
Automatic Configuration of NSGA-II with jMetal and irace
Antonio J. Nebro
University of Málaga

Málaga, Spain
antonio@lcc.uma.es

Manuel López-Ibáñez
University of Manchester

Manchester, United Kindom
manuel.lopez-ibanez@manchester.ac.uk

Cristóbal Barba-González
University of Málaga

Málaga, Spain
cbarba@lcc.uma.es

José García-Nieto
University of Málaga

Málaga, Spain
jnieto@lcc.uma.es

ABSTRACT

jMetal is a Java-based framework for multi-objective optimization
with metaheuristics providing, among other features, a wide set of
algorithms that are representative of the state-of-the-art. Although
it has become a widely used tool in the area, it lacks support for
automatic tuning of algorithm parameter settings, which can pre-
vent obtaining accurate Pareto front approximations, especially
for inexperienced users. In this paper, we present a first approach
to combine jMetal and irace, a package for automatic algorithm
configuration; the NSGA-II is chosen as the target algorithm to
be tuned. The goal is to facilitate the combined use of both tools
to jMetal users to avoid wasting time in adjusting manually the
parameters of the algorithms. Our proposal involves the definition
of a new algorithm template for evolutionary algorithms, which
allows the flexible composition of multi-objective evolutionary al-
gorithms from a set of configurable components, as well as the
generation of configuration files for adjusting the algorithm pa-
rameters with irace. To validate our approach, NSGA-II is tuned
with a benchmark problems and compared with the same algorithm
using standard settings, resulting in a new variant that shows a
competitive behavior.

KEYWORDS

Multi-objective Optimization, Metaheuristics, Software Tools, Au-
tomatic Algorithm Configuration

1 INTRODUCTION
The field of multi-objective optimization with evolutionary algo-
rithms and other metaheuristic techniques is an active research area
since the last twenty years. Around year 2000, the most widely used
algorithm since then, NSGA-II [5], was proposed, and two seminal
books about solving multi-objective problems with evolutionary
algorithms were published [3, 4].

A factor that has promoted the development and application of
multi-objective metaheuristics has been the availability of software
tools. Since the emergence of PISA [2] in 2003, many frameworks
have been proposed, being jMetal one of them. jMetal started in
2006 [9] as a research project to develop a Java-based software
framework for multi-objective optimization with metaheuristic
techniques. The source code is freely available since 2008, and it is
hosted in GitHub under MIT license1. It has become a popular tool,
and the papers describing it [7][9][8][13] sum up more than 1300
cites at the time of writing this paper according to Google Scholar.

jMetal was redesigned from scratch in 2015 [13] to be improved
in a number of aspects (architecture, code quality, project organiza-
tion, algorithm templates, parallelism support), but an aspect that
is becoming a hot topic, the automatic configuration of metaheuris-
tics, was not considered then. Most of metaheuristics depend on
a number of parameters, and their performance is bound largely
by finding proper values for them. This is usually a cumbersome
task, particularly in the case of users who are expert in the problem
domain but are unfamiliar with the algorithms.

In this paper, we present a proposal to extend jMetal with sup-
port for automatic parameter tuning. Our approach is based, on
the one hand, on designing a very flexible template for evolution-
ary algorithms in such a way that a multi-objective evolutionary
algorithm can be composed of a number of building blocks that can
be configured as parameters which can take a range of values. On
the other hand, these parameters are described in a way that they
can be tuned by irace [11], an R-based package which has not only
been used for algorithm configuration, but also for the automatic
design of multi-objective evolutionary algorithms [1]. The goal is to
facilitate the combined use of both tools to jMetal users interested
in solving a given problem, but not in wasting time in adjusting
manually algorithms’ parameters.

1jMetal site in GitHub: https://github.com/jMetal/jMetal

https://doi.org/10.1145/3319619.3326832
https://doi.org/10.1145/3319619.3326832
https://github.com/jMetal/jMetal

As this is our first attempt to adapt jMetal for automatic parame-
ter configuration, we have focused in multi-objective evolutionary
algorithms and, in particular, in configuring the NSGA-II algorithm
to solve continuous optimization problems. All the new developed
code is included in an experimental package called jmetal-auto,
as we wanted to avoid confusing jMetal users by modifying the
existing code.

To validate our approach, we have carried out an experimental
study where NSGA-II has been tuned with a family of benchmark
problems and compared with the standard NSGA-II and also with
SMPSO [12] as a representative algorithm of the state of the art.

