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ABSTRACT Electric variable speed drives (VSDs) based on two VSDs connected to a multiphase machine
are an attractive solution to replace high-power mechanic and hydraulic systems in many sectors of industry
and transportation because they present high performance with reduced cost, volume and weight. Among
the causes which affect the reliability of dual VSDs, the common-mode current flowing through the machine
bearing is an important issue. This paper faces the mitigation of the common-mode current by reducing the
common-mode voltage (CMV) generated by the operation of a dual VSD. The CMV reduction is carried out
without introducing any extra device and/or passive filtering method. This CMV reduction is performed by
applying a specific phase-displacement between the modulation strategies of each single inverter drive. The
proposed technique has been evaluated in a down scaled experimental setup in order to test its effectiveness.

INDEX TERMS Harmonic analysis, pulse width modulation, common-mode voltage.

I. INTRODUCTION
The industry is moving from mechanical and hydraulic sys-
tems to the electrical drives because they present a better
performance with a cost reduction [1]. As an example, per-
manent magnet synchronous machines (PMSMs) are widely
used in electric vehicles owing to their advantages such as
high efficiency, reduced cost and high performance [2], [3].
In order to achieve these objectives, the efficient and reliable
variable speed drives (VSDs) are critical components of the
system. In particular, the use of VSDs in power conversion
systems presents many advantages such as high efficiency
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and superior dynamic performance because of its better con-
trol of machine flux and currents.

In recent years, the multi-phase electric machines have
attracted a lot of attention and the dual three-phase machine is
the most common structure among the multi-phase machine
ones [4], [5]. In a dual three-phase machine, two sets of
three-phase stator windings increase the fault-tolerant abil-
ity and make the integration with conventional three-phase
technology relatively simple [6]. Among the applications, it is
possible to find multi three-phase systems and more partic-
ularly the dual three-phase drive in aerospace and marine
applications [7].

Power converters for VSD applications have been inten-
sively developed in the last decades [8], [9]. New multi-level
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FIGURE 1. Dual-drive of a multi-phase PMSM using two three-phase
two-level inverters.

power converter structures have been proposed and advanced
control strategies and modulation techniques have been
explored [10], [11]. However, although these converter
topologies are available, the penetration in the industry is
still limited. The traditional three-phase two-level power con-
verter is nowadays leading the market in most industrial solu-
tions. As an example, in Fig. 1 a dual-drive for a multi-phase
motor using two three-phase two-level inverters is shown.

In the literature, many strategies to control a VSD can be
found. Among them, the direct torque control (DTC), field
oriented control (FOC) or model predictive-based control
are very well-known [12], [13]. In the modulation stage,
the methods to operate a three-phase two-level converter
can be categorized in two main groups: space vector mod-
ulations (SVM) and carrier-based pulse-width modulation
(CB-PWM) techniques [10]. Most of available control plat-
forms include a dedicate peripheral to deploy and use the
PWM modulation. Therefore, CB-PWM technique is the
simplest and most straight-forward way to operate the power
converter.

Although the use of VSDs presents many advantages, sev-
eral drawbacks directly affect to the performance, reliability
and the remaining lifetime of the system [14]–[16]. As a
main concern, the common-mode voltage (CMV) generated
by the drive is closely related to the system reliability because
of the corresponding bearings degradation. In fact, it has
been demonstrated that the CMV is the cause of more than
50% of cases of motor failures [14], [15], [17]. In addition,
the shaft voltage and bearing current phenomena also appear
in induction machines [18], [19]. As a result of these issues,
there is a trend to develop an accurate-enough mathemati-
cal approach to estimate and predict an early failure of the
machine components [20]–[23].

Bearing degradation through CMV has attracted the atten-
tion of researchers in the last years. Multiple approaches
have been performed, which can be categorized in two main
streams: the CMV filtering via the introduction of external

elements and the CMV mitigation considering a proper con-
trol strategy and/or modulation technique. Considering the
introduction of external elements, passive filtering and the use
of active canceler circuits can be found [24]–[27]. Despite of
these methods provide good results, the introduction of extra
passive filtering elements and/or active devices is undesirable
because the increase in cost, volume and weight. On the other
hand, if the CMVmitigation is performed by developing new
modulation methods, the academia provides several options,
most of them based on the proper switching pattern selection
using specific SVM techniques [17], [28]–[31]. In [32], [33],
the CMV mitigation for the dual drive is achieved applying a
SVM method at the expense of developing complex calcula-
tions in the modulation stage.

