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Abstract

Let S be a two-colored set of n points in general position in the plane. We show that S admits

at least 2
⌊

n

17

⌋

pairwise disjoint monochromatic triangles with vertices in S and empty of points

of S. We further show that S can be partitioned into 3
⌈

n

11

⌉

subsets with pairwise disjoint convex

hull such that within each subset all but at most one point have the same color. A lower bound

on the number of subsets needed in any such partition is also given.

1 Introduction

An important class of problems in Computational Geometry deals with two-colored point sets [13]
motivated, surely, by representing two different properties, facilities,... On the other hand, partitions of
point sets have been the focus of an extensive research, see [8] for example. Regarding the union of both
concepts, there can also be found results on partitioning a two-colored point set into monochromatic
convex sets, that is, all points of a convex set belong to the same color class [10]. We study the
following variants of this problem. In Section 2 we consider convex sets with a fixed number of vertices
on its convex hull. In particular, we investigate how many monochromatic triangles can be found in a
partition of S. Here, the monochromatic triangles do not contain points of S in the interior.

In Section 3 we consider partitions into “almost” monochromatic parts. For this case, the number
of vertices on the convex hull of a part can be arbitrary, but in each convex set all but at most k of
the points - the stains- have the same color, where k is a fixed value. This kind of study is potentially
useful in noise reduction in digital signal processing [15]. Salt and pepper noise is a form of noise
typically seen on images, where the image contains dark and white dots. Generally this type of noise
will only affect a small number of image pixels. We derive bounds on the number of convex pieces
that are needed for a partition of S into convex sets with at most one stain. A related problem on
two-colored point sets (without considering convexity) is considered in [3], where the authors look for
geometric monochromatic 2-factors, possibly adding some extra Steiner points.

2 Disjoint monochromatic triangles

Given a two-colored point set S of n points in general position in the plane, let κ(S, m) be the maximum
number of monochromatic convex m-gons that can be constructed with vertices in S, such that their
convex hulls are pairwise disjoint and have interiors empty of points from S. Let

κ(n, m) = min{κ(S, m) | S ⊂ R
2 is in general position, |S| = n}.
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For m = 2, κ(S, 2) is the number of segments in the largest noncrossing matching in S such that
every edge connects points of the same color. Dumitrescu and Steiger proved that there are sets of
n points in general position such that any monochromatic matching consists of fewer than (1 − ǫ)n/2
edges, for some constant ǫ and gave a lower bound for the constant [11], later improved by Dumitrescu
and Kaye [9] who showed 3n/7− O(1) ≤ κ(n, 2) ≤ 47n/95 + O(1).

For m = 4 it has been conjectured that κ(S, 4) ≥ 1 provided that |S| is large enough [7]; an example
of 32 points with no monochromatic empty convex quadrilateral was given in [16]. Only recently it
has been shown that each set of at least 5044 two-colored points contains an (not necessarily convex)
empty monochromatic quadrilateral [2]. Arbitrarily large two-colored sets without monochromatic
empty convex pentagons were described in [7], therefore κ(n, m) = 0 for all m ≥ 5.

Here we focus on the number κ(n, 3). As every set of 10 points contains an empty convex pentagon,
and at least three of its vertices will have the same color, we immediately get

⌊ n

10

⌋

≤ κ(n, 3).

A related result was proved in [7]: every two-colored set of n points in general position admits
⌈n/4⌉ − 2 empty monochromatic compatible triangles, which is tight, where compatible means that
any two of them have disjoint interiors and, for example all of them might share a vertex. For κ(n, 3)
we require a much stronger disjointness condition.

Let us recall a result that will be used repeatedly later:

Lemma 2.1. [12] Let S be a set of n points in general position in the plane, and let Gx be the graph

with vertex set S, two of them being adjacent when the line they define has exactly
⌈

n−2

2

⌉

points on

one side and
⌊

n−2

2

⌋

on the other side. Then, for any n odd, the graph Gx is connected.