The rest of the paper is organized as follows. Section 2 briefly
describes jMetal and irace, the two tools we combine in this work.
The proposed approach is detailed in Section 3 and the experimen-
tation is included in Section 4. Finally, the conclusions and lines of
future work are presented in Section 5.

2 SOFTWARE TOOLS
In this section, we briefly describe jMetal and irace, the two software
tools we combine in this work.

2.1 The jMetal Framework
jMetal is tool for multi-objective optimization with metaheuris-
tics based on an object-oriented architecture comprising four core
entities: algorithms, problems, solutions (encodings or represen-
tations), and operators, as depicted in Figure 1. They are related
among them following the idea that an algorithm solves a problem
by using operators that manipulate solutions.

Algorithm 1 Pseudo-code of an evolutionary algorithm

1: P(0) ← GenerateInitialSolutions()
2: t ← 0
3: Evaluate(P(0))
4: while not StoppingCriterion() do
5: Q(t) ← Variation(P(t))
6: Evaluate(Q(t))
7: P(t + 1) ← Update(P(t), Q(t))
8: t ← t + 1
9: end while

A feature appeared in jMetal 5 [13] is the inclusion of algorith-
mic templates. If we focus on evolutionary algorithms, they can be
described with the pseudo-code included in Algorithm 1. The cor-
responding AbstractEvolutionaryAlgorithm abstract class in jMetal
is defined as follows (we have omitted some non relevant details):
1 public abstract class AbstractEvolutionaryAlgorithm<S,R>

implements Algorithm<R> {
2 protected List<S> population;
3 ...
4 protected abstract void initProgress();
5 protected abstract void updateProgress();
6 protected abstract boolean isStoppingConditionReached();
7 protected abstract List<S> createInitialPopulation() ;
8 protected abstract List<S> evaluate(List<S> population);
9 protected abstract List<S> selection(List<S> population);
10 protected abstract List<S> reproduction(List<S> population);
11 protected abstract List<S> replacement(List<S> population,

List<S> offspringPopulation);
12
13 @Override public abstract R getResult();
14
15 @Override public void run() {

16 List<S> offspringPopulation;
17 List<S> matingPopulation;
18
19 population = createInitialPopulation();
20 population = evaluatePopulation(population);
21 initProgress();
22 while (! isStoppingConditionReached()) {
23 matingPopulation = selection(population);
24 offspringPopulation = reproduction(matingPopulation);
25 offspringPopulation = evaluate(offspringPopulation);
26 population = replacement(population, offspringPopulation);
27 updateProgress();
28 }
29 }

We can observe that the template consists of a number of meth-
ods that are called inside the run() method, which defines the flow
control of the algorithms. These methods can be defined in any
subclass of the template, and this is the way how popular multi-
objective metaheuristics including NSGA-II [5], SPEA2 [14], and
many others are implemented.

The jMetal source code is sub-divided into four packages:
• jmetal-core: Classes of the core architecture plus some utili-
ties, including quality indicators.
• jmetal-algorithm: Implementations of the metaheuristics in-
cluded in the framework (more than 24 multi-objective algo-
rithms, excluding variants).
• jmetal-problem: Implementations of problems, including 8
benchmark families, summing up more than 90 instances.
• jmetal-exec: Executable programs to configure and run the
algorithms.

2.2 The irace Package
irace [11] is a software tool implemented in R aimed at the auto-
matic configuration of optimization algorithms, i.e., to find accurate
settings of a given algorithm for a given set of training instances of
a problem. In this context, an algorithm configuration is a complete
assignment of values to all required parameters of an algorithm.

In its latest versions (irace 2.0 and higher), irace implements an
elitist iterated racing algorithm, where algorithm configurations
are sampled from a sampling distribution, uniformly at random at
the beginning, but biased towards the best configurations found in
later iterations. At each iteration, the generated configurations and
the "elite" ones from previous iterations are raced by evaluating
them on training problem instances. A statistical test is used to
decide which configurations should be eliminated from the race.
When the race terminates, the surviving configurations become
elites for the next iteration. A complete description of elitist iterated
racing is provided in the original paper [11].

3 APPROACH FOR EXTENDING JMETAL TO
WORKWITH IRACE: REDESIGNING
NSGA-II

To configure an algorithm, irace requires a file containing the pa-
rameters to be tuned, including their type (categorical, ordinal, real,
and integer) and the values they can take. Additionally, the algo-
rithm must be prepared to be configured externally with any valid
parameter combination.

As our plan is to use irace to configure NSGA-II, we must deter-
mine what kinds of parameters can be adjusted. We can distinguish
the following ones:

Figure 1: UML class diagram of jMetal 5.0 core classes.