This work studies the CMV present in the dual drive
application shown in Fig. 1 and develops a simple CB-PWM
method to mitigate its negative effects on the system. To per-
form this analysis, the CMV harmonic spectrum based on
double Fourier description is carried out. From this analysis,
a phase-shift between the PWM operation of both drives is
proposed in order to minimize the CMV harmonic distortion.
In the proposed method, the CMV mitigation is obtained
without external passive filtering elements and/or active
CMV canceler circuits. In addition, the proposed technique
is easily implementable on the most off-the-shelf mid-range
micro-controller control platforms.

The rest of the paper is organized as follows: in section II
the negative effects of the CMV over the motor bearing and
its degradation is presented. Section III analyzes the harmonic
spectrum of the CMV as consequence of the dual drive oper-
ation. In section IV, the effect of the proposed modulation
technique in the machine currents is shown. In section V,
the validation of the modulation technique via experimental
results is performed and section VII highlights the conclu-
sions of the work.

II. BEARING DEGRADATION IN MULTI-PHASE PMSM
CAUSED BY THE CMV
In general, the motor bearing faults are caused by two rea-
sons, mechanical and electrical. Among the electrical rea-
sons, the shaft current is a key factor. According to bearing
manufacturers, 25% of the bearing faults are caused by the
shaft current, and this ratio is rising with the development of
power electronics devices [34].

When the voltage source inverter (VSI) is operated apply-
ing a conventional PWMmethod, the CMV is not zero, which
induces the rotor voltage with the coupling effect of the
internal parasitic capacitance of the motor. That rotor voltage
provokes a common-mode current flow path with the motor
bearing. As shown in Fig. 2, there are three types of parasitic
capacitances in the motor: Cwf is the parasitic capacitance
between the motor winding and stator core,Cwr is the lumped
capacitor that represents the distributed effects from thewind-
ings to the rotor, and Crf is the parasitic capacitance between
the motor stator core and the rotor. Additionally, Cy is the
dc-link to earth capacitance and Rg and Lg are the resistance
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FIGURE 2. Equivalent circuit model of the motor shaft voltage.

and inductance of the ground path, respectively. Cb is the
equivalent capacitance of the bearings on the drive side. Then,
the bearing voltage ub can be introduced with the effect of the
parasitic capacitance [35].

The bearing faults caused by shaft current can be divided
into four types [36]:

1) ∂v
∂t current, which are induced by the ∂v

∂t of the CMV.
However, the influence of this fact is small.

2) EDM (Electric Discharge Machining) current. If the
shaft voltage exceeds the threshold value of the oil
film, the oil film will be broken down, resulting in the
discharge phenomenon, which can cause the heat in the
bearing and the corresponding lifetime can be reduced.

3) Circuital current, which is induced by the common-
mode grounding current at high frequency. It can
induce the high-frequency shaft voltage at both ends
of the motor rotating shaft and generate the circulating
bearing current.

4) Shaft to ground current when the motor frame is badly
grounded, there will be voltage difference between the
inner and outer rings of the bearing caused by rotor
grounding or by driving load grounding.

Because of the EDM current, discharge occurs when the
current passes through the bearing, which can increase the
temperature of the bearing and bearing faults may occur.
Therefore, reducing the shaft current is essential to increase
lifetime and reliability of the motor system.

III. COMMON-MODE VOLTAGE (CMV) HARMONIC
DESCRIPTION IN A DUAL DRIVE SYSTEM
Considering the model of Fig. 2, there is a common-mode
path composed of the converter and the machine. Because
both converters are connected to the motor frame through the
parasitic capacitance and have the same dc-link, the equiv-
alent common-mode voltage (CMV) of the two-converter
system is the summation of the individual CMV of the VSIs

as follows:

CMV = Vn1O + Vn2O

=
VaO + VbO + VcO

3
+
Va′O + Vb′O + Vc′O

3
(1)

To obtain an analytical expression of the resulting CMV in
the six-phase machine, the double Fourier series expression
is used. A periodical signal can be mathematically described
as

x(t) =
A00
2
+

∞∑
n=−∞

[
A0n cos(nω0t)+ B0n sin(nω0t)

]

+

∞∑
m=1

∞∑
n=−∞

[
Amn cos(mωc + nω0t)

+Bmn sin(mωc + nω0t)
]

(2)

where coefficient A00/2 describe the average value of the sig-
nal, A0n and B0n correspond to the base-bands harmonic com-
ponents, and Amn and Bmn determine the side-bands harmonic
components. Taking into account this fact and considering the
traditional PWM approach, the phase voltage of phase x of a
single VSI is determined as [8]:

VxO(t) =
MxVdc

2
cos(ω0t + θx)

+
2Vdc
π

∞∑
m=1

∞∑
n=−∞

[
1
m
Jn

(
mπ
2
Mx

)
sin
(
(m+ n)π

2

)

× cos
(
mωct + n

(
ω0t + θx

))]
(3)

where indices m and n represents each side-band group (m)
and each singular harmonic component inside the group (n).
Mx is the modulation index of phase x (x = a, b, c) and θx is
the phase displacement of the phase voltage in phase x. Jn(z)
is the first kind Bessel function of z and order n.

If the modulation indexes of all the phases in the VSI are
the same, it is imposed that Mx = M . Also, it can be consid-
ered for the sake of simplicity that the phase displacement of
phase a is θa = 0◦. Following these assumptions, the ampli-
tude of the side-bands harmonics of the phase voltage VxO of
the a VSI can be mathematically described as:

VxO(n,m) =
2Vdc
mπ

Jn

(
mπ
2
Mx

)
sin
(
(m+ n)π

2

)
(4)

As the key proposal of this work, in the dual drive system
shown in Fig. 1, the phase displacement angle between the
triangular carriers of the PWM methods in both VSIs of
the dual drive system is considered a degree of freedom in
order to improve the CMV of the overall system. In this
sense, a phase displacement angle (ϕ) is considered in the
triangular carrier of the second VSI. Therefore, the phase
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FIGURE 3. a) Traditional single-carrier PWM modulation for the
three-phase two-level motor dual drive system b) Proposed multi-carrier
modulation technique for the three-phase two-level motor dual drive
system.

voltages in second VSI system can be described, analogously
to (3), as:

Vx ′O(t) =
Mx ′Vdc

2
cos(ω0t + θx ′ )

+
2Vdc
π

∞∑
m=1

∞∑
n=1

[
1
m
Jn

(
mπ
2
Mx ′

)
sin
(
(m+n)π

2

)
× cos

(
m
(
ωct + ϕ

)
+ n

(
ω0t + θx ′

))]
(5)

where ϕ is the phase displacement of the carrier signal
adopted for the second VSI with respect to the carrier sig-
nal adopted for the first one. θx ′ is the phase displacement
of the phase voltage in phase x ′ (x ′ = a′, b′, c′). It can be
observed that the amplitude of the side-bands harmonics of
the phase voltage Vx ′O can be described similarly as was
introduced in (4).

Taking into account these expressions, the resulting CMV
in the six-phase machine can be determined as the summa-
tion of the CMV produced by both VSIs. More specifically,
assuming the same value of the modulation index for all the
phases (M = Mx = Mx ′ ), each machine CMV side-bands
harmonic component can be expressed by:

CMV (n,m) = Vn1O(n,m)+ Vn2O(n,m)

=
Vdc
3mπ

sin
(
(m+ n)

π

2

)
Jn
(
m
π

2
M
)

·

[[(
1+ ejnθb + ejnθc + ej(mϕ+nθa′ )

+ ej(mϕ+nθb′ ) + ej(mϕ+nθc′ )
)]
ej(mωc+nωo)t

+

[(
1+ e−jnθb + e−jnθc + e−j(mϕ+nθa′ )

+ e−j(mϕ+nθb′ ) + e−j(mϕ+nθc′ )
)]
e−j(mωc+nωo)t

]
(6)

In order to consider a wide frequency range in the resulting
CMV, it is possible to consider the CMV Total Harmonic

TABLE 1. Multi-phase PMSM parameters.

Distortion (THD) with respect to the half of the dc-Link as
figure of merit.

THDCMV =
2
Vdc

√√√√√ N∑
m=1

j∑
n=−j

CMV (n,m)2 (7)

where N and j are parameters that define respectively the
number of harmonic groups and specific frequency compo-
nents in each group included in the THD calculation.

Observing expression (7), it can be seen that the minimum
value of the THD is always achieved with a carrier displace-
ment angle ϕ equal to 180◦. In order to demonstrate this
fact, in Fig 4a the THD has been calculated through simu-
lation with a modulation index M equal to 0.4, 0.6 and 0.8.
In this test, the multi-phase PMSM machine parameters are
summarized in Table 1. The THD value has been calculated
up to a maximum frequency of 9kHz where the frequency
fc in the triangular carriers of the PWM method are equal to
2kHz. Four complete harmonic groups (N = 4) have been
considered into the THD calculation, while j is fixed to 6.

