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ABSTRACT

In this paper, we deal with discontinuous piecewise differential systems formed by two differential systems separated by a straight line when
these two differential systems are linear centers (which always are isochronous) or quadratic isochronous centers. It is known that there is a
unique family of linear isochronous centers and four families of quadratic isochronous centers. Combining these five types of isochronous
centers, we obtain 15 classes of discontinuous piecewise differential systems. We provide upper bounds for the maximum number of limit
cycles that these fifteen classes of discontinuous piecewise differential systems can exhibit, so we have solved the 16th Hilbert problem for
such differential systems. Moreover, in seven of the classes of these discontinuous piecewise differential systems, the obtained upper bound
on the maximum number of limit cycles is reached.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023055

To solve the 16th Hilbert problem, i.e., to find an upper bound for
the maximum number of limit cycles that a given class of differ-
ential systems can exhibit, is in general an unsolved problem. For
the classes of discontinuous piecewise differential systems here
studied, we can obtain the solution using the first integrals of the
linear and quadratic isochronous centers.

I. INTRODUCTION AND MAIN RESULTS

We consider planar differential systems of the form

dx

dt
= P(x, y),

dy

dt
= Q(x, y),

where P(x, y) and Q(x, y) are polynomial functions, and the degree
of the systems is the maximum degree of such polynomials. In

particular, in this paper we consider discontinuous piecewise differ-
ential systems of the form

(ẋ, ẏ) = F(x, y) =
{

F−(x, y) = (f−(x, y), g−(x, y)) if x < 0,
F+(x, y) = (f+(x, y), g+(x, y)) if x > 0,

(1)

being bi-valued on the separation line x = 0. Following Ref. 9, a
point (0, y) is a crossing point if f−(0, y)f+(0, y) > 0. If there exists
a periodic orbit of the discontinuous differential system (1) having
exactly two crossing points, then we call it a crossing periodic orbit. A
crossing limit cycle is an isolated periodic orbit in the set of all cross-
ing periodic orbits of system (1). In what follows for simplicity, we
shall say limit cycle instead of crossing limit cycle.

The analysis of planar continuous piecewise linear systems
is well established when the number of linear zones is small, see
Ref. 33 and the references therein. They frequently appear in many
non-linear engineering devices, which are accurately modelled by
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piecewise linear vector fields, see Ref. 7. They appear also in mathe-
matical biology, see Refs. 6 and 30–32. However, when the planar
vector field is discontinuous, the adaptation of the 16th Hilbert’s
problem on the maximum number of existing limit cycles is an open
problem. In the last years, many authors have worked in this prob-
lem, trying to determine how many limit cycles can appear in planar
systems separated by a straight line, see, for instance, Refs. 1–4, 8,
10–14, 16–18, and 21–29. For details on the classical 16th Hilbert
problem, see, for instance, Refs. 15, 19, and 20.

Let p ∈ R
2 be a singularity of a differential system in the plane.

The singularity p is a center if there exists an open neighbourhood U
of p such that all the solutions in U \ {p} are periodic. Denote by Tq

the period of the periodic orbit through q ∈ U \ {p}. We say that p is
an isochronous center if Tq is constant for all q ∈ U \ {p}.

In this paper, we work with the following five types of sys-
tems that cover the classes of a linear system having a center and of
all quadratic polynomial differential systems having an isochronous
center. For a proof of the linear system, see Lemma 1 of Ref. 27, and
for a proof of the quadratic systems, see page 34 of Ref. 5.

(I) Any linear differential system having a center can be written as

ẋ = −Ax − (A2 + ω2)y + B, ẏ = x + Ay + C,

with ω > 0, A, B, C ∈ R and A 6= 0. A first integral of this
system is

H1(x, y) = (x + Ay)2 + 2(Cx − By) + y2ω2.

Of course, every linear center is isochronous.
(II) The first family of quadratic isochronous differential systems

can be obtained doing an affine transformation to the system

ẋ = −y + x2 − y2, ẏ = x(1 + 2y),

with first integral

H̃2(x, y) =
x2 + y2

1 + 2y
.

(III) The second family of quadratic isochronous differential sys-
tems can be obtained doing an affine transformation to the
system

ẋ = −y + x2, ẏ = x(1 + y),

whose first integral is

H̃3(x, y) =
x2 + y2

(1 + y)2
.

(IV) The third family of quadratic isochronous differential systems
can be obtained doing an affine transformation to the system

ẋ = −y +
4

3
x2, ẏ = x

(
1 −

16

3
y
)
,

with first integral

H̃4(x, y) =
9(x2 + y2) − 24x2y + 16x4

−3 + 16y
.

(V) The fourth family of quadratic isochronous differential sys-
tems can be obtained doing an affine transformation to the
system

ẋ = −y +
16

3
x2 −

4

3
y2, ẏ = x

(
1 +

8

3
y
)
,

whose first integral is

H̃5(x, y) =
9(x2 + y2) + 24y3 + 16y4

(3 + 8y)4
.

Our objective is to solve the 16th Hilbert problem for the 15
classes of discontinuous piecewise differential systems separated by
a straight line and formed by two arbitrary isochronous centers of
degree 1 or 2, i.e., we shall provide for all these 15 classes an upper
bound on the maximum number of limit cycles that each class can
exhibit. Moreover, as we shall see in many cases, the upper bound
that we shall provide is reached.

We must mention that, in general, it is very difficult (many
times for the moment impossible) to provide an upper bound for the
maximum number of limit cycles that a class of differential systems
in the plane can exhibit, and of course, it is even more difficult to
provide the exact upper bound, see, for instance, Refs. 15, 19, and 20.

It was proved in Theorem 3 of Ref. 27 or in Corollary 3 of
Ref. 23 that discontinuous piecewise differential systems separated
by a straight line and formed by two arbitrary linear centers have no
limit cycles. So this case is not considered here.

Our first main result is to provide the maximum number of
limit cycles that can exist for discontinuous piecewise differential
systems of the form (1), where in x < 0 there is an arbitrary lin-
ear differential center (I), and for x > 0, there is one of the four
quadratic isochronous differential systems (II), (III), (IV), or (V)
after an arbitrary affine change of variables.

Theorem 1. Consider discontinuous piecewise differential sys-
tems separated by the straight line x = 0 and formed by a linear
differential center (I) after an affine change of variables in x < 0 and
by a quadratic isochronous system of type either (II), or (III), or (IV),
or (V) after an affine change of variables in x > 0. The maximum
number of limit cycles of these discontinuous piecewise differential
systems is

(a) at most one for systems of types (I) and (II), and there are systems
of this type with exactly one limit cycle, see Fig. 1;

(b) at most one for systems of types (I)–(III), and there are systems of
this type with exactly one limit cycle, see Fig. 2;

(c) at most two for systems of types (I)–(IV), and there are systems of
this type with exactly one limit cycle, see Fig. 3; and

(d) at most two for systems of types (I)–(V), and there are systems of
this type with exactly two limit cycles, see Fig. 4.

Note that for all systems of type (I)-(k) with k ∈ {II, III, V}, the
upper bound on the maximum number of limit cycles is reached.

The proof of Theorem 1 is given in Sec. III.
The second main result of the paper is to give the maximum

number of limit cycles that can appear in discontinuous piecewise
differential systems of the form (1) such that in a half-plane there is
a general quadratic isochronous differential system of type (II), and
in the other one, there is a general quadratic isochronous differential
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system of type (II), (III), (IV), or (V) after an arbitrary affine change
of variables.