• Selection, crossover, and mutation operators.
• Common operator parameters, such asmutation and crossover
probabilities, which are applied to all of them.
• Specific operator parameters, such the distribution index of
the simulated binary crossover.
• Algorithm parameters, such as the size of the offspring popu-
lation size, or the size of the population if an external archive
is used.
• Other parameters as, for example, different strategies for
initializing the population.

We must note that the standard NSGA-II is a generational evo-
lutionary algorithm, which is featured by using a ranking method
based on Pareto ranking and the crowding distance density estima-
tor, both in the selection and replacement steps of the algorithm [5].
When it is used to solve continuous problems, NSGA-II adopts the
simulated binary crossover (SBX) and the polynomial mutation. No
external archive is included in NSGA-II.

However, as we intend to configure NSGA-II in an automatic
way, we need to relax the aforementioned features in order to have
enough flexibility to modify the search capabilities of the algorithm.
This way, we are going to consider that any multi-objective evolu-
tionary algorithm with the typical parameters (selection, crossover,
and mutation) and using ranking and crowding in the replacement
step can be considered as a variant of NSGA-II.

Our solution is composed of three parts: the definition of a new
template for evolutionary algorithms, the development of a program
to configure NSGA-II from any parameter combination toworkwith
irace, and the definition of utilities for creating file with the desired
parameters to be configured. These components are located in a
new and experimental package named jmetal-auto, which does not
interfere with the other existing packages mentioned in Section 2.1.

We explore each of the new components next.

3.1 New Template for Evolutionary Algorithms
After analyzing the current implementation of NSGA-II in jMetal
we concluded that it did not cope with the defined requirements
in an easy way, because configuring NSGA-II and variants of it
require to define new subclasses. The approach we adopt here is

then based in defining a new template for evolutionary algorithms,
which is shown in the following code snippet:

1 public class EvolutionaryAlgorithm<S extends Solution<?>>
2 implements Algorithm<List<S>>{
3 protected List<S> population;
4
5 private Evaluation<S> evaluation;
6 private InitialSolutionsCreation<S> createInitialPopulation;
7 private Termination termination;
8 private MatingPoolSelection<S> selection;
9 private Variation<S> variation;
10 private Replacement<S> replacement;
11
12 ...
13
14 public void run() {
15 population = createInitialPopulation.create();
16 population = evaluation.evaluate(population);
17 initProgress();
18 while (!termination.isMet(attributes)) {
19 List<S> matingPop ;
20 List<S> offspringPop ;
21 matingPop= selection.select(population);
22 offspringPop = variation.variate(population, matingPop);
23 offspringPop = evaluation.evaluate(offspringPop);
24
25 population =replacement.replace(population, offspringPop);
26 updateProgress();
27 }
28 }
29 ...
30 }

The basic difference with the former template is that we have
changed the way it can be extended by replacing inheritance by
delegation: instead of methods, the EvolutionaryAlgorithm class is
composed by a number of objects or components. This way, an
evolutionary algorithm can be defined by adding the proper com-
ponents to the template. Consequently, we have defined a package
including the components that can be used to configure a multi-
objective evolutionary algorithm.

At the time of writing this paper, the available components are
those included in Figure 2. We must note that the components
extending Evaluation and Termination add features that do not take
part in an automatic configuration process, as they do not affect
the working of the algorithm.

Figure 2: Components included in jMetal to be combined in
a multi-objective evolutionary algorithm.

Detailing how NSGA-II can be implemented using this new tem-
plate and components is out the scope of this paper; notwithstand-
ing, we comment next how the variation component can be config-
ured with crossover and mutation operators. Let us take a look to
this code snippet:
1 double crossoverProbability = 0.9;
2 double crossoverDistributionIndex = 20.0;
3 RepairDoubleSolution crossoverSolutionRepair = new

RepairDoubleSolutionWithRandomValue();
4 CrossoverOperator<DoubleSolution> crossover = new SBXCrossover(

crossoverProbability, crossoverDistributionIndex,
crossoverSolutionRepair);

5
6 RepairDoubleSolution mutationSolutionRepair = new

RepairDoubleSolutionWithRandomValue();
7 double mutationProbability = 1.0/problem.getNumberOfVariables();
8 double mutationDistributionIndex = 20.0;
9 MutationOperator<DoubleSolution> mutation =
10 new PolynomialMutation(
11 mutationProbability,
12 mutationDistributionIndex,
13 mutationSolutionRepair);
14
15 Variation<DoubleSolution> variation =
16 new CrossoverAndMutationVariation<>(
17 offspringPopulationSize, crossover, mutation);

The variation component we have to configure is an instance
of the CrossoverAndMutationVariation class, which requires three

Figure 3: Repairing strategies when a variator operator pro-
duces a value out of the valid bounds.

parameters (lines 15-17): the size of the offspring population and the
crossover and mutation operators. The first parameter indicates the
number of solutions that the variation component has to produce.