In order to compare the impact of applying ϕ = 180◦

in the PWM technique in the dual drive system, the CMV
THD has been also computed for the whole modulation index
range considering the conventional PWMmethod where both
VSIs apply synchronized PWMmethods (ϕ = 0◦) (shown in
Fig. 3a). Both modulation methods (ϕ = 0◦ and ϕ = 180◦)
have been applied considering the scenario reported in
Table 1. As can been observed in Fig. 4b, the PWM method
with ϕ = 180◦ is always superior achieving an important
reduction of the CMV THD, specially with low values of the
modulation index.

IV. ANALYSIS OF THE CURRENT RIPPLE CONSIDERING
THE PROPOSED CMV MITIGATION TECHNIQUE
Considering the dual three-phase PMSM machine shown in
Fig. 1, the mathematical description of the stators winding
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FIGURE 4. a) CMV THD value for a dual-drive system using the parameters reported in Table 1 with modulation index equal to 0.4, 0.6 and 0.8 b) CMV
THD value for a dual-drive system using the parameters reported in Table 1 considering the traditional PWM technique (ϕ = 0◦) and the phase-shifted
PWM method with ϕ = 180◦.

FIGURE 5. Experimental laboratory prototype of the dual VSD connected
to a multi-phase PMSM.

is given by the its corresponding inductance matrix which is
written as:

ML =


L M0 M0 M1 M2 M2
M0 L M0 M2 M1 M2
M0 M0 L M2 M2 M1
M1 M2 M2 L M0 M0
M2 M1 M2 M0 L M0
M2 M2 M1 M0 M0 L

 (8)

where M0, M1, M2 are real numbers.
Assuming an internal star connection of each subsystem

and according to the current Kirchhoff Law, the currents
through the windings fulfill that:

ia + ib + ic = 0

ia′ + ib′ + ic′ = 0 (9)

Neglecting the effect of low order back-EMF harmonics
on current harmonics at high frequencies (i. e. the switching
frequency and its superior multiples) and the voltage drop in
the phase resistance, the relationship between high-frequency
harmonic voltage (Vh) and high-frequency harmonic current

FIGURE 6. FOC control strategy implemented in the experimental setup
including the phase displacement between the PWM methods (ϕ = 180◦).

(ih) is determined by:

Vh = ML
dih
dt

(10)

where Vh and ih are defined as:

Vh =
[
Va,h Vb,h Vc,h Va′,h Vb′,h Vc′,h

]T
ih =

[
ia,h ib,h ic,h ia′,h ib′,h ic′,h

]T (11)

Substituting (8) and (9) into (10), the harmonic voltage of
the phase x (x = a, b, c) is determined by:

Vx,h = (L +M0)
dix,h
dt
− (M1 +M2)

dix ′,h
dt

Vx ′,h = (L +M0)
dix ′,h
dt
− (M1 +M2)

dix,h
dt

(12)

Considering the CMV calculation and the analysis per-
formed in section III, when the carriers of both VSIs are
synchronized (ϕ = 0◦) the phase voltages generated in both
VSIs are identical and therefore, as ix = i′x , equation (12) can
be rewritten as:

Vx,h = Vx ′,h = (L +M0 −M1 −M2)
dix,h
dt

(13)

On the contrary, considering the CMV mitigation tech-
nique proposed in section III by fixing a carrier phase dis-
placement between both VSIs equal to ϕ = 180◦, it is
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FIGURE 7. Results applying the traditional PWM method with synchronized carriers (ϕ = 0◦) in both VSIs a) Total CMV b) CMV harmonic spectrum c)
Detail of the CMV harmonic spectrum. Results applying the proposed modulation method with carrier phase displacement between the VSIs equal to
ϕ = 180◦ d) Total CMV e) Detail of the total CMV f) CMV harmonic spectrum.

FIGURE 8. Results applying the traditional PWM method with synchronized carriers ((ϕ = 0◦)) in both VSIs a) Phase currents of drive 1 b) Phase
currents of drive 2 c) Harmonic spectrum of current in phase a. Results applying the proposed PWM method with carrier phase displacement
between the VSIs equal to ϕ = 180◦ d) Phase currents of drive 1 e) Phase currents of drive 2 f) Harmonic spectrum of current in phase a.

fulfilled that ix = −ix ′ . In this case, the phase voltages can
be described as:

Vx,h = −Vx ′,h = (L +M0 +M1 +M2)
dix,h
dt

(14)

Then, through direct comparison between (13) and (14),
a higher impedance value results in the whole system
when a carrier phase displacement between both VSIs
equal to 180◦ is applied. As a consequence of this
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higher impedance, the ripple of the current present in the
system is reduced.

