,, and
the third one to construct M,,.

We must say that these three algorithms let us to
construct the graphs M,, and K,, — M, of a set of sites
in the [, metric. As we did in Corollary 7, we only

have to rotate the plane an angle of 7/4, construct the
graph M, or K, — M, of the new set of sites and rotate
the plane again an angle of —m /4.

4.1.1 The first algorithm.

The first algorithm runs in time O(n?®) in the worst
case, but we think that the average-case running time
is much better. This algorithm is based in the following
assert: Let S be a set of sites in R?. Then if we place
the axis in u € S we save the edges that join sites in
the first quadrant with sites in the third one. The same
happens with the sites in the second and the fourth
quadrant, as we saw in the proof of Theorem 6.

So, if we place the axis in all the sites of S, we only
have to add the edges joining the sites in the position
we said above for getting K,, — M,,. This is what the
algorithm does. Let S be a set of n sites in R

Firstly, we order the sites by the second coordinate
P1,D2, - - -, Pn, that can be done in time O(nlogn).

Secondly, we visit all the sites of S from p; to p,.
When we place the axis in a site p; we consider two
lists, Ip and (. In lp we have the sites in the second
and the first quadrant ordered by the first coordinate
and separated by a pointer M and in /g we have the
points of the third and the fourth quadrant ordered by
the first coordinate and separated by a pointer N. we
can maintain the two lists in time O(n logn).

In the first step, we have all the sites in I with the
pointer M in the place of p; and in lg we only have
the pointer N. Then for £ = 1,... n the lists change
as follows. In Ip we put M in the place of pi. In lg we
add pi_1 in the place of N and we put IV in the place
of pr. In Figure 14 we can see an example for a set of
T sites.

At last we have to add the edges joining the sites on
the left of M with the sites on the right of N and the
sites on the right of M with the sites on the left of N
that have not been considered yet. Each step can be
done in quadratic time, so the whole algorithm runs in
time O(n?).

4.1.2 The second algorithm.

The second algorithm we present to construct K, — M,
runs in time O(n?logn) and is based in the following
result: given two sites u and v in the plane, we save the
edge uwv if there is a site, different from u and v, in the
rectangle that « and v form, (see Figure 15).

Then, let S be a set of sites in R*. We consider
a pair of sites u and v, we check if there is another
site in the rectangle that they form and in affirmative
case, we add the edge uv. Now, to check if there 1s any
site in a rectangle takes time O(logn + k), where k is
the number of points inside the rectangle. But we stop
when we find one site, so each step of the algorithm can
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Figure 14: Two steps of the first algorithm.

Figure 15: We save the edge uv, but not the wz.

be done in O(logn). As we have n? pairs of sites, the
whole algorithm runs in time O(n? logn).

4.1.3 The third algorithm.

Here, we present a third algorithm which constructs the
graph M, of a point set in the plane. This algorithm
runs in optimal time O(n?) in the worst case but, we
think that the average-case running time is worst than
the obtained by the two algorithms given above.

Without loss of generality, suppose that the points
{p1,p2,--.,pn} have been ordered from left to right
(that can be done in O(nlogn)). For simplicity, we
split the algorithm in two steps but it is not needed
they are implemented separately.

The first step consists of constructing a binary tree
T with {p1,pa,...,pa} as its vertices which records the
order of the points from up to down. Let p; be the
root of the tree then, one of its descendant subtrees
contains all the points which are higher than p; and
the other subtree contains the points which are lower.
The tree can be constructed simply by inserting the
points successively in order and every insertion takes
time at most O(logn) (see Figure 16 as an example),
so the whole step can be done in O(nlogn). We will
referred the subtrees of every non-leaf node as its high
and low subtrees.

Figure 16: An example of tree

As it was said above, the second step can be done
simultaneously with the first one. Consider a point p;
which have been just inserted in the tree. Now, the goal
is to find the previous points which are joined with p;
in the graph M,,. Clearly, p; is joined in M,, with its
parent and with the parent of its parent if and only if
p; is a low son of a high son or vice versa. It is not
difficult to check this claim and that no other ancestor
of p; is joined with it in M,,.

Now, for every ancestor p; of p; we will make some
operations. For the sake of simplicity, let us suppose
that p; is containing in the low subtree of p; as you
can see in Figure 17 (the other case is treated in a
symmetric way). Next we will find the highest leaf of
the low subtree and the lowest one of the high subtree
and call them py and p; respectively. If pr # p;, we set
the variable r as k, otherwise r := 0.
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low
subtree

Figure 17: For every ancestor p; of p;, this is one of the
two possible situations.

Finally, we will explore the nodes of the the high
subtree, beginning with p; in such a way that a node is
visited after all of its its descendants have been visited.
For every such node p,,, then:

o If py, is a leaf and m > r, then the edge p;pp,
belongs to M,,. Also, we set r := m.

e If p,, is not a leaf and it has no low subtree then
Pjpm is an edge of the graph M,

Adding the edges of the tree T" to the final result, we
get the graph M, . Since in the worst case, every point
is needed to be checked with all the previous points in
the order, the whole algorithm runs in time O(n?) but
this 1s optimal.

5 Conclusions and open prob-
lems

In this work we have proved that any (o, w/4)-Yao
graph contains the MST of a collection of sites in the
l1 and l., metrics and we have studied what happens
with some (o, 7/2)-Yao graphs. It could be interesting
to study the rest of cases and try to generalize these
results to other [, metrics. Other question related with
Yao graphs 1s to find upper bounds for the dilation in
those metrics, as we have done for the /.

We also have studied graphs with dilation 1 in the
metric and the number of edges that we do not need to
construct them. We have obtained that |K,, — M, | €
O(n3/2), so the open question is to find better upper
bounds for the size of K, — M, . In fact, we have found
some particular cases, for instance if the sites are in
convex position, where |K, — M,| € O(n?).
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