The crossover operator is SBX, which requires values for the
crossover probability and the distribution index (lines 1-4). We
can see also that the operator has a parameter of class RepairDou-
bleSolution (line 3). This defines which strategy to follow when
the operator produces a solution having some of its decision vari-
ables out of range (i.e., as we are dealing with continuous prob-
lems, the value of each decision variable vi must be in a range
[lowerBoundi ,upperBoundi]). In jMetal we provide three repairing
strategies (they are illustrated in Figure 3):
• Random: the variable takes a random value between the
lower and upper bounds. This is the default strategy.
• Bounds: if the value is lower/higher than the lower/upper
bound, the variable is assigned the lower/upper bound.
• Round: If the value is lower/higher than the lower/upper
bound, the variable is assigned upper/lower bound.

The polynomial mutation operator is configured in a similar way
(lines 7-13).

3.2 Autoconfiguring NSGA-II
The template for evolutionary algorithms presented in the last
section can be used directly so, to instantiate a particular algo-
rithm, it must be properly configured with any valid parameter
configuration. In fact, the way of working of irace implies that it
call a program with different parameter settings, run the resulting
algorithm to solve a problem, and get as a result a value repre-
senting somehow the quality of the Pareto front approximation
found. Consequently, with the idea of making easy to any user
to auto configure NSGA-II, we have developed a program called
AutoNSGAIIConfigurator for these purposes.

This program receives as a parameter a string containing a se-
quence of pairs < –parameter, value> that is read and analyzed to
assign the proper parameter values. To process the string we have
used Picocli2, a tool for creating Java command line applications.

2Picocli: https://picocli.info/

To show an example of how it works, let us suppose that we
want to configure the SBX crossover operator. The corresponding
configuration substring would be the following:
"--crossover SBX
--crossoverProbability 1.0
--crossoverRepairStrategy bounds
--sbxCrossoverDistributionIndex 30.0"

and the code to process in the AutoNSGAIIConfigurator program is
included in this code snippet:
1 @Option(
2 names = {"--crossover"},
3 required = true,
4 description = "Crossover: ${COMPLETION-CANDIDATES}")
5 private CrossoverType crossoverType;
6
7 @Option(
8 names = {"--crossoverProbability"},
9 description = "Crossover probability (default: ${DEFAULT-

VALUE})")
10 private double crossoverProbability = 0.9;
11
12 @Option(
13 names = {"--sbxCrossoverDistributionIndex"},
14 description =
15 "SBX crossover distribution index (default: ${DEFAULT-

VALUE})")
16 private double sbxCrossoverDistributionIndex = 0.20;
17
18 @Option(
19 names = {"--crossoverRepairStrategy"},
20 description = "Crossover repair strategy (default: ${

DEFAULT-VALUE})")
21 private RepairStrategyType crossoverRepairStrategy =

RepairStrategyType.random;

We can observe that a crossover is always required, and its
parameters have a default value in case they are not indicated.

Once all the parameters have been read, they are used to con-
figure an instance of the EvolutionaryAlgorithm class, whose after
calling its run() method, executes the algorithm and produces a
front of solutions. As irace needs a value about the quality of these
front, the relative hypervolume [15] is computed and returned. The
relative hypervolume I rH of an approximation front P is defined as,
given a reference Pareto front R, as I rH = (IH (R) − IH (P))/IH (R).

3.3 Creating the irace Parameter File
irace needs, as input, a parameter file containing all the parameters
and the valid values they can take. This file is a text file that can
be written with any text processing tool, but we have developed a
package including an utility that allows to indicate all the desired
parameters to be taken into account and to generate automatically
the file.

By using this package, we have created the parameter file for
the automatic configuration of NSGA-II included in Figure 4. As
commented in a previous section, we feel free to configure the evo-
lutionary algorithm template, but keeping a replacement strategy
based on ranking and crowding distance in order to keep the most
characteristic feature of NSGA-II. We assume that the resulting
algorithm always has to return a population of 100 solutions.

