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Abstract. Multi-objective optimization with metaheuristics is an active
and popular research field which is supported by the availability of
software frameworks providing algorithms, benchmark problems, qual-
ity indicators and other related components. Most of these tools follow a
monolithic architecture that frequently leads to a lack of flexibility when
a user intends to add new features to the included algorithms. In this
paper, we explore a different approach by designing a component-based
architecture for a multi-objective optimization framework based on the
observer pattern. In this architecture, most of the algorithmic compo-
nents are observable entities that naturally allows to register a number
of observers. This way, a metaheuristic is composed of a set of observable
and observer elements, which can be easily extended without requiring
to modify the algorithm. We have developed a prototype of this archi-
tecture and implemented the NSGA-II evolutionary algorithm on top of
it as a case study. Our analysis confirms the improvement of flexibility
using this architecture, pointing out the requirements it imposes and how
performance is affected when adopting it.
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1 Introduction

Most of real-world optimization problems can be formulated as minimizing or 
maximizing two or more conflicting functions simultaneously, so the result of
optimizing them is not a unique solution but a set of trade-off solutions known 
as Pareto optimal set. In practice, obtaining this set is frequently unfeasible, so
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non-exact techniques providing an approximation of it are commonly used, being
metaheuristics the most popular ones [3,4]. Metaheuristics comprise a family of
approximate optimization algorithms including evolutionary algorithms, particle
swam optimization, ant colony optimization, and many others [2].

Multi-objective optimization with metaheuristics is a very active research
field since year 2000, which has been supported by the development and avail-
ability of software frameworks that not only provide implementations of state-of-
the-art algorithms, but also benchmark problems, quality indicators, support for
performance assessment, visualization tools, etc. Examples of these frameworks
are PISA [1] (implemented in the C language), Paradiseo-MOEO [12], jMetalCpp
[13]) (both implemented in C++), jMetal [6], MOEAFramework [10] (both writ-
ten in Java), and Inspyred [9] and Platypus [11] (both written in Python).

In general, these frameworks have a monolithic architecture around which
metaheuristics are implemented. Depending on their designs (all the aforemen-
tioned frameworks but PISA follow an object-oriented approach), they offer a
certain degree of flexibility. Frequently, however, significant code changes are
required to implement variants of existing algorithms or to add new components
to, for example, inspect or analyze the internal behavior of an algorithm during
the search.

Our motivation comes from our experience with the jMetal framework. The
jMetal project started in 2006, although the framework was redesigned from
scratch in 2015 [14] to improve its architecture and to make it more flexible
and extensible. Remarkable included features are the provision of metaheuris-
tic templates and the possibility of getting measurements of algorithm-specific
information during its execution. Measures are based on the application of the
observer pattern [8] and offers pull and push requests to get algorithm data.

Here we explore the design of a multi-objective metaheuristics framework
whose components are all based on the observer pattern. In particular, there will
be three entities, namely, observer, observable, and observer/observable which
can be combined for implementing multi-objective optimization algorithms. We
analyze the advantages and drawbacks of this approach by using jMetal as base
platform.

The rest of this paper is organized as follows. Section 2 describes the observer
pattern, which is the basis of the proposed architecture that is explained in
Sect. 3. Section 4 contains some implementation details. We discuss the impli-
cations of using the observer-based pattern architecture in Sect. 5. Finally, we
present the conclusions and lines of future work in Sect. 6.

2 The Observer Pattern

The book of Gamma et al. [8] popularized the concept of design patterns, which
can be defined as general and reusable solutions to recurrent design situations
happening in software design. A design pattern describes a problem to be solved,
a solution to that problem, when to apply it, and its consequences. According
to [8], design patterns can be classified in three categories: creational, structural
and behavioral. The observer pattern belongs to the latter family.



The observer pattern allows modelling one-to-many relationships among
objects, in such a way that when an object (observable) changes its state, the
objects depending on it (observers) get notified and updated automatically. This
requires to register the observers on the observables beforehand. The pattern is
useful in many contexts, and it is included in many libraries and programming
languages such as Java.

A simplified UML class diagram representing the pattern is included in Fig. 1.
We can see that Observer is an interface containing an update() method while
Observable is a class containing two public methods: one to register/unregister
observers and a private method to notify registered observers that the state has
changed. This method merely invokes the update() method of the observers.

Fig. 1. Simplified UML class diagram representing the observer pattern.

3 Proposed Architecture

In this section, we propose an observer-based architecture for multi-objective
metaheuristics. Without loss of generality, we focus on evolutionary algorithms,
which are the most widely known and used multi-objective metaheuristics; in
particular, we use the multi-objective NSGA-II [5] algorithm as a case of study.