We are now ready for proving the main result of this section:

Theorem 2.2. Let κ(n, 3) be the largest number such that any two-colored set of n points in general

position in the plane admits κ(n, 3) triangles with vertices in S, pairwise disjoint and empty of points

of S. Then we have

2
⌊ n

17

⌋

≤ κ(n, 3) ≤







⌊

n−2

6

⌋

if n is even

⌊

n−1

6

⌋

if n is odd

Proof. We first show that any set S9 of 9 black and white points contains an empty monochromatic
triangle. Let W denote the set of white points, B the set of black points, and assume |W | > |B|.
W admits a triangulation into 2|W | − |conv(W )| − 2 white triangles with pairwise disjoint interiors;
conv(W ) denotes the convex hull of W. If |W | ≥ 6 or |conv(W )| = 3 then the triangulation of W
contains at least one white triangle also empty of black points. Assume that there is no triangulation
of W that contains a triangle empty of points of B. This implies that |W | = 5 and |conv(W )| ≥ 4. If
|conv(W )| = 5 then at least 3 black points lie in the interior of conv(W) and form at least one empty
triangle. Finally, if |conv(W )| = 4 then the 4 black points lie in the interior of conv(W). Triangulating
B we obtain at least two black triangles, at most one of them contains a white point in its interior.

We now show that any set S17 of 17 black and white points contains two pairwise disjoint empty
monochromatic triangles. This immediately implies the lower bound. Thereto, we use that S17 admits
a segment joining one point of each color and leaving 8 points on one side and 7 on the other. Indeed,
for each of the 17 points there exists another point of the set such that the line they define leaves 8
points on one side and 7 on the other. By Lemma 2.1, the graph defined by all these line segments
is connected. Consequently not all of these line segments connect two points of the same color. Let
x and y denote the two points of S17 of such a separating line segment, where x and y have different
color. There is an empty monochromatic triangle in the set formed by the set of 7 points together
with {x, y}. Since x and y have different color, this triangle uses at most one of x and y. Assume y is
not used. We thus can find another empty monochromatic triangle in the set formed by the 8 points
together with y. These two triangles are pairwise disjoint.



To prove the upper bound, consider the set in Figure 1. The set W of white points is in convex
position and no two of them lie on a horizontal line. Near every white point, but the topmost and
lowermost, a black point is placed such that it lies on the horizontal line through the white point and
in the interior of conv(W). Then this n-point set has no empty white triangle, because each white
triangle can be stabbed by a horizontal line through its second white point, ordered by y-coordinates,
thus containing a black point. Then, there are

⌊

n−2

6

⌋

pairwise disjoint black triangles. For the case
n is odd, remove the topmost white point in Figure 1. We remark that this example also appears in
problems related to guarding triangles [6].

Figure 1: A point set S with κ(S, 3) = ⌊ |S|−2

6
⌋.

3 At most one stain

Given a two-colored point set S of n points in general position in the plane, let σ(S, k) be the minimum
number of subsets in a partition of S, such that their convex hulls are pairwise disjoint and all the
points in each subset have the same color with the possible exception of at most k of them (the
“stains”). Let

σ(n, k) = max{σ(S, k) | S ⊂ R
2 is in general position, |S| = n}.

For k = 0, σ(S, 0) is the cardinality of the smallest partition of S into monochromatic subsets
whose convex hulls are pairwise disjoint. Dumitrescu and Pach [10] proved that

σ(n, 0) =

⌈

n + 1

2

⌉

.

For generic k there is a trivial bound

σ(n, k) ≤

⌈

n

2k + 1

⌉

,

because every subset of 2k + 1 points has at most k stains.

Here we focus on the number σ(n, 1) and prove the following result:

Theorem 3.1. Let σ(n, 1) be the smallest number such that any two-colored set of n points in general

position in the plane can be partitioned into σ(n, 1) subsets with pairwise disjoint convex hulls, each

one having at most one stain. Then we have

⌈

n + 1

4

⌉

≤ σ(n, 1) ≤











3
⌊

n
11

⌋

if n′ = 0

3
⌊

n
11

⌋

+
⌈

n′
+1

4

⌉

if n′ 6= 0

where n′ is the residue of dividing n by 11.



Figure 2: A point set S with σ(S, 1) = (|S| + 2)/4.