Theorem 2. Consider discontinuous piecewise differential sys-
tems separated by the straight line x = 0 and formed by a quadratic
isochronous center of type (II) after an affine change of variables in
x < 0 and by a quadratic isochronous system of type either (II), or
(III), or (IV), or (V) after an affine change of variables in x > 0.
The maximum number of limit cycles of these discontinuous piecewise
differential systems is

(a) at most one for systems of types (II) and (II), and there are systems
of this type with exactly one limit cycle, see Fig. 5;

(b) at most one for systems of types (II) and (III), and there are
systems of this type with exactly one limit cycle, see Fig. 6;

(c) at most three for systems of types (II)–(IV), and there are systems
of this type with exactly two limit cycles, see Fig. 7; and

(d) at most three for systems of types (II)–(V), and there are systems
of this type with exactly two limit cycles, see Fig. 8.

Note that for systems of types (II) and (II) and (II) and (III)
after an affine change of variables, the upper bound on the maximum
number of limit cycles is reached.

The proof of Theorem 2 is given in Sec. IV.
The third main result of the paper is to give the maximum

number of limit cycles that can appear in discontinuous piecewise
differential systems of the form (1) such that in a half-plane there is
a general quadratic isochronous differential system of type (III), and
in the other one, a general quadratic isochronous differential system
of type (III), (IV), or (V) after an arbitrary affine change of variables.

Theorem 3. Consider discontinuous piecewise differential sys-
tems separated by the straight line x = 0 and formed by a quadratic
isochronous center of type (III) after an affine change of variables in
x < 0, and by a quadratic isochronous system of type either (III),
or (IV), or (V) after an affine change of variables in x > 0. The
maximum number of limit cycles of these discontinuous piecewise
differential systems is

(a) at most one for systems of types (III) and (III), and there are
systems of this type with exactly one limit cycle, see Fig. 9;

(b) at most three for systems of types (III) and (IV), and there are
systems of this type with exactly two limit cycles, see Fig. 10; and

(c) at most three for systems of types (III)–(V), and there are systems
of this type with exactly two limit cycles, see Fig. 9.

Note that for systems of types (III) and (III) after an affine change
of variables, the upper bound on the maximum number of limit cycles
is reached.

The proof of Theorem 3 is given in Sec. V.
The following result gives the maximum number of limit cycles

that can appear in discontinuous piecewise differential systems of
the form (1) such that in a half-plane there is a general quadratic
isochronous differential system of type (IV), and in the other one, a
general quadratic isochronous differential system of type (IV) or (V)
after an arbitrary affine change of variables.

Theorem 4. Consider discontinuous piecewise differential sys-
tems separated by the straight line x = 0 and formed by a quadratic
isochronous center of type (IV) after an affine change of variables
in x < 0 and by a quadratic isochronous system of type either (IV),
or (V) after an affine change of variables in x > 0. The maximum

number of limit cycles of these discontinuous piecewise differential
systems is

(a) at most three for systems of types (IV) and (IV), and there are
systems of this type with exactly two limit cycles, see Fig. 12; and

(b) at most three for systems of types (IV) and (V), and there are
systems of this type with exactly two limit cycles, see Fig. 13.

The proof of Theorem 4 is given in Sec. VI.
The last main result gives the maximum number of limit cycles

that can appear in discontinuous piecewise differential systems of
the form (1) such that in both half-planes there is a quadratic
isochronous differential system of type (V) after an affine change
of variables.

Theorem 5. The maximum number of limit cycles for discon-
tinuous piecewise isochronous quadratic differential systems formed
by two systems of type (V) separated by the straight line x = 0 after
an affine change of variables is at most 12, and there are systems of
this type with exactly two limit cycles, see Fig. 14.

The proof of Theorem 5 is given in Sec. VII. See the remark at
the end of the proof of Theorem 5 related with this theorem.

II. THE QUADRATIC ISOCHRONOUS DIFFERENTIAL

SYSTEMS (II), (III), (IV), AND (V) AFTER AN AFFINE

CHANGE OF VARIABLES

In this section, we show the expressions for the quadratic
isochronous systems (II), (III), (IV), and (V) and their first integrals,
after doing the general affine change of variables of the form

(x, y) → (ax + by + c, αx + βy + γ ), (2)

with bα − aβ 6= 0. Thus, the differential system (II) after this affine
change of variables becomes

ẋ = 1

bα − aβ

(
βγ 2 + 2bγ c + bc + βγ − βc2 + (2abγ + 2αβγ

+ ab + αβ − 2aβc + 2αbc)x + (2γ + 1)(b2 + β2)y + (−a2β

+ α2β + 2αab)x2 + 2α(b2 + β2)xy + β(b2 + β2)y2
)
,

(3)

ẏ =
1

bα − aβ

(
− αγ 2 − 2aγ c − ac − αγ + αc2 − (2γ + 1)

× (a2 + α2)x + (−2abγ − 2αβγ − ab − αβ − 2aβc + 2αbc)y

− α(a2 + α2)x2 − 2β(a2 + α2)xy − (αβ2 + 2aβb − αb2)y2
)
,

whose first integral is

H2(x, y) =
(c + ax + by)2 + (xα + yβ + γ )2

1 + 2(xα + yβ + γ )
.
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The differential system (III) becomes

ẋ =
1

αb − aβ

(
−bγ c − bc − βγ + βc2 + (−abγ − ab − αβ

+ 2aβc − αbc)x − (b2γ + b2 + β2 + βbc)y + a(aβ − αb)x2

− b(αb − aβ)xy
)
,

(4)

ẏ =
1

αb − aβ

(
−aγ c − ac − αγ + αc2 − (a2γ + a2 + α2 − αac)x

+ (−abγ − ab − αβ − aβc + 2αbc)y − a(aβ − αb)xy

+ b(αb − aβ)y2
)
,

whose first integral is

H3(x, y) =
(ax + by + c)2 + (γ + αx + βy)2

(γ + αx + βy + 1)2
.

The differential system (IV) becomes

ẋ =
1

3(αb − aβ)

(
−16bγ c + 3bc + 3βγ + 4βc2 + (−16abγ + 3ab

+ 3αβ + 8aβc − 16αbc)x + (−16b2γ + 3b2 + 3β2 − 8βbc)y

+ 4a(aβ − 4αb)x2 − 8b(aβ + 2αb)xy − 12b2βy2
)
,

(5)

ẏ =
1

3(αb − aβ)

(
16aγ c − 3ac − 3αγ − 4αc2 + (16a2γ − 3a2

− 3α2 + 8αac)x + (16abγ − 3ab − 3αβ + 16aβc − 8αbc)y

+ 12a2αx2 + 8a(2aβ + αb)xy − 4b(αb − 4aβ)y2
)
,

whose first integral is

H4(x, y) =
1

16(γ + αx + βy) − 3

(
−24(ax + by + c)2

(γ + αx + βy)

+ 9
(
(ax + by + c)2 + (γ + αx + βy)2

)

+ 16(ax + by + c)4
)
.