We comment now the main parameters described in the file:
• algorithmResult: the algorithm can use the typical population
of fixed size, but it can also use an external archive which is
updated whenever a new solution is evaluated. This archive
is bounded to 100 solutions, and the crowding distance is
applied when it becomes full. When the archive is used, the
population size can take a value between 10 and 400) and
the result of the algorithm is the archive’s content.

• offspringPopulation: this is the population containing the new
solutions produced after the selection and variation steps,
and its size can range between 1 and 400.
• createInitialsolutions: by default, the solutions of the initial
population are randomly created, so we have add two ad-
ditional procedures, one based on the scheme used in the
scatter search algorithm and another one based on latin hy-
percube sampling.
• crossover and mutation: the available crossover operators are
SBX and BLX-alpha, while the mutation operators can be
polynomial or uniform.
• selection: the selection scheme can be random or n-ary tour-
nament (with n ranging between 2 and 10).

4 EXPERIMENTATION
This section is devoted to validate our proposal of combining jMetal
and irace by applying it to find a configuration of NSGA-II suitable
for a set of benchmark problems. It is worth noting that in no way
our goal here is to search for the best configuration of NSGA-II, but
to carry out a proof of concept.

The experiment we have designed consists in using theWFG [10]
problems for tuning NSGA-II and then use the resulting best config-
uration yielded by irace to test it against a default configuration of
NSGA-II, when solving both the WFG and DTLZ problems [6] (the
problems of both families have been configured with two objec-
tives). We intend not only to determine the degree of improvement
over the base NSGA-II that can be obtained, but also to know if
the auto-NSGAII can compete with algorithms of the state-of-the-
art. With that idea in mind, we have added SMPSO [12] to the
comparative.

All the algorithms have been set to return 100 solutions after
computing 25 000 function evaluations. No attempt has been done
to adjust the parameters of SMPSO, with is configured with default
settings.

The first step is to run irace with the parameter file described in
Figure 4 by using the nine problems of the WFG benchmark. After
a few hours of execution in a virtual Linux machine with 24 cores,
the best configuration found by irace is the one included in Table 1
(right). We include in the left column of the same table the default
settings of the NSGA-II algorithm in jMetal.

We can observe that there some noticeable differences. The auto
tuned NSGA-II uses the external archive and the sizes of the popu-
lation and offspring populations are 20 and 200, respectively; the
crossover is BLX-alpha instead of SBX; the distribution index of the
polynomial mutation is 158.05 instead of 20.0; and the size of the
tournament is 9 instead of 2.

The second step is to compare the default and auto tuned NSGA-
II algorithms along with SMPSO. For that purpose, we have made
25 independent runs of all of them to solve the WFG and DTLZ
problems. After that, we have computed four quality indicators for
measuring convergence (additive epsilon), diversity (spread), and
both properties (hypervolume and IGD+). We report in the result
tables the median and interquartile ranges, highlighting the best
and second best indicator values in dark and light grey background,
respectively.

algorithmResult "--algorithmResult " c (externalArchive,population)
populationSize "--populationSize " c (100) | algorithmResult %in% c("population")
populationSizeWithArchive "--populationSizeWithArchive " o (10,20,50,100,200,400) | algorithmResult %in% c("externalArchive")
#
offspringPopulationSize "--offspringPopulationSize " o (1,5,10,20,50,100,200,400)
#
createInitialSolutions "--createInitialSolutions " c (random,latinHypercubeSampling,scatterSearch)
#
variation "--variation " c (crossoverAndMutationVariation)
#
crossover "--crossover " c (SBX,BLX_ALPHA)
crossoverProbability "--crossoverProbability " r (0.0, 1.0) | crossover %in% c("SBX","BLX_ALPHA")
crossoverRepairStrategy "--crossoverRepairStrategy " c (random,round,bounds) | crossover %in% c("SBX","BLX_ALPHA")
sbxCrossoverDistributionIndex "--sbxCrossoverDistributionIndex " r (5.0, 400.0) | crossover %in% c("SBX")
blxAlphaCrossoverAlphaValue "--blxAlphaCrossoverAlphaValue " r (0.0, 1.0) | crossover %in% c("BLX_ALPHA")
#
mutation "--mutation " c (uniform,polynomial)
mutationProbability "--mutationProbability " r (0.0, 1.0) | mutation %in% c("polynomial","uniform")
mutationRepairStrategy "--mutationRepairStrategy " c (random,round,bounds) | mutation %in% c("polynomial","uniform")
polynomialMutationDistributionIndex "--polynomialMutationDistributionIndex " r (5.0, 400.0) | mutation %in% c("polynomial")
uniformMutationPerturbation "--uniformMutationPerturbation " r (0.0, 1.0) | mutation %in% c("uniform")
#
selection "--selection " c (random,tournament)
selectionTournamentSize "--selectionTournamentSize " i (2, 10) | selection %in% c("tournament")