Proof. For the lower bound, we first consider the case n is even. Let S be a two-colored set of n points
in convex position such that any two neighbored points on the convex hull have different colors, see
Figure 2. We show that σ(S, 1) ≥

⌈

n+1

4

⌉

. Let Π be a partition of S into the minimum number of
subsets, such that their convex hulls are pairwise disjoint and such that each subset contains at most
one stain. Define a directed tree T , whose nodes are the subsets of Π, as follows: Choose some subset
Bs of Π as the source vertex of T . Draw directed arcs from Bs to all subsets of Π that can be “seen”
from Bs, and take each of these subsets as the root of a subtree, defined iteratively. More formally,
a subset Bi is a descendant of Bs if conv(Bs ∪ Bi) does not intersect any other subsets. Similarly, a
subset Bj is a descendant of a subset Bk 6= Bs if Bk is a descendant of some subset Bh, Bj is not a de-
scendant of Bh and conv(Bk∪Bj) does not intersect any other subsets of Π. Figure 3 shows an example.

Assume that Π contains at least one subset Bs that contains at least four points, as the statement
is obviously true otherwise. Choose Bs as the root of T .

Bs

Figure 3: A partition of S and the associated directed tree.

Let nk denote the number of interior nodes of T that correspond to subsets of Π containing exactly
k points, and let h denote the number of leaves of T . Note that an interior node of T corresponds to a
subset of Π of at least two points, and a leaf of T corresponds to a subset of Π of at most three points.
In the following we give a lower bound on h in terms of the number of interior nodes of T . Thereto, we
assign each leaf of T to a unique interior node of T, where a leaf ℓ can be assigned to an interior node
v if there is a directed path from v to ℓ in T. We define this assignment recursively by first assigning
leaves to the source vertex Bs and then considering the assignment for the children of Bs. A subset of
Π contains at most two edges of the convex hull. We thus can assign at least |Bs|− 2 leaves to Bs. For
k ≥ 5, to each subset Bp 6= Bs of Π containing k points assign at least k − 4 leaves: Bp has at least



k− 3 outgoing edges in T , where one of them is counted for a leaf assigned to an antecessor of Bp. We
thus obtain

h ≥ n5 + 2n6 + 3n7 + · · · + (t − 4)nt + 2, (1)

where t is the number of points of the largest subset, and the last summand 2 comes from the two
additional leaves assigned to Bs. On the other hand, the number of leaves of T is at least

h ≥
n − 2n2 − 3n3 − 4n4 − · · · − tnt

3
. (2)

Taking the sum of (1) and three times (2) we obtain

4h ≥ n − 2n2 − 3n3 − 4n4 − 4n5 − 4n6 − · · · − 4nt + 2.

Thus, we also have

4h ≥ n − 4n2 − 4n3 − 4n4 − 4n5 − 4n6 − · · · − 4nt + 2,

which implies that

σ(S, 1) ≥ h + n2 + n3 + n4 + · · · + nt ≥

⌈

n + 2

4

⌉

=

⌈

n + 1

4

⌉

,

because n is even.

The case when n is odd can be treated the same way, just remove one point from S, apply the
bound for the obtained even point set and add the removed point to a piece.

For the upper bound, we first show that σ(S7, 1) ≤ 2. Any set S7 of 7 black and white points admits
a segment joining one point of each color leaving 3 points on one side and 2 on the other. Indeed,
for each of the 7 points there exists another point of the set such that the line they define leaves 3
points on one side and 2 on the other. By Lemma 2.1, the graph defined by all these line segments is
connected. Consequently not all of these line segments connect two points of the same color. Then,
the 3 points on one side of the segment together with one of the endpoints of the segment form a piece
with at most one stain. The remaining three points form the other piece of the partition.

We are going to prove now that for any set S11 of 11 black and white points we have σ(S11, 1) ≤ 3;
from this and σ(S7, 1) ≤ 2 the upper bound is immediately derived. Let W and B be the set of white
and black points in S11, respectively, and let us assume, without loss of generality, that |W | > |B|.

If |B| ≤ 3, the claim is obvious; if |B| = 4 we can always find two black points b1 and b2 such that
the other two black points lie in opposite halfplanes with respect to the line b1b2; then the two sets of
white and black points lying in the same halfplane and {b1, b2} give the claimed partition. Therefore,
we are only left with the case |B| = 5.

For the case |B| = 5 observe that whenever we can separate with a line a set of four points with
at most one stain, then the seven remaining points would require at most two pieces and we would be
done.