Finally, the differential system (V) after the change of variables
(2) becomes

ẋ =
1

3(αb − aβ)

(
4βγ 2 + 8bγ c + 3bc + 3βγ − 16βc2 + (8abγ

+ 8αβγ + 3ab + 3αβ − 32aβc + 8αbc)x + (8b2γ + 8β2γ

+ 3b2 + 3β2 − 24βbc)y + 4(α2β − 4a2β + 2αab)x2 + 8(αβ2

− 3aβb + αb2)xy − 4βy2(2b2 − β2)y2
)
,

(6)

ẏ =
1

3(αb − aβ)

(
16αc2 − 4αγ 2 − 8aγ c − 3ac − 3αγ − (8a2γ

+ 8α2γ + 3a2 + 3α2 − 24αac)x − (8abγ + 8αβγ + 3ab

+ 3αβ + 8aβc − 32αbc)y + 4α(2a2 − α2)x2 + 8(a2(−β)

− α2β + 3αab)xy − 4(αβ2 + 2aβb − 4αb2)y2
)
,

whose first integral is

H5(x, y) =
1

(8(γ + αx + βy) + 3)4

(
9
(
(ax + by + c)2 + (γ + αx

+ βy)2
)
+ 16(γ + αx + βy)4 + 24(γ + αx + βy)3

)
.

III. PROOF OF THEOREM 1

A. Proof of Theorem 1 for systems (I)–(II)

We consider the planar linear differential system (I) with first
integral H1(x, y) in the half-plane x < 0 and the quadratic poly-
nomial differential system (3) with first integral H2(x, y) in the
half-plane x > 0. If there exists a limit cycle of the discontinuous
piecewise differential systems (I)-(3), it must intersect the discon-
tinuity line x = 0 in two different points (0, y) and (0, Y). Clearly„
these two points must satisfy the system

H1(0, y) − H1(0, Y) = (Y − y)
(
−4A2y − 4A2Y + 8B − yω2 − ω2Y

)

= (Y − y)P1(y, Y) = 0,

H2(0, y) − H2(0, Y) =
(Y − y)Q2(y, Y)

[1 + 2(βy + γ )][1 + 2(βY + γ )]
= 0,

(7)

where P1 and Q2 are polynomials of degrees one and two, respec-
tively. Since the points (0, y) and (0, Y) are different, from P1(y, Y)

= 0, we get Y as a function of y, that is, Y = f(y). Substituting this
expression in equation Q2(y, Y) = 0, we obtain a quadratic equation
in the variable y. Then, the maximum number of solutions of (7)
is two, namely, (y1, Y1) and (y2, Y2), but in fact, these two solutions
represent the same limit cycle because Y1 = y2 and Y2 = y1. So for
the discontinuous piecewise differential system (I)–(3), there exists
at most one limit cycle.

Now we give an example of a discontinuous piecewise differen-
tial system (I)–(3) having one limit cycle. On x > 0, we consider the
linear differential system

ẋ = 1 − x −
5

4
y, ẏ = x + y, (8)

whose first integral is

H1(x, y) = −8y + y2 + 4(x + y)2,

and on x > 0, we consider the quadratic isochronous differential
system of type (3)

ẋ = −4 − 5x − 6y − x2 − 4xy − 2y2, ẏ = 1 + 3x + y + x2 + 2xy,
(9)

whose first integral is

H2(x, y) =
(x + y + 1)2 + (y + 1)2

2(x + y + 1) + 1
.

We can take, without loss of generality, the solution of (7) satisfy-

ing y < Y, and so the pair (y, Y) =
(

1
5
(4 − 3

√
14), 1

5
(4 + 3

√
14)

)

provides the limit cycle that exists for the discontinuous differential
piecewise systems (8) and (9) shown in Fig. 1.
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FIG. 1. The unique limit cycle that exists for systems (8) and (9) of classes (I) and
(II). It is travelled in counter-clockwise sense.

B. Proof of Theorem 1 for systems (I)–(III)

We consider the linear differential system (I) with first inte-
gral H1(x, y) on the half-plane x < 0, and on the half-plane x > 0,
we take the quadratic isochronous differential system (4) with its
first integral H3(x, y). Then, if there exists some limit cycle for
the discontinuous differential system (I)–(4), it must intersect the
discontinuity line x = 0 at two different points (0, y) and (0, Y),
satisfying the equations

H1(0, y) − H1(0, Y) = (Y − y)P1(y, Y) = 0,

H3(0, y) − H3(0, Y) =
(Y − y)Q3(y, Y)

(1 + βy + γ )2(1 + βY + γ )2
= 0.

(10)

In (10), P1 and Q3 are polynomials of degrees one and two, respec-
tively. By following the same procedure as for the proof of systems
(I) and (II), we solve the equation P1(y, Y) = 0 obtaining the variable
Y as a function of y, that is, Y = f(y). By replacing Y in the equation
Q3(y, Y) = 0, we obtain again a quadratic polynomial equation in
the variable y, so that the equation has at most two different solu-
tions. As in the proof for systems (I) and (II), these two solutions
represent, if they exist, the same limit cycle. Therefore, system
(10) has only one solution with y < Y, and then the discontinuous
piecewise differential system (I)–(4) has at most one limit cycle.

Next, we give a specific discontinuous piecewise differential
system (I)–(4) having one limit cycle. On the half-plane x < 0, we
consider the linear differential system (8), and on the half-plane
x > 0, we consider the quadratic isochronous differential system

FIG. 2. The unique limit cycle that exists for systems (8)–(11) of classes (I)–(III).
It is travelled in counter-clockwise sense.

of type (4)

ẋ = −2 − 2y + x2 + xy, ẏ = 2 + 2x + 3y + xy + y2, (11)

with first integral

H3(x, y) =
(x + y + 1)2 + (y + 1)2

(y + 2)2
.

In this case, the unique solution for system (10) with y < Y is

(y, Y) =
(

1

5
(4 − 3

√
14),

1

5
(4 + 3

√
14)

)
,

and the corresponding limit cycle of the discontinuous piecewise
differential systems (8)–(11) associated to this solution is shown
in Fig. 2.

C. Proof of Theorem 1 for systems (I)–(IV)

We consider again on the half-plane x < 0 the linear differen-
tial system (I) with its first integral H1(x, y), and on x > 0, we take
the quadratic isochronous differential system (5) with its first inte-
gral H4(x, y). Then, if the discontinuous differential system (I)–(5)
has a limit cycle, it must intersect the discontinuity line x = 0 at
two different points (0, y) and (0, Y). These points must satisfy the
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equations

H1(0, y) − H1(0, Y) = (Y − y)P1(y, Y) = 0,

(12)

H4(0, y) − H4(0, Y) =
(Y − y)Q4(y, Y)

(−3 + 16yβ + 16γ )(−3 + 16Yβ + 16γ )

= 0,

where P1 and Q4 are polynomials of degrees one and four, respec-
tively. We solve the equation P1(y, Y) = 0 obtaining the variable Y as
a function of y, that is, Y = f(y). If we substitute Y = f(y) in equation
Q4(y, Y) = 0, we obtain a polynomial equation of degree four in the
variable y, and so system (12) has at most four real solutions. Taking
into account the symmetry between these solutions, as in the pre-
vious statements, there can be only two different solutions (y, Y) of
(12) satisfying y < Y.