Figure 4: irace parameter file to auto configure NSGA-II

Default settings for NSGA-II Settings of auto-NSGAII
–algorithmResult population –algorithmResult externalArchive
–populationSize 100 –populationSizeWithArchive 20
–offspringPopulationSize 100 –offspringPopulationSize 200
–variation crossoverAndMutationVariation –variation crossoverAndMutationVariation
–crossover SBX –crossover BLX_ALPHA
–crossoverProbability 0.9 –crossoverProbability 0.9874
–crossoverRepairStrategy random –crossoverRepairStrategy bounds
–sbxDistributionIndexValue 20.0 –blxAlphaCrossoverAlphaValue 0.5906
–mutation polynomial –mutation polynomial
–mutationProbability 1/L (L: number of variables) –mutationProbability 0.0015
–mutationRepairStrategy random –mutationRepairStrategy random
–polynomialMutationDistributionIndex 20.0 –polynomialMutationDistributionIndex 158.05
–selection tournament –selection tournament
–selectionTournamentSize 2 –selectionTournamentSize 9

Table 1: Settings for NSGA-II: default (left) and auto tuned (right).

Table 2: Additive epsilon indicator.Median and Interquartile
Range

NSGAII SMPSO AutoNSGAII
WFG1 4.52e − 012.4e−01 4.55e − 019.8e−03 5.99e − 037.3e−04
WFG2 5.41e − 032.4e−03 6.04e − 031.1e−03 3.88e − 035.5e−04
WFG3 3.34e − 015.3e−04 3.34e − 011.9e−04 3.33e − 012.7e−07
WFG4 1.29e − 022.2e−03 2.16e − 023.4e−03 6.72e − 031.2e−03
WFG5 3.31e − 023.7e−03 2.77e − 021.9e−04 2.76e − 021.6e−04
WFG6 1.50e − 025.9e−03 6.37e − 034.9e−04 6.13e − 037.2e−03
WFG7 1.28e − 024.0e−03 6.52e − 034.9e−04 5.20e − 031.9e−04
WFG8 1.68e − 011.0e−01 1.69e − 011.7e−02 2.45e − 011.3e−03
WFG9 1.42e − 022.0e−03 1.10e − 021.9e−03 7.39e − 031.2e−03
DTLZ1 3.53e − 021.5e−01 6.30e − 035.5e−04 3.08e + 011.7e+01
DTLZ2 1.12e − 024.2e−03 5.53e − 033.2e−04 5.28e − 032.5e−04
DTLZ3 1.00e + 016.4e+00 5.97e − 033.5e−01 1.05e + 023.6e+01
DTLZ4 1.18e − 025.4e−03 5.61e − 033.1e−04 5.32e − 031.9e−04
DTLZ5 1.01e − 022.2e−03 5.12e − 033.5e−04 5.03e − 032.7e−04
DTLZ6 3.72e − 015.3e−02 5.15e − 034.5e−04 5.06e − 032.9e−04
DTLZ7 7.78e − 032.6e−03 4.30e − 032.3e−04 4.06e − 032.8e−04

Tables 2,3,4, and 5 contain the obtained values of the four quality
indicators. Some conclusions can be drawn from a first examination
of these results. The auto tuned NSGA-II (called AutoNSGAII in the
tables) does not only outperform globally NSGA-II, but also SMPSO.
Although the hypervolume has been used as quality measure in the
tuning step, AutoNSGAII is the best performing algorithm when
considering the other three indicators, what suggests that the found
configuration is robust; only in three problem instances (WFG8,