Let us consider first the case in which at least one of the white points, w, is an extreme point, and let
us denote by x1, . . . , x10 the other points in counterclockwise radial order around w, in such a way that
x1 and x10 are neighbors of w on the convex hull conv(S11). Assume that the set {x1, x2, x3} contains
exactly two black points and one white point, as otherwise we would be done, because we would be
able to isolate the subset {w, x1, x2, x3} with at most one stain. For the same reason we assume that
x4 is a white point, as otherwise we could separate the subset {x1, x2, x3, x4}. By symmetry reasons
we also assume that {x8, x9, x10} contains exactly two black points and one white point and that x7

is a white point. But now {x5, x6} must consist of one white point and one black point, and we can
take the partition {x1, x2, x3}, {w, x4, x5, x6, x7}, {x8, x9, x10} (Figure 4).

Let us switch to the case in which none of the white points is an extreme point. If there are four
or five black points that are extreme, we are done, because we can define two black monochromatic
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x

x


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Figure 4: The case |B| = 5 with at least one white extreme point.

subsets by taking the endpoints of two disjoint convex hull edges, and the remaining black point would
join as a stain the whole subset of white points.

Hence we are left with the situation in which the convex hull is a triangle with three black corners,
which we denote by {b1, b2, b3}. The line through the other two black points, b4 and b5, will cut two
convex hull edges; for ease of description we assume that the line b1b2 is the horizontal base of the
convex hull and that the line b4b5 is parallel to b1b2, which is no restriction of generality from the
combinatorial viewpoint (refer to Figure 5).
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Figure 5: The cases |B| = 5 with no white extreme point.

If the halfplane above the line b4b5 contains less than two white points, we can separate them
together with b4, b5 and b3, and get σ(S11, 1) = 3; the same happens if the halfplane above the line
b4b5 contains more than two white points, which we would separate together with b3. Let us assume
therefore that there are exactly two white points above b4b5. If the triangle b3b4x2 contains at most
one of them we can take it as part together with b4, b5 and b3, a second part would consist of b1 and
any white point interior to b1b4b3 and a third part would consist of b2 and any white point interior to
the quadrilateral b1b2x2b4 (Figure 5(a)), this gives σ(S11, 1) = 3. The same argument applies to the
triangle b5b3x1, hence we assume hereafter that the two white points above b4b5 lie inside the triangle
b3b4b5.

Now, if the triangle b1b4b3 contains at most one white point, we can take it together with b1,
b4 and b3 as a part, a second part would consist of b5 and the two white points above b4b5, and a
third part would consist of b2 and all the white points inside the quadrilateral b1b2x2b4; again, we get
σ(S11, 1) = 3 (Figure 5(b)).

The same reasoning as in the preceding paragraph applies to the triangle b5b2b3, hence we are finally
left with the situation in which two white points are interior to b1b4x1, two are interior to b5b2x2 and
two are interior to b3b4b5 (Figure 5(c)). Now we can take b1 and b3 together with the white point
closest to the line b1b3, the other white point inside b1b4b3 joins b2 and b4 in a second subset, and the
white points interior to b3b4b2 together with b5 is the third part. Again, we get σ(S11, 1) = 3, which
concludes the proof.



4 Future work

We have presented some combinatorial studies on κ(n, 3) (the number of monochromatic empty disjoint
triangles in any two–colored n–set) and σ(n, 1) (the smallest number of pieces with at most one stain
in any two–colored n-set), so an algorithmic approach to both problems would be interesting. On the
other hand, since in the first case we have that that any two–colored n–set admits a triangulation
containing at least 2

⌊

n
17

⌋

monochromatic triangles, one can be interested, thinking in interpolation
problems, in to decide, given a two–colored n–set of points, whether there exists a triangulation of it
without monochromatic triangles. Our first steps in this direction lead us to suspect that this will be
an NP–complete problem. A related question to determine κ(n, 3) is to count the number of all (not
necessarily disjoint) monochromatic empty triangles in a two-colored point set. This problem has been
addressed in [1, 14]. While for uncolored point sets there always exists a quadratic number of empty
triangles [4], determining the right asymptotic value for the two-colored case represents an intriguing
open problem.
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