Now, we show a concrete discontinuous piecewise differential
system (I)-(5) having a unique limit cycle. On the half-plane x < 0,
we consider the linear differential system

ẋ = 1 − x − 2y, ẏ = x + y, (13)

with first integral

H1(x, y) = −2y + y2 + (x + y)2,

and on the half-plane x > 0, we consider the quadratic isochronous
differential system of type (4) given by

ẋ = −8.988 89 − 17.538 3x − 20.744 7y − 2.216 06x2

− 9.765 45xy − 7.549 39y2,

ẏ = 14.677 9 + 21.205x + 25.538 3y + 3.549 39x2

+ 12.432 1xy + 8.882 73y2,

(14)

with first integral

H4(x, y) =
1

16x + 0.031 894 3(1067y + 2091)

(
16(1 + x + y)4

− 24(1 + x + y)2(4.355 69 + x + 2.126 95y)

+9((1 + x + y)2 + (4.355 69 + x + 2.126 95y)2)
)

.

In this case, the solution to system (12) with y < Y is

(y1, Y1) = (−1.898 651 543 493 539, 2.898 651 543 493 539),

and the corresponding limit cycle of the discontinuous piecewise
differential systems (13) and (14) associated to these solutions is
shown in Fig. 3.

Remark. For all these discontinuous piecewise differential
systems, it is possible that the upper bound found for the maximum
number of limit cycles cannot be reached. This is due to the fact that
the solutions (y, Y) do not need to correspond necessarily to periodic
solutions of the discontinuous piecewise differential systems.

D. Proof of Theorem 1 for systems (I)–(V)

We take again the linear differential system (I) with its first
integral H1(x, y) on the half-plane x < 0, and on x > 0, we consider

FIG. 3. The existing limit cycle for systems (13) and (14) of classes (I)–(IV). It is
travelled in counter-clockwise sense.

the quadratic isochronous differential system (6) with its first inte-
gral H5(x, y). Thus, if the discontinuous differential system (I)–(6)
has a limit cycle, it must intersect the discontinuity line x = 0 at
two different points (0, y) and (0, Y). These points must satisfy the
equations

H1(0, y) − H1(0, Y) = (Y − y)P1(y, Y) = 0,

(15)

H5(0, y) − H5(0, Y) =
(Y − y)Q5(y, Y)

(3 + 8yβ + 8γ )4(3 + 8Yβ + 8γ )4
= 0,

where P1 and Q5 are polynomials of degrees one and five, respec-
tively. We solve again the equation P1(y, Y) = 0 obtaining the vari-
able Y as a function of y, that is, Y = f(y). If we substitute Y = f(y) in
equation Q5(y, Y) = 0, we obtain a polynomial equation of degree 4
in the variable y, and so system (12) has at most four real solutions.
Taking into account the symmetry between these solutions, as in the
previous statements, there can be only two different solutions (y, Y)

of (15) satisfying y < Y.
Finally, we show a discontinuous piecewise differential system

(I)–(6) having two limit cycles. On the half-plane x < 0, we consider
the linear differential system

ẋ = 1 + x − 2y, ẏ = x − y, (16)

with first integral

H1(x, y) = −2y + x2 − 2xy + 2y2,

Chaos 31, 043112 (2021); doi: 10.1063/5.0023055 31, 043112-6
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FIG. 4. The pair of limit cycles that exist for systems
(16) and (17) of classes (I)–(V). They are travelled in
counter-clockwise sense.

and on the half-plane x > 0, we consider the quadratic isochronous
differential system of type (6)

ẋ = 0.001 345 83 + 7.888 17x + 0.032 69y − 5.333 33x2

+ 5.810 77xy − 0.073 541 8y2,
(17)

ẏ = 3.825 31 − 3.825 31x + 5.445 16y − 2.666 67xy + 1.936 92y2,

with first integral

H5(x, y) =
1

(8(−1y − 1.809 49) + 3)4

(
9
(
(−1x + 0.726 346y + 1)2

+(−1y − 1.809 49)2
)
+ 16(−1y − 1.809 49)4

+24.(−1y − 1.809 49)3
)

.

For this case, the two solutions for system (15) with y < Y are

(y1, Y1) = (0, 1), (y2, Y2) =
(

1

5
,
4

5

)
,

and the corresponding limit cycles of the discontinuous piecewise
differential system (8)–(17) associated to this solution are shown
in Fig. 4.

IV. PROOF OF THEOREM 2

A. Proof of statement (a) of Theorem 2

We consider the quadratic polynomial differential system (3)
with first integral H2(x, y) in the half-plane x < 0. By changing
the parameters (a, α, b, β , c, γ ) to (a1, α1, b1, β1, c1, γ1) in system (3)
and in its first integral, we obtain a second isochronous quadratic
differential system of type (3) with the first integral H̃2(x, y), namely,

ẋ =
1

b1α1 − a1β1

(
β1γ

2
1 + 2b1γ1c1 + b1c1 + β1γ1 − β1c

2
1 + (2a1b1γ1 + 2α1β1γ1

+ a1b1 + α1β1 − 2a1β1c1 + 2α1b1c1)x + (2γ1 + 1)(b2
1 + β2

1 )y + (−a2
1β1 + α2

1β1

+ 2α1a1b1)x
2 + 2α1(b

2
1 + β2

1 )xy + β1(b
2
1 + β2

1 )y
2
)
,

ẏ =
1

b1α1 − a1β1

(
− α1γ

2
1 − 2a1γ1c1 − a1c1 − α1γ1 + α1c

2
1 − (2γ1 + 1)(a2

1 + α2
1)x

+ (−2a1b1γ1 − 2α1β1γ1 − a1b1 − α1β1 − 2a1β1c1 + 2α1b1c1)y − α1(a
2
1 + α2

1)x
2

− 2β1(a
2
1 + α2

1)xy − (α1β
2
1 + 2a1β1b1 − α1b

2
1)y

2
)
,

(18)
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whose first integral is

H̃2(x, y) =
(c1 + a1x + b1y)

2 + (xα1 + yβ1 + γ1)
2

1 + 2(xα1 + yβ1 + γ1)
.

If a limit cycle of the discontinuous piecewise differential sys-
tems (3)–(18) has two different intersection points (0, y) and (0, Y)

with the line x = 0, then they must satisfy the system

H2(0, y) − H2(0, Y) =
(Y − y)P2(y, Y)

(2γ + 2βy + 1)(2γ + 2βY + 1)
= 0,

(19)

H̃2(0, y) − H̃2(0, Y) =
(Y − y)Q2(y, Y)

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

where both polynomials P2 and Q2 are of degree two. From the
equation Q2(y, Y) = 0, we get Y as a function of y, that is, Y = f(y),
and substituting this expression in the equation P2(y, Y) = 0, we
obtain a quadratic polynomial equation in the variable y. Then, the
maximum number of solutions of (19) is two, namely, (y1, Y1) and
(y2, Y2), but in fact, these two solutions represent the same limit cycle
because they are symmetric in the sense of the proof of Theorem 1.
Thus system (3)–(3) has at most one limit cycle.

Now we give an example of a discontinuous piecewise differ-
ential system of type (3)–(3) having one limit cycle. On x < 0 we
consider the quadratic isochronous differential system

ẋ = −4 − x − 6y + x2 − 2y2, ẏ = 3 + 3x + 5y + 2xy + 2y2,
(20)

with a first integral

H2(x, y) =
(1 + y)2 + (1 + x + y)2

1 + 2(1 + y)
,

and on x > 0 we consider the quadratic isochronous differential
system of type (3)

ẋ = −2 + x − 6y + x2 − 4xy + 2y2, ẏ = 1 + 3x − 5y + x2 − 2xy,
(21)

whose first integral is

H̃2(x, y) =
(1 + x − y)2 + (1 + y)2

1 + 2(1 + x − y)
.