Table 3: Spread quality indicator. Median and Interquartile
Range

NSGAII SMPSO AutoNSGAII
WFG1 7.54e − 015.6e−02 1.02e + 003.6e−02 1.23e − 011.1e−02
WFG2 7.84e − 011.5e−02 8.04e − 012.9e−02 7.58e − 011.5e−03
WFG3 5.67e − 012.2e−02 3.79e − 017.9e−03 3.62e − 019.7e−03
WFG4 3.64e − 015.0e−02 4.55e − 015.1e−02 1.30e − 011.6e−02
WFG5 3.91e − 015.3e−02 1.35e − 011.4e−02 1.33e − 012.8e−02
WFG6 3.55e − 014.8e−02 1.49e − 012.5e−02 1.05e − 012.8e−02
WFG7 3.56e − 014.1e−02 1.51e − 012.5e−02 1.10e − 012.5e−02
WFG8 6.17e − 016.5e−02 7.43e − 013.5e−02 5.46e − 013.2e−02
WFG9 3.75e − 013.4e−02 2.14e − 013.1e−02 1.29e − 011.6e−02
DTLZ1 1.04e + 002.6e−01 6.83e − 021.4e−02 6.00e − 016.1e−03
DTLZ2 3.38e − 014.6e−02 1.23e − 012.2e−02 9.89e − 023.1e−02
DTLZ3 9.25e − 011.3e−01 1.26e − 014.8e−01 6.04e − 011.0e−02
DTLZ4 3.43e − 015.8e−02 1.19e − 012.4e−02 9.41e − 022.2e−02
DTLZ5 3.26e − 013.0e−02 1.32e − 012.1e−02 1.01e − 012.5e−02
DTLZ6 7.66e − 019.2e−02 1.11e − 012.6e−02 9.61e − 022.7e−02
DTLZ7 6.20e − 012.4e−02 5.25e − 011.9e−03 5.25e − 011.8e−03

DTLZ1, and DTLZ3) out of the sixteen problems AutoNSGAII have
performed poorly.

This analysis is supported by the computing of the statistical
Wilcoxon rank sum test (at a 5% level of significance), whose re-
sults for all the quality indicators are included in Table 6. Each cell
contains a symbol representing each of the 17 problems (WFG1-9
and DTLZ1-7). There are three different symbols in this table: “–”
indicates that there not statistical significance between the algo-
rithms in the row and in the column, “▲” means that the algorithm

Table 4: Hypervolume quality indicator. Median and In-
terquartile Range

NSGAII SMPSO AutoNSGAII
WFG1 4.49e − 017.6e−02 1.16e − 017.7e−03 6.34e − 012.6e−05
WFG2 5.64e − 019.5e−04 5.62e − 011.2e−03 5.65e − 015.1e−05
WFG3 4.41e − 013.8e−04 4.41e − 012.2e−04 4.42e − 011.1e−05
WFG4 2.17e − 017.6e−04 2.03e − 012.4e−03 2.17e − 013.0e−03
WFG5 1.95e − 012.9e−04 1.96e − 017.5e−05 1.96e − 011.0e−04
WFG6 2.03e − 018.9e−03 2.09e − 014.3e−04 2.08e − 011.3e−02
WFG7 2.09e − 013.5e−04 2.09e − 013.2e−04 2.11e − 013.1e−05
WFG8 1.48e − 012.3e−02 1.48e − 011.0e−03 1.39e − 012.3e−03
WFG9 2.37e − 012.9e−03 2.35e − 018.2e−04 2.39e − 011.9e−03
DTLZ1 4.66e − 011.6e−01 4.94e − 011.9e−04 0.00e + 000.0e+00
DTLZ2 2.09e − 012.7e−04 2.10e − 011.5e−04 2.11e − 014.1e−05
DTLZ3 0.00e + 000.0e+00 2.10e − 016.3e−02 0.00e + 000.0e+00
DTLZ4 2.10e − 017.1e−04 2.10e − 011.5e−04 2.11e − 014.2e−05
DTLZ5 2.11e − 013.5e−04 2.12e − 011.3e−04 2.12e − 014.1e−05
DTLZ6 1.89e − 051.4e−03 2.12e − 016.9e−05 2.12e − 015.6e−05
DTLZ7 3.29e − 012.8e−04 3.30e − 019.8e−05 3.30e − 017.3e−05