An evolutionary algorithm follows the pseudo-code shown in Algorithm1.
The first step creates an initial population P (0) which is evaluated (line 3)
before starting the main loop. An iteration counter t is also initialized (line 2).
The evolution process consists in iteratively selecting a mating pool of solutions
M from P (t) (line 5), which is used for reproduction, leading to an offspring
population Q(t) (line 6). This population is evaluated (line 7) and a replacement
strategy is applied to get the population at the next generation P (t + 1) by
combining P (t) and Q(t) (line 8). The iteration counter t is updated at the
end of the loop (line 9). The algorithm stops when a finishing condition is met
(line 4).



Algorithm 1. Pseudo-code of an evolutionary algorithm
1: P (0) ← InitialPopulationGeneration()
2: t ← 0
3: Evaluation(P (0))
4: while not StoppingCriterion() do
5: M(t) ← Selection(P (t))
6: Q(t) ← Reproduction(M(t))
7: Evaluation(Q(t))
8: P (t + 1) ← Replacement(P (t), Q(t))
9: t ← t + 1

10: end while

3.1 Algorithm Templates in jMetal

The issue we explore in this section is how to implement the pseudo-code of
Algorithm 1 to develop evolutionary algorithms. The solution adopted by jMetal
is to provide a template in the form of an AbstractEvolutionaryAlgorithm
class that closely mimics the pseudo-code:

@Override public void run() {

List<S> offspringPopulation;

List<S> matingPopulation;

population = createInitialPopulation();

population = evaluatePopulation(population);

initProgress();

while (!isStoppingConditionReached()) {

matingPopulation = selection(population);

offspringPopulation = reproduction(matingPopulation);

offspringPopulation = evaluatePopulation(offspringPopulation);

population = replacement(population, offspringPopulation);

updateProgress();

}

}

This way, an evolutionary algorithm can be implemented by extending the
abstract class, i.e., by implementing all its methods, as is the case of NSGA-II.

We analyze next three different situations that can arise in practice: modify
the default behavior of an algorithm, extend it to provide information during its
execution (e.g., to display the current front), and adding new features such as an
external archive to store all the non-dominated solutions found during search.

By using the abstract class scheme, the natural way to modify the behavior
of a base algorithm is by defining subclasses of it by applying inheritance. An
example is to change the stopping condition. In the default implementation of
NSGA-II in jMetal, the algorithm stops when a maximum number of evaluations
have been performed. Changing this condition to, for example, stop after a given
time limit instead, requires to write a new subclass which simply overrides the



isStopingConditionReached() method. This solution is simple but introduces
a potential hazard: confusing users of that algorithm with many subclasses that
provide slightly different behaviours. Furthermore, this new stopping condition
cannot be shared by other algorithms.

By default, when an algorithm is configured and executed in jMetal, it does
not show any information until it finishes. At that point it generates two files
containing the solutions and the Pareto front approximation found. We might be
interested, however, in getting run-time information (the iteration number, com-
puting time, population at each iteration, etc.) for writing it to files for further
analysis or plotting graphs. This can be achieved in jMetal by defining mea-
sures, which require to create a new subclass redefining the updateProgress()
method, as measures are updated in general at the end of each algorithm iter-
ation. As before, if different measures are needed, new subclasses need to be
defined.

There may be situations where we can be interested in adding all the eval-
uated solutions in NSGA-II to an external archive. A reason is that NSGA-II
deletes some non-dominated solutions that later could be useful, so adding them
to an external unbounded archive would keep all of them. Incorporating external
archives to NSGA-II can be achieved by redefining the evaluatePopulation()
method.

Summarizing, adopting an abstract class scheme for designing evolutionary
algorithms provides enough flexibility at the cost of populating the framework
with a large set of variants as minor changes of the default algorithms’ behaviors
imply to redefine some of the methods of the template.

3.2 Observer Pattern-Based Architecture

Our alternative to the monolithic template-based approach is to decouple all the
algorithm components in separate entities featuring one of three possible behav-
iors: observable, observer, and observer/observable. This way, a metaheuristic
within this new approach is composed of components that follow the observer
pattern.

The first column of Table 1 shows the components we have considered for a
first prototype implementation of NSGA-II. These components can be consid-
ered as interfaces that can be implemented in many ways; the second column of
the table shows the implementations currently provided. The only pure observ-
able entity is the CreateInitialPopulation interface, while the rest of components
of an evolutionary algorithm are both observer and observable entities. The
observer category includes a PopulationObserver interface, representing entities
that process populations somehow; in particular, we include observers for writing
a population in files, storing a population in an external archive, and plotting a
front.

Figure 2 shows how the aforementioned components are linked to provide
an implementation of NSGA-II. All these elements, except the one that creates
the initial population, must register the previous component from which it will
receive data as soon as it is available. It is noteworthy that two instances of



Table 1. Entities following the observer pattern for implementing an evolutionary
algorithm (NSGA-II) in jMetal.