The solution of (19) satisfying y < Y is (y, Y)

=
(

1
2
(−1 −

√
3), 1

2
(−1 +

√
3)

)
, which provides the limit cycle for

the discontinuous differential piecewise systems (20) and (21)
shown in Fig. 5.

B. Proof of statement (b) of Theorem 2

We consider again the quadratic polynomial differential system
(18) with first integral H̃2(x, y) in the half-plane x < 0, and for x > 0,
we take the isochronous differential system (4) whose first integral
is H3(x, y).

If there exists a limit cycle of the discontinuous piecewise differ-
ential system (18)–(4), then it has two different intersection points

FIG. 5. The unique limit cycle that exists for systems (20) and (21) of types
(II)–(II). It is travelled in counter-clockwise sense.

(0, y) and (0, Y) with the line x = 0, which satisfy the system

H̃2(0, y) − H̃2(0, Y) =
(Y − y)P2(y, Y)

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

(22)

H3(0, y) − H3(0, Y) =
(Y − y)Q2(y, Y)

(γ2 + β2y + 1)2(γ2 + β2Y + 1)2
= 0,

where both polynomials P2 and Q2 have degree two. From the
equation P2(y, Y) = 0, we get Y as a function of y, that is, Y = f(y),
and substituting this expression in the equation Q2(y, Y) = 0, we
obtain a polynomial equation of degree two in the variable y. Then,
the maximum number of solutions of (22) is two. But due to the
symmetry of the solutions, the systems (3) and (4) have at most one
limit cycle.

Now we write an example of a discontinuous piecewise differ-
ential system having a unique limit cycle. On x < 0, we consider
the quadratic isochronous differential system (20), and on x > 0, we
consider the quadratic isochronous differential system of type (4),

ẋ = −2 − 4y − xy, ẏ = x − 3y − y2, (23)

whose first integral is

H3(x, y) =
(x − y + 1)2 + (y + 1)2

(x − y + 2)2
.

Then, the obtained solution of system (22) satisfying y < Y is
(y, Y) =

(
− 4

3
, 0

)
. This pair provides the limit cycle that exists for
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FIG. 6. The unique limit cycle that exists for systems (20)–(23) of types (II)–(III).
It is travelled in counter-clockwise sense.

the discontinuous differential piecewise systems (20)–(23) shown
in Fig. 6.

C. Proof of statement (c) of Theorem 2

We take the quadratic polynomial differential system (18) with
the first integral H̃2(x, y) in the half-plane x < 0, and for x > 0, we
take the isochronous differential system (5) with the first integral
H4(x, y).

If there exists a limit cycle of the discontinuous piecewise

differential system (18)–(5), then it has two different intersection

points (0, y) and (0, Y) with the separation line x = 0, satisfying the

system

H̃2(0, y) − H̃2(0, Y) =
(Y − y)P2(y, Y)

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

(24)

H4(0, y) − H4(0, Y) =
(Y − y)Q4(y, Y)

(−3 + 16yβ + 16γ )(−3 + 16Yβ + 16γ )
= 0,

where both polynomials P2 and Q4 are of degree two and four,
respectively. From equation P2(y, Y) = 0, we obtain Y as a function
of y, that is, Y = f(y), and if we put this expression in the second
equation Q4(y, Y) = 0, we obtain a polynomial equation of degree
six in the variable y. Then, the maximum number of solutions of
(22) is six, but due to the symmetry, there are at most three solu-
tions of system (24) satisfying y < Y. Thus, systems (3)–(5) have at
most three limit cycles.

Next, we give an example of discontinuous piecewise
differential system of types (3)–(5) having two limit cycles.
On x < 0, we consider the quadratic isochronous differential
system

ẋ = −0.427 384 − 0.457 523x − 4.273 84y + 1.931 7x2

+ 6.838 14xy − 0.427 384y2,

ẏ = 0.116 463 + 0.682 96x + 1.871 74y − 0.546 368x2

+ 0.136 592xy + 3.652y2,

(25)

with the first integral

H̃2(x, y) =
9 + 128x2 + 9y(18 + 89y) − 16x(1 − 2

√
2 + y − 20

√
2y)

16(5 − 8x + y)
,

and on x > 0, we consider the quadratic isochronous differential
system of type (5)

ẋ = −0.593 985 − 6.893 77x − 6.770 32y + 3.034 14x2 + 0.667 964xy − 1.899 16y2,

ẏ = 4.772 86 + 7.534 17x + 9.754 81y − 1.871 38x2 + 1.931 71xy + 3.301 43y2,
(26)

whose first integral is

H4(x, y) =
1

54.173 − 16x + 19.657 7y

(
16(−0.357 63 − x − 0.908 852y)4

− 24(−0.357 63 − x − 0.908 852y)2(3.573 31 − x + 1.228 61y)

+ 9((−0.357 63 − x − 0.908 852y)2 + (3.573 31 − x + 1.228 61y)2)
)

. (27)

The solutions to (24) satisfying y < Y are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

which provide the two limit cycles for the discontinuous differential piecewise systems (25) and (26) shown in Fig. 7.
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FIG. 7. The two limit cycles that exist for systems (25) and (26) of types (II)–(IV).
They are travelled in counter-clockwise sense.

D. Proof of statement (d) of Theorem 2

We consider the quadratic polynomial differential system (18)
with the first integral H̃2(x, y) in the half-plane x < 0, and for x > 0,
we take the isochronous differential system (6) whose first integral
is H5(x, y).

If a limit cycle exists for the discontinuous piecewise dif-
ferential system (18)–(6), then it has two different intersection
points (0, y) and (0, Y) with the line x = 0, satisfying the closing
equations

H̃2(0, y) − H̃2(0, Y) =
(Y − y)P2(y, Y)

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

(28)

H5(0, y) − H5(0, Y) =
(Y − y)Q5(y, Y)

(8γ + 8βy + 3)(8γ + 8βY + 3)
= 0,

where both polynomials P2 and Q5 are of degree two and five,
respectively. From the equation P2(y, Y) = 0, we get Y as a function
of y, that is, Y = f(y), and substituting this expression in the equation
Q5(y, Y) = 0, we obtain an equation of order six in the variable y.
Then, the maximum number of solutions of (28) is six, but because
of the symmetry property as in the previous statements, systems
(3)–(6) have three limit cycles at most. Next, we give an example of
discontinuous piecewise differential system of types (3)–(6) having
two limit cycles. On x < 0, we consider the quadratic isochronous
differential system

ẋ = −4.243 71 + 0.170 949x + 6.253 88y + 3.657 48x2 − 12.507 8xy + 8.040 71y2,

ẏ = −2.200 72 − 1.289 15x + 5.485 91y + 1.289 15x2 − 3.314 96xy + 0.579 633y2,
(29)

with the first integral

H̃2(x, y) =
14(1.5 + x2 + x(0.414 214 − 4.122 84y) + y(−2.726 59 + 4.851 17y))

−7 + 14x − 18y
,

and on x > 0, we consider the quadratic isochronous differential system of type (6)

ẋ = 0.550 125 + 9.009 84x − 1.248 12y + 6.059 59x2 − 0.600 689xy − 0.034 14y2,

ẏ = 3.905 88 + 49.776 5x − 6.635 34y + 17.347 6x2 + 1.214 15xy − 0.491 153y2,
(30)

whose first integral is

H5(x, y) =
0.000 244 141

(−0.450 206 + x − 0.195 584y)4)

(
9((−0.825 206 + x − 0.195 584y)2

+ (0.178 088 + x − 0.118 725y)2) + 24(−0.825 206 + x − 0.195 584y)3 + 16(−0.825 206 + x − 0.195 584y)4
)

. (31)

The solutions to (28) satisfying y < Y that provide the two limit
cycles for the discontinuous differential piecewise systems (29) and
(30) are

(y1, Y1) = (0.1., 1.), (y2, Y2) = (0.166 666, 0.833 335),

as shown in Fig. 8.