V. EXPERIMENTAL RESULTS
In order to validate the harmonic analysis and the effective-
ness of the proposed modulation technique, the down-scaled
laboratory experimental setup shown in Fig. 5 has been
considered. The prototype consists of a dual three-phase
two-level VSDs connected to a dual-phase PMSM machine.
Each single three-phase VSI is built using the IGBT
IKW75N60T by Infineon Technologies [37]. Figure 6 shows
the PMSMcontrol strategy based on the traditional FOC strat-
egy including the proposed CMV reduction method. In this
sense, the PMSM is driven by a speed and current double
closed control loop. This controller scheme as well as the
modulation techniques have been implemented using a rapid
control prototype platform PLECS RT box [38]. The details
of the multi-phase PMSM machine are listed in Table 1. The
operation of the PMSM is analyzed in terms of the total CMV
generated applying both modulation method approaches and
the results are included in Fig. 7. Because of some limitations
present experimental setup to drive the machine, the exper-
iments has been performed considering a reduced dc-link
voltage equal to 40V, a switching frequency of 4kHz and a
speed reference of 600rpm.

The total generated CMV applying the traditional modu-
lation technique with synchronized PWM methods in both
VSDs (ϕ = 0◦) is represented in Fig. 7a and its harmonic
spectrum is shown in Fig. 7b considering also a zoomed detail
of the distortion at the carrier frequency and its multiples
in Fig. 7c. As it is clearly shown, there is a non-negligible
harmonic component located at the switching frequency (with
an approximately a magnitude of 50%) and at its multiples as
well. On the other hand, the proposed technique applying a
180◦ carrier phase displacement between both VSIs is also
tested considering the same FOC strategy as well as the
same operational conditions in the machine. As it can be
observed in Fig. 7d, the peak-to-peak CMV has been con-
siderably reduced compared with that represented in Fig. 7a.
In addition, in Fig. 7e is represented a detail of the resulting
time-variant CMV. These narrow pulses are provoked, among
other reasons, because of the dead time imposed by the IGBT
driver circuit in the pulses generated by each VSI. However,
as it is illustrated in Fig. 7f, the first (and third) harmonic
groups of the resulting CMV harmonic spectrum have been
eliminated while the second harmonic group remains unal-
tered as shown in Fig. 7f.
The operation of the PMSM has been also analyzed in

terms of the obtained phase currents and the corresponding
experimental results are represented in Fig. 8. Following the
discussion addressed in section IV, the currents obtained by
applying the proposed PWM strategy with ϕ = 180◦ present
a better performance because of the harmonic reduction
in high-frequency components. Through a direct compari-
son between Fig. 8c and Fig. 8f, it is possible to observe
this improvement as a harmonic mitigation at switching

FIGURE 9. Circuit parameters for the modeling of the parasitic effects of
the experimental setup shown in Fig. 5.

TABLE 2. THD values considering up to 30kHz.

frequency as well as the third carrier-order harmonic content.
As it happens with the CMV, the harmonic content located in
the second harmonic group remains unaltered.

In order to test the proposed PWM strategy with different
operational conditions, these experiments have been carried
out with different PMSM reference speeds. The resulting
harmonic distortion of the total CMV as well as the phase
currents THD data, considering up to 9kHz have been sum-
marized in Table 2. As it can be seen from the results,
the proposed total CMVmitigation method achieves superior
results as expected from the analysis introduced in section III.
Additionally, the resulting phase currents THD values are
also reduced as expected from the discussion provided in
section IV. It is important to notice that each rotational speed
corresponds to an specific modulation index value because
the FOC method shown in Fig. 6 determines the reference
voltages to be generated by the VSDs in order to track the
speed. It is important to highlight that the obtained results fit
well with the expected results determined by simulation and
shown in Fig. 4b. The results summarized in Table 2 are just
three examples to show this fact.

VI. IMPACT OF THE RESULTING CMV OVER LEAKAGE
CURRENT AND SHAFT VOLTAGE
As it was addressed in section II, the introduction of high
frequency CMV content accelerates the bearing degradation
because of the mentioned leakage currents and shaft voltage.
In this sense, due to the impossibility ofmeasuring thesemag-
nitudes in the experimental setup, the impact over the leakage
current as well as the shaft voltage has been determined using
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FIGURE 10. Resulting shaft voltage from simulation circuit presented in Fig. 9. a) Conventional modulation method b) Proposed modulation method
c) Harmonic spectrum for conventional modulation method d) Harmonic spectrum for proposed modulation method.

FIGURE 11. Resulting leakage current from simulation circuit presented in Fig. 9 applying a) the conventional modulation method b) the proposed
modulation method. Leakage current harmonic spectrum applying c) the conventional modulation method d) the proposed modulation method.

a specialized simulation environment considering the para-
sitic model shown in Fig. 9 and the measured CMV shown in
Fig. 7 for both modulation techniques. This electrical model
has been conducted following the work presented in [22].

In this sense, the common-mode circuit of the machine
winding is composed by an inductive (L) plus resistive (Rs)
components. Moreover, the parallel parasitic resistance of the
winding (due to insulation) is also considered with a lumped
resistor Rp. Additionally, there are two capacitive paths from
the windings to the frame which are represented by Cwf
and the second path closes through the rotor and represented
by Cwr . The first one is the capacitance between the wind-
ings and the frame whereas the second is the capacitance
between the winding and the rotor. A voltage across the rotor
and the frame appears (so-called shaft voltage) and it is an
well-known indicator regarding the bearing lifespan.

Additionally, some extra capacitive components are
required to be introduced. Crf is the capacitance between
rotor and the frame and Cb is the capacitance due to the
bearings. The current that flows through this capacitance is
responsible for the bearing degradation. The other parame-
ters regards the earth connection: Rg and Lg are resistance
and inductance of the path connecting the frame of the
machine to the earth point of the converter and Cg repre-
sents the high-voltage capacitors that are usually connected
between the dc-link of the converter and earth. The value
of the parameters can change depending on the type of
the machine (a reduced air-gap, for instance, reduces the
Cwf ), however it is always true that a reduced CMV exci-
tation reduces the current through Cb. The corresponding
circuit parameters for the experimental setup are properly
listed in Fig. 9.
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On one hand, it is possible to calculate the induced shaft
voltage in the machine by the application of both modula-
tion strategies. The obtained results are shown in Fig. 11.
As it can be observed, the application of the conventional
modulation technique with ϕ = 0◦ leads to relatively large
shaft voltage as shown in Fig. 11a. If the harmonic spectrum
is represented, there is a non-negligible dc component as
well as the magnitude of the first and third harmonic groups
are high as shown in Fig. 11b. On the contrary, as it is
presented in Fig. 11b and Fig. 11d, after the application of
the proposed modulation technique with ϕ = 180◦, not only
the peak-to-peak magnitude of the shaft voltage is reduced
but the dc component is eliminated as well as the first and
third harmonic groups are greatly mitigated. These results
completely fit with the experimental results presented for the
CMV reduction.

On the other hand, the leakage current has been also calcu-
lated using the simulation model and similar conclusions can
be drawn as it is shown in Fig. 10.
From these results, it can be concluded that the proposed

modulation technique presents a positive impact in the opera-
tion of the machine since the resulting CMV is mitigated and
therefore, the induced shaft voltage and the leakage current
are also minimized.

VII. CONCLUSION
The use of multiphase machines being operated by several
converters connected to the same dc-link is nowadays an
attractive solution for many motor drive applications. How-
ever, VSDs formotor drives present inherent problems related
to the reliability of the complete power system. As a main
issue, the motor bearing degradation because of the presence
of CMV in the VSD is actually a challenge to be over-
come. Among the solutions previously provided by litera-
ture, many active canceler, passive filtering techniques and
some SVM-based modulation methods have been proposed
to achieve the mitigation of the CMV.

This paper proposes a simple carrier phase displacement
between the PWM methods of a dual VSD to mitigate
the resulting CMV harmonic content. The simplicity of the
proposed method is outstanding compared with previous
methods based on SVM strategies. This technique does not
require the usage of any external active or passive ele-
ment and it is easily implementable in most of the digi-
tal control platforms. In order to validate theoretically the
proposed method, a detailed mathematical model based on
double Fourier series of the phase voltages and currents
has been provided. From this analysis, it is demonstrated
that the best result is achieved when the carrier phase dis-
placement between both VSIs of the dual drive is fixed to
ϕ = 180◦. The proposed PWM technique has been tested in a
down-scaled dual PMSM machine considering different sce-
narios achieving a superior performance. The impact on the
leakage currents and the shaft voltage has been also evaluated.
The results demonstrate that a superior system performance
is achieved.
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