Observable Implementations

CreateInitialPopulation RandomPopulationCreation

Observer/observable Implementations

Selection BinaryTournamentSelection

Evaluation SequentialEvaluation

MultithreadedEvaluation

Replacement RankingAndCrowdingReplacement

RankingAndHypervolumeContributionReplacement

Termination TerminationByEvaluations

TerminationByTime

Variation CrossoverAndMutationVariation

Observer Implementations

PopulationObserver PopulationToFilesWriter

ExternalArchiveObserver

ParetoFrontPlot

the Evaluation interface are needed, as the evaluation of the initial population
is observed by the Termination entity, while the evaluation after the variation
step is observed by the replacement component. The result is a workflow where
a population of solutions, which is created by the pure observable element, is
processed by each component and the resulting population is notified to the
registered observers.

The behavior of the components of this observer-based implementation is as
follows:

1. The CreateInitialPopulation produces the initial population, which is notified
to the Evaluation component. This population has a number of attributes,
including an evaluation counter (initialized to 0), a flag indicating whether
the computation has finished or not (initialized to False), and the start time of
the computation. The population and its attributes constitute the observable
data that are notified to the registered observers.

2. The first Evaluation component carries out the evaluation of all the individ-
uals of the population and updates the evaluation counter attribute.

3. The Termination component receives the population and checks for the stop-
ping condition by examining the corresponding attributes. If the condition is
fulfilled, the attribute in the population indicating whether the computation
has finished is set to True. The population and its attributes are notified to
the observers.



Fig. 2. Architecture of the NSGA-II evolutionary algorithm using the observer pattern.
Components filled with light grey () are both observer and observable; components
filled with grey () are only observable, and components filled with dark grey () are only
observers.

4. The Selection component takes the population and generates an offspring
population by applying a given selection operator (i.e., binary tournament).
This offspring population is attached to the population as another attribute.

5. The Variation component receives the population and applies some variation
operators (typically, crossover and mutation) to the offspring population. This
leads to a new offspring population that replaces the original one.

6. The second Evaluation component checks whether the population has an off-
spring population attribute. If so, this last one is evaluated and the evaluation
counter is updated; else, it behaves like indicated in step 2.

7. The Replacement component takes the population and the offspring popu-
lation and creates a new population by applying some replacement strategy
(e.g., ranking and crowding in the case of NSGA-II), and the offspring pop-
ulation attribute is eliminated.

All the observer/observable components check their termination attribute
every time they are notified a population. In case of being true, a component
notifies the population to its registered observers and finishes. In the case of
observers, they also make the same check. This way, all the components finish
in an ordered way.

4 Implementation Details

We have implemented a prototype of the observer-pattern architecture in jMetal.
The main issue to deal with is how to implement the Observable class, as the
Observer interface only requires to include the update() method in the classes
implementing it.

A direct implementation of the observer pattern, where the observable objects
directly invoke the update method of the observers, can lead to a stack overflow



problem. Our approach has been to associate a thread to each component, so
all of them are concurrent entities, and use a bounded buffer (with a capacity
for only one element) to apply the producer/consumer concurrent scheme. This
way, observers are waiting on their buffers by invoking a get operation and, when
observables make a notification and invoke the update() method of its registered
observers, they put the observable data (i.e, populations and their attributes)
into the buffer, thus waking up the observers. To avoid concurrent accesses, the
observed data are copied before being inserted into the buffers.

It is worth mentioning that other implementations are possible. Another
possibility is to use a message passing library, what would allow to deploy the
algorithm components in different nodes of a distributed systems (i.e., a cluster).
This way, the most compute intensive components (typically, the evaluators)
could be deployed in nodes having highest performance processors.

5 Discussion

We discuss in this section the requirements the observer-based approach imposes
and how they are dealt with. We focus on the observable data, the manipulation
of global data, the flexibility of the architecture, and the performance implica-
tions.

Any observable entity must offer a public interface to its potential observers
defining the data that will be provided. The data always include a population
and a number of attributes, which are used and updated somehow by each com-
ponent. As a consequence, all the components must state clearly what they are
waiting for and what they produce; otherwise, the resulting algorithm will fail.

All the components are independent entities that do not share a common
memory space where global data, like the evaluation counter, can be stored. As
a consequence, there is a need of using attributes which are attached to the pop-
ulation in each step, which can be a major issue in case of algorithms using global
coarse grained shared data structures. This matter needs further development
and that will determine the viability of the observer-based approach.

Our main motivation in this study is to propose a modular and flexible
architecture that allows to extend an existing evolutionary algorithm without
the need of modifying the current implementations nor applying inheritance to
create specialized subclasses. The NSGA-II version based on this scheme (shown
in Fig. 2) can be extended in many ways:

• Adding an external unbounded archive to store the non-dominated solutions
found, which can be achieved by including an external archive observer and
registering it to the Evaluation components. An external bounded archive
could be also incorporated the same way.