V. PROOF OF THEOREM 3

A. Proof of statement (a) of Theorem 3

We consider the quadratic polynomial differential system (4)
with first integral H3(x, y) in the half-plane x < 0. By changing
the parameters (a, α, b, β , c, γ ) to (a1, α1, b1, β1, c1, γ1) in system (4)
and in its first integral, we obtain a second isochronous quadratic
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FIG. 8. The two limit cycles existing for system (29) and (30) of types (II)–(V).
They are travelled in counter-clockwise sense.

differential system of type (4) with the first integral H̃3(x, y),
namely,

ẋ =
1

b1α1 − a1β1

(
b2

1y(1 + xα1 + γ1) + b1(c1 + a1x)(1 + xα1

−yβ1 + γ1) + β1(−c2
1 − 2a1c1x − a2

1x
2 + xα1 + yβ1 + γ1)

)
,

(32)

ẏ =
1

b1α1 − a1β1

(
α1(c

2
1 + 2b1c1y + b2

1y
2 − xα1 − yβ1 − γ1)

−a2
1x(1 + yβ1 + γ1) − a1(c1 + b1y)(1 − xα1 + yβ1 + γ1)

)
,

whose first integral is

H̃3(x, y) =
(c1 + a1x + b1y)

2 + (xα1 + yβ1 + γ1)
2

(1 + xα1 + yβ1 + γ1)
2

.

If a limit cycle of the discontinuous piecewise differential sys-
tems (4)–(32) has two different intersection points (0, y) and (0, Y)

with the line x = 0, then they must satisfy the system

H3(0, y) − H3(0, Y) =
(Y − y)P2(y, Y)

(1 + yβ + γ )2(1 + Yβ + γ )2
= 0,

H̃3(0, y) − H̃3(0, Y) =
(Y − y)Q2(y, Y)

(1 + yβ1 + γ1)
2(1 + Yβ1 + γ1)

2
= 0,

(33)

where both polynomials P2 and Q2 are of degree two. From equation
Q2(y, Y) = 0, we get Y as a function of y, that is, Y = f(y), and
after substituting this expression in the equation P2(y, Y) = 0, we
obtain a quadratic polynomial equation in the variable y. Then, the

FIG. 9. The unique limit cycle that exists for systems (23)–(34) of types (III) and
(III). It is travelled in counter-clockwise sense.

maximum number of solutions of (33) is two, namely, (y1, Y1) and
(y2, Y2); but in fact, these two solutions represent the same limit cycle
because they are symmetric as usual. Thus, systems (4)–(4) have at
most one limit cycle.

Now we give an example of a discontinuous piecewise dif-
ferential system of type (4)–(4) having one limit cycle. On x < 0,
we consider the quadratic isochronous differential system (23), and
on x > 0, we take the quadratic isochronous differential system of
type (4)

ẋ = −2 − 2y + x2 + xy, ẏ = 2 + 2x + 3y + xy + y2, (34)

with a first integral

H3(x, y) =
(1 + y)2 + (1 + x + y)2

(2 + y)2
.

The solution to (33) satisfying y < Y is (y, Y) =
(
− 4

3
, 0

)
, which pro-

vides the limit cycle for the discontinuous differential piecewise
systems (23)–(34) shown in Fig. 9.

B. Proof of statement (b) of Theorem 3

We consider again the quadratic polynomial differential system
(32) with first integral H̃3(x, y) in the half-plane x < 0, and for x > 0,
we take the isochronous differential system (5) whose first integral
is H4(x, y).

If there exists a limit cycle of the discontinuous piecewise differ-

ential systems (32)–(5), then it has two different intersection points
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(0, y) and (0, Y) with line x = 0, which satisfy the systems

H̃3(0, y) − H̃3(0, Y) =
(Y − y)P2(y, Y)

(1 + yβ1 + γ1)
2(1 + Yβ1 + γ1)

2)
= 0,

(35)

H4(0, y) − H4(0, Y) =
(Y − y)Q4(y, Y)

(−3 + 16yβ + 16γ )(−3 + 16Yβ + 16γ )
= 0,

where the polynomials P2 and Q4 have degree two and four, respec-
tively. From equation P2(y, Y) = 0, we get Y as a function of y, that is,
Y = f(y), and substituting this expression in equation Q4(y, Y) = 0,
we obtain a polynomial equation of degree six in the variable y.
Then, the maximum number of solutions of (35) is six. But due to
the symmetry of the solutions, the systems (4) and (5) have at most
three limit cycles.

Now, we show an example of discontinuous piecewise differen-
tial system of types (4) and (5) having two limit cycles. On x < 0, we
consider the quadratic isochronous differential system

ẋ = −5.925 92 − 47.912 7x − 58.660 6y + x2 − 0.101 841xy,

ẏ = −246.99 + 9.522 4x − 26.911y + xy − 0.101 841y2,
(36)

with the first integral

H̃3(x, y) =
(24.941 2 − x + 0.101 841y)2 + (602.838 − x + 61y)2

(603.838 − x + 61y)2
,

and on x > 0, we consider the quadratic isochronous differential
system (26) of type (5) whose first integral is (27). The solu-
tions to (35) satisfying y < Y that provide the two limit cycles for
discontinuous differential piecewise system (36)–(26) are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

as shown in Fig. 10.

C. Proof of statement (c) of Theorem 3

We take the quadratic polynomial differential system (32) with
the first integral H̃3(x, y) in the half-plane x < 0, and for x > 0, we
take the isochronous differential system (6) with the first integral
H5(x, y).

If there exists a limit cycle of the discontinuous piecewise differ-
ential systems (32)–(6), then it has two different intersection points
(0, y) and (0, Y) with the separation line x = 0, satisfying the system

H̃3(0, y) − H̃3(0, Y) =
(Y − y)P2(y, Y)

(1 + yβ1 + γ1)
2(1 + Yβ1 + γ1)

2)
= 0,

(37)

H5(0, y) − H5(0, Y) =
(Y − y)Q5(y, Y)

(3 + 8yβ + 8γ )4(3 + 8Yβ + 8γ )4
= 0,

where the polynomials P2 and Q5 are of degrees two and five, respec-
tively. From equation P2(y, Y) = 0, we obtain Y as a function of y,
that is, Y = f(y), and putting this expression in the second equation
Q5(y, Y) = 0, we obtain a polynomial equation of degree six in the
variable y. Then, the maximum number of solutions to (37) is six;
but due to the symmetry, there are at most three solutions of system

FIG. 10. The pair of limit cycles that exists for systems (36)–(26) of types
(III)–(IV). They are travelled in counter-clockwise sense.

(37) satisfying y < Y. Thus, systems (4)–(6) have at most three limit
cycles.