Table 5: IGD+ quality indicator. Median and Interquartile
Range

NSGAII SMPSO AutoNSGAII
WFG1 2.39e − 011.4e−01 4.76e − 011.0e−02 1.94e − 039.1e−05
WFG2 1.61e − 036.1e−04 2.68e − 036.7e−04 9.95e − 049.9e−05
WFG3 2.15e − 022.3e−04 2.13e − 021.4e−04 2.06e − 021.7e−05
WFG4 3.34e − 034.9e−04 1.14e − 021.4e−03 3.42e − 031.4e−03
WFG5 2.75e − 029.8e−05 2.71e − 025.7e−05 2.70e − 023.9e−05
WFG6 6.84e − 035.9e−03 3.05e − 033.2e−04 3.54e − 038.5e−03
WFG7 3.47e − 034.5e−04 3.15e − 031.8e−04 2.30e − 036.1e−05
WFG8 4.24e − 022.3e−02 4.26e − 022.3e−03 5.80e − 023.0e−03
WFG9 4.97e − 031.6e−03 6.05e − 034.1e−04 4.07e − 031.1e−03
DTLZ1 1.93e − 029.0e−02 2.81e − 031.0e−04 4.31e + 012.1e+01
DTLZ2 3.15e − 032.7e−04 2.48e − 038.0e−05 2.30e − 035.2e−05
DTLZ3 1.01e + 018.3e+00 2.09e − 031.6e−01 1.35e + 024.7e+01
DTLZ4 2.59e − 034.1e−04 2.13e − 036.9e−05 1.95e − 033.0e−05
DTLZ5 2.50e − 031.7e−04 2.05e − 039.0e−05 1.81e − 035.8e−05
DTLZ6 3.88e − 015.4e−02 1.91e − 039.1e−05 1.83e − 034.3e−05
DTLZ7 2.42e − 032.2e−04 1.88e − 031.2e−04 1.82e − 039.3e−05

Table 6: Wilcoxon rank sum test results. The symbols in
each cell correspond to problems WFG1-9 and DTLZ1-7.

Additive epsilon
SMPSO AutoNSGAII

NSGAII – – ▽ ▲ ▽ ▽ ▽ – ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ ▽ – ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ – ▽

Spread
SMPSO AutoNSGAII

NSGAII ▲ ▲ ▽ ▲ ▽ ▽ ▽ ▲ ▽
SMPSO ▽ ▽ ▽ ▽ – ▽ ▽ ▽ ▽ ▲ ▽ ▲ ▽ ▽ ▽ –

Hypervolume
SMPSO AutoNSGAII

NSGAII ▲ ▲ ▽ ▲ ▽ ▽ − − ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ − ▽ − ▽ ▲ ▽ ▲ ▽ − ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ − − ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽

IGD+
SMPSO AutoNSGAII

NSGAII ▲ ▲ ▽ ▲ ▽ ▽ ▽ – ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ – ▽ – ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ – – ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ –

in the row has produced a best indicator value than the algorithm
in the column with confidence, and “▽” is used when the algorithm
in the column is statistically better than the algorithm in the row.
We can observe that statistical confidence has been found in most
of the results.

An issue that arises after the conducted experiment is, given that
the auto configured NSGA-II has yielded unsatisfactory indicator
values on three problems, to use irace to find a particular configu-
ration for only those three instances and to see how it differs from
the previously found configuration. We have proceeded then to

repeat the experiment using only the DTLZ1, DTLZ3, and WFG8
instances.

The resulting settings found by irace are reported in Table 7
(right). When comparing the obtained configuration with the for-
mer one, included in the left column of the table, we can observe
a number of differences: the offspring population size is 5 instead
of 100, the crossover operator is SBX instead of BLX-Alpha, the
mutation operator is uniform instead of polynomial, and the size
of the tournament is 4 instead of 9. The similarities of both config-
urations are the use of an external archive, a population size of 20
individuals, and a crossover probability around 0.98.

The indicator values obtained for this second configuration are
included in the last column of Table 8 (we have named AutoNSGAIIb
the new version of autoNSGAII in the table), which contains also the
values of the former experiment for the three considered problems.
We can observe that all the results have been improved, particularly
in the case of the DTLZ problems, where the second auto configured
NSGA-II outperforms NSGA-II and the first AutoNSGAII, although
it cannot beat the values obtained by SMPSO.

5 CONCLUSIONS AND FUTURE WORK
We have presented a first approximation to adapt the jMetal frame-
work to work jointly with the irace package to allow the automatic
parameter configuration of multi-objective evolutionary algorithms.
The proposal involves the creation of a flexible and configurable
template for this family of techniques, and NSGA-II has been used
as target algorithm. We have developed also a program able of in-
teract with irace in such a way that it can receive any configuration
from irace, set the corresponding NSGA-II variant, run the resulting
algorithm, and return as a result a quality measure of the produced
front. All this new functionality has been included in a new package
called jmetal-auto.

We have validated our proposal in two steps. First, we have
auto configured NSGA-II from a wide set of parameters that can be
incorporated into the algorithm; the nine benchmark problems of
the WFG family have been used for this auto-tuning. Second, the
resulting NSGA-II with the found configuration has been compared
against the same algorithm with default settings and with SMPSO
on a benchmark composed of 16 problems. The reported results
after applying four quality indicators show that the auto configured
NSGA-II clearly outperforms the other two algorithms in all the
indicators.

There are several lines for further research. We have conducted
a case