• Changing the stopping condition (e.g., by time, by the number of evalua-
tions, interactively by the user, etc.) only requires to change the Termination
component.

• A graphical observer can be registered into the Replacement component for
visualizing the current population in real-time.



• A number of population observers can be attached to the Termination compo-
nent to write the final population in files, to generate plots with the obtained
Pareto front approximations, or just to assess the quality of the front by
applying a quality indicator.

• Implementing the SMS-EMOA [7] evolutionary algorithm, which is based
on NSGA-II, only requires to change the Replacement component by one
computing the ranking and hypervolume contribution of the solutions of the
population.

It is worth highlighting that these changes only require to add more observers,
add more observers/observables, or replace some of the components by others.
The newly created components can also be used by other algorithms, thus pro-
moting code reuse.

Table 2. Running times of NSGA-II implementation in jMetal and the one using
the observer pattern based architecture (the column names represent pairs population
size/number of evaluations). The target problem is ZDT1.

100/25000 200/50000

NSGA-II (monolythic) 782 ms 1422 ms

NSGA-II (observer) 1046 ms 1768 ms

SMS-EMOA (monolythic) 32586 ms 478570 ms

SMS-EMOA (observer) 34685 ms 479237 ms

A consequence of using the proposed architecture instead of a monolithic one
is a performance overhead as observed data must be copied when observers are
notified by observables. To quantify that overhead, we have run the NSGA-II
version included in jMetal and the one developed using the observer pattern with
two configurations (population sizes of 100/200 and number of evaluations of
25000/50000) are shown in Table 21. The obtained times reveal a time overhead
of 120–350 ms, which is only a fraction of the overall wall time even for a problem
such as ZDT1 which can be evaluated in a very short time. In case of solving
a real-world problem, the differences in running time should be negligible. We
also include in Table 2 the execution times of the SMS-EMOA algorithm with
a population size of 100 and 25000 function evaluations. The times used for
monolythic and observer versions are similar, since in this algorithm, most of
the computing time is spent in the replacement step.

6 Conclusions

We have presented in this paper a study about the design of an observer pattern-
based architecture for a framework for multi-objective metaheuristics. In this
1 MacBook Pro, 2.2 GHz Intel Core i7, macOS 10.13.4, Java SE 1.8.0 101, jMetal 5.5.



architecture, all the algorithm components are classified into three categories of
components: observable, observer/observable, and observer. By taking a multi-
objective evolutionary algorithm, NSGA-II, as a case of study, we have shown
how it can be implemented using the proposed scheme.

Our analysis indicates that the resulting implementation is very flexible,
allowing to develop new variants of an algorithm by simply adding or replacing
components. The computing times of two algorithms using the proposed archi-
tecture indicate a minimal time overhead regarding the original monolithic-based
implementations.

The future research work is in the line of validating the observer-based archi-
tecture to cope with other multi-objective algorithms which are not extensions
of NSGA-II, such as MOEA/D, and with non-evolutionary metaheuristics, such
as particle swarm optimization algorithms.
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ness). José Garćıa-Nieto is the recipient of a Post-Doctoral fellowship of “Captación
de Talento para la Investigación” Plan Propio at Universidad de Málaga.

References

1. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and program-
ming language independent interface for search algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion
Optimization (EMO 2003). Lecture Notes in Computer Science, pp. 494–508.
Springer, Heidelberg (2003)

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

3. Coello, C., Lamont, G.B., van Veldhuizen, D.A.: Multi-objective Optimization
Using Evolutionary Algorithms, 2nd edn. Wiley, New York (2007)

4. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New
York (2001)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42(10), 760–771 (2011)

7. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervol-
ume measure as selection criterion. In: Coello, C.A., Hernández, A., Zitler, E.
(eds.) Third International Conference on Evolutionary MultiCriterion Optimiza-
tion, EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer (2005)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional, Read-
ing (1994)

9. Garrett, A.: Inspyred. http://aarongarrett.github.io/inspyred/. Accessed 02 May
2018

10. Hadka, D.: MOEAFramework. http://moeaframework.org/. Accessed 02 May 2018

http://aarongarrett.github.io/inspyred/
http://moeaframework.org/


11. Hadka, D.: Platypus. http://platypus.readthedocs.io/en/latest/. Accessed 02 May
2018

12. Liefooghe, A., Jourdan, L., Talbi, E.-G.: A software framework based on a con-
ceptual unified model for evolutionary multiobjective optimization: ParadisEO-
MOEO. Eur. J. Oper. Res. 209(2), 104–112 (2011)
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