Next, we give an example of discontinuous piecewise differen-
tial system of types (4)–(6) having two limit cycles. On x < 0, we
consider the quadratic isochronous differential system

ẋ = 6781.71 + 363.957x − 15 585.4y + x2 − 45.267 4xy,

ẏ = 140.782 + 7.249 45x − 308.767y + xy − 45.267 4y2,
(38)

with the first integral

H̃3(x, y)

=
(−70.432 8 + x − 57.244 8y)2 + (18.396 7 + x − 45.267 4y)2

(−69.432 8 + x − 57.244 8y)2
,

and on x > 0, we consider the quadratic isochronous differential
system (30) of type (6) whose first integral is (31). The solutions
to (37) satisfying y < Y that provide the two limit cycles for the
discontinuous differential piecewise systems (38)–(30) are

(y1, Y1) = (0.1, 1), (y2, Y2) = (0.166 666, 0.833 335),

as shown in Fig. 11.

VI. PROOF OF THEOREM 4

A. Proof of Theorem 4 for systems (IV)–(IV)

We consider the quadratic polynomial differential system (5)
with the first integral H4(x, y) in the half-plane x < 0. By changing
the parameters (a, α, b, β , c, γ ) to (a1, α1, b1, β1, c1, γ1) in system (5)
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FIG. 11. The two limit cycles existing for systems
(38)–(30) of types (III)–(V). They are travelled in coun-
ter-clockwise sense.

and its first integral, we obtain a second isochronous quadratic differential system of type (5) with the first integral H̃4(x, y), namely,

ẋ =
1

3a1β1 − 3b1α1

(
b1(c1 + a1x)(−3 + 16xα1 + 8yβ1 + 16γ1) + b2

1y(−3 + 16xα1 + 12yβ1 + 16γ1)

−β1(4c2
1 + 8a1c1x + 4a2

1x
2 + 3(xα1 + yβ1 + γ1)

)
,

ẏ =
1

3b1α1 − 3a1β1

a1(c1 + b1y)
(
−3 + 8xα1 + 16yβ1 + 16γ1) + a2

1x(−3 + 12xα1 + 16yβ1 + 16γ1)

−α1(4c2
1 + 8b1c1y + 4b2

1y
2 + 3(xα1 + yβ1 + γ1)

)
,

(39)

whose first integral is

H̃4(x, y) =
1

16(γ1 + α1x + β1y) − 3

(
−24(a1x + b1y + c1)

2
(γ1 + α1x + β1y)

+ 9
(
(a1x + b1y + c1)

2 + (γ1 + α1x + β1y)
2
)
+ 16(a1x + b1y + c1)

4
)
.

If there exists a limit cycle of the discontinuous piecewise differential systems (5)–(39), then it has two different intersection points (0, y)
and (0, Y) with separation line x = 0, satisfying the system

H̃4(0, y) − H̃4(0, Y) =
(Y − y)P4(y, Y)

(−3 + 16yβ1 + 16γ1)(−3 + 16Yβ1 + 16γ1)
= 0,

H4(0, y) − H4(0, Y) =
(Y − y)Q4(y, Y)

(−3 + 16yβ + 16γ )(−3 + 16Yβ + 16γ )
= 0,

(40)

where both polynomials P4 and Q4 are of degree four. From equation P4(y, Y) = 0, we obtain Y as a function of y, that is, Y = f(y), and
substituting it in the second equation Q4(y, Y) = 0, we obtain a polynomial equation of degree six in the variable y. Then, the maximum
number of solutions to (40) is six; but due to symmetry, there are at most three solutions to system (40) satisfying y < Y. Thus, systems
(5)–(5) has at most three crossing limit cycles.

Next, we give an example of discontinuous piecewise differential system of types (5)–(5) having two limit cycles. On x < 0, we consider
the quadratic isochronous differential system

ẋ = −0.593 985 + 6.893 77x − 6.770 32y + 3.034 14x2 − 0.667 964xy − 1.899 16y2,

ẏ = −4.772 86 + 7.534 17x − 9.754 81y + 1.871 38x2 + 1.931 71xy − 3.301 43y2,
(41)
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with the first integral

H̃4(x, y) =
1

−3 + 16(3.573 31 + x + 1.228 61y)

(
16(−0.357 63 + x − 0.908 852y)4

−24(−0.357 63 + x − 0.908 852y)2(3.573 31 + x + 1.228 61y)

+9((−0.357 63 + x − 0.908 852y)2 + (3.573 31 + x + 1.228 61y)2)
)

, (42)

and on x > 0, we consider the quadratic isochronous differential system

ẋ = −4.352 74 + 17.666x − 44.116 7y + 1.652 12x2 − 2.115 58xy − 4.001 74y2,

ẏ = 279.554 + 16.398 2x + 89.623 6y − 0.305 758x2 + 4.695 75xy + 5.228 3y2,
(43)

with the first integral

H4(x, y) =
1

−3 + 16(47.304 − x + 12.039 6y)

(
16(−13.411 2 − x − 1.042 63y)4

−24(−13.411 2 − x − 1.042 63y)2(47.304 − x + 12.039 6y)

+9((−13.411 2 − x − 1.042 63y)2 + (47.304 − x + 12.039 6y)2)
)

.

The solutions to (40) satisfying y < Y that provide the two limit
cycles for the discontinuous differential piecewise system (41)–(43)
are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

as shown in Fig. 12.

B. Proof Theorem 4 for systems (IV)–(V)

We take the quadratic polynomial differential system (39) with
the first integral H̃4(x, y) in the half-plane x < 0, and for x > 0, we
take the isochronous differential system (6) with the first integral
H5(x, y).

If there exists a limit cycle of the discontinuous piecewise dif-
ferential systems (39)–(6), then there exist two different intersection
points (0, y) and (0, Y) with the separation line x = 0, satisfying the
system

H̃4(0, y) − H̃4(0, Y) =
(Y − y)P4(y, Y)

(−3 + 16yβ1 + 16γ1)(−3 + 16Yβ1 + 16γ1)

= 0,

(44)

H5(0, y) − H5(0, Y) =
(Y − y)Q5(y, Y)

(3 + 8yβ + 8γ )4(3 + 8Yβ + 8γ )4
= 0,

where the polynomials P4 and Q5 are of degrees four and five, respec-
tively. Again, we obtain Y as a function of y, that is, Y = f(y), from
the equation P4(y, Y) = 0, and putting this expression in the second
equation Q5(y, Y) = 0, we obtain a polynomial equation of degree
seven in the variable y. Then, the maximum number of solutions
of (44) is seven; but due to symmetry, there are at most three solu-
tions to system (44) that satisfy the condition y < Y. Then, systems
(5)–(6) have at most three limit cycles.

Now, we show an example of discontinuous piecewise differ-
ential system of types (5)–(6) having two limit cycles. On x < 0,

we consider again the quadratic isochronous differential system (41)
whose first integral is (42), and on x > 0, we consider the quadratic
isochronous differential system

FIG. 12. The pair of limit cycles that exists for systems (41)–(43) of types
(IV)–(IV). They are travelled in counter-clockwise sense.
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FIG. 13. The two limit cycles existing for systems (41)–(45) of types (IV) and (V). They are travelled in counter-clockwise sense.

ẋ = −0.013 519 9 + 6.448 12x − 0.134 872y + 4.000 57x2 + 0.155 285xy − 0.004 530 93y2,

ẏ = 15.137 5 + 132.575x − 1.281 87y + 22.887 2x2 + 5.332 2xy − 0.077 808 3y2,
(45)

with the first integral

H5(x, y) =
1

(3 + 8(−1.241 93 + x − 0.058 281 6y))4

(
9((−1.241 93 + x − 0.058 281 6y)2

+(0.387 469 + x − 0.000 024 863 2y)2) + 24(−1.241 93 + x − 0.058 281 6y)3 + 16(−1.241 93 + x − 0.058 281 6y)4
)

.

The solutions to (44) satisfying y < Y that provide the two limit cycles for the discontinuous differential piecewise systems (41)–(45) are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

as shown in Fig. 13.

VII. PROOF OF THEOREM 5

We consider the quadratic polynomial differential system (6) with the first integral H5(x, y) in the half-plane x < 0. If we change the
parameters (a, α, b, β , c, γ ) to (a1, α1, b1, β1, c1, γ1) in system (6) and its first integral, we obtain a second isochronous quadratic differential
system of type (6) with the first integral H̃5(x, y), namely,

ẋ =
1

3(α1b1 − a1β1)

(
4β1γ

2
1 + 8b1γ1c1 + 3b1c1 + 3β1γ1 − 16β1c

2
1 + (8a1b1γ1 + 8α1β1γ1 + 3a1b1 + 3α1β1 − 32a1β1c1 + 8α1b1c1)x

+ (8b2
1γ1 + 8β2

1γ1 + 3b2
1 + 3β2

1 − 24β1b1c1)y + 4(α2
1β1 − 4a2

1β1 + 2α1a1b1)x
2 + 8(α1β

2
1 − 3a1β1b1 + α1b

2
1)xy − 4β1y

2(2b2
1 − β2

1 )y
2
)
,

(46)

ẏ =
1

3(α1b1 − a1β1)

(
16α1c

2
1 − 4α1γ

2
1 − 8a1γ1c1 − 3a1c1 − 3α1γ1 − (8a2

1γ1 + 8α2
1γ1 + 3a2

1 + 3α2
1 − 24α1a1c1)x

− (8a1b1γ1 + 8α1β1γ1 + 3a1b1 + 3α1β1 + 8a1β1c1 − 32α1b1c1)y + 4α1(2a2
1 − α2

1)x
2 + 8(a2

1(−β1) − α2
1β1 + 3α1a1b1)xy

− 4(α1β
2
1 + 2a1β1b1 − 4α1b

2
1)y

2
)
,
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whose first integral is

H5(x, y) =
1

(8(γ1 + α1x + β1y) + 3)4

(
9
(
(a1x + b1y + c1)

2

+ (γ1 + α1x + β1y)
2
)
+ 16(γ1 + α1x + β1y)

4

+ 24(γ1 + α1x + β1y)
3
)
.

If there exists a limit cycle of the discontinuous piecewise differ-
ential systems (6)–(46), then it has two different intersection points
(0, y) and (0, Y) with the separation line x = 0, satisfying the system

H̃5(0, y) − H̃5(0, Y) =
(Y − y)P5(y, Y)

(3 + 8yβ1 + 8γ1)
4(3 + 8Yβ1 + 8γ1)

4
= 0,

(47)

H5(0, y) − H5(0, Y) =
(Y − y)Q5(y, Y)

(3 + 8yβ + 8γ )4(3 + 8Yβ + 8γ )4
= 0,

where both polynomials P5 and Q5 are of degree five. Then, by
Bézout theorem, the maximum number of solutions (y, Y) ∈ C

of Eq. (47) is 25. Since our solutions appear in pairs because of
symmetry, the maximum number of solutions satisfying y < Y is 12.

Next, we give an example of discontinuous piecewise differen-
tial system of types (6)–(46) having two limit cycles.

On x < 0, we consider the quadratic isochronous differential
system (48)

ẋ = 0.103 814 + 0.025 571 7x − 0.097 864 9y − 0.036 889 7x2

+ 0.218 646xy − 0.322 863y2,

ẏ = 0.030 51 + 0.017 037 6x − 0.057 329 8y − 0.015 380 9x2

+ 0.090 517 3xy − 0.132 811y2,

(48)

with the first integral

H̃5(x, y) =
1

(3 + 8(−4.153 32 + x − 2.616 06y))4

(
9((−3.794 77 + 2x − 5.613y)2

+ (−4.153 32 + x − 2.616 06y)2)

+ 24(−4.153 32 + x − 2.616 06y)3

+16(−4.153 32 + x − 2.616 06y)4
)

,

and on x > 0, we consider the quadratic isochronous differential
system

ẋ = 0.000 069 679 2 + 0.001 141 19x − 0.000 158 087y

+ 0.000 767 513x2 − 0.000 076 083 7xy − 0.000 004 324 2y2,

(49)

ẏ = 0.000 494 721 + 0.006 304 72x − 0.000 840 437y

+ 0.002 197 27x2 + 0.000 153 785xy − 0.000 062 209 8y2,

FIG. 14. The two limit cycles existing for systems (48) and (49) of types (V) and
(V). They are travelled in counter-clockwise sense.

with the first integral

H5(x, y) =
1

(3 + 8(−0.825 206 + x − 0.195 584y))4

×
(
9((−0.825 206 + x − 0.195 584y)2

+ (0.178 088 + x − 0.118 725y)2)

+ 24(−0.825 206 + x − 0.195 584y)3

+ 16(−0.825 206 + x − 0.195 584y)4
)

.

The solutions to (47) satisfying y < Y that provide the two limit
cycles for the discontinuous differential piecewise systems (48) and
(49) are

(y1, Y1) = (0.1, 1), (y2, Y2) = (0.166 666, 0.833 335),

as shown in Fig. 14.
Remark. Equation (47) can have at most 12 solutions using

the Bézout theorem, but numerical evidences obtained given arbi-
trary values to the parameters of the class of discontinuous piecewise
differential systems of types (V) and (V), we could only find at most
eight real solutions, but these solutions in general do not provide
crossing limit cycles. In all the particular piecewise differential sys-
tems studied numerically, we could only find at most two crossing
limit cycles.

VIII. CONCLUSIONS

There is a unique family of linear isochronous centers and
four families of quadratic isochronous centers. Considering all the

Chaos 31, 043112 (2021); doi: 10.1063/5.0023055 31, 043112-16

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

possibilities of choosing two pairs of these isochronous centers,
eventually repeated, we obtained 15 pairs. Therefore, we have 15
classes of discontinuous piecewise differential systems formed by
two differential systems separated by a straight line when these
two differential systems are linear isochronous centers or quadratic
isochronous centers.

For these 15 classes of discontinuous piecewise differential sys-
tems, we provide an upper bound for the maximum number of limit
cycles that they can exhibit, i.e., for these classes of differential sys-
tems, we have solved the 16th Hilbert problem. Moreover, for 7 of
these 15 classes of discontinuous piecewise differential systems, the
upper bound on the maximum number obtained is reached.

More precisely, it was known that discontinuous piecewise
differential systems formed by two linear isochronous centers sepa-
rated by a straight line cannot have limit cycles, see Ref. 27. If one of
the systems is a linear isochronous center and the other is a quadratic
isochronous center, then their maximum number of limit cycles
is studied in Theorem 1. While if the two systems are quadratic
isochronous centers, then their maximum number of limit cycles is
studied in Theorems 2, 3, 4, and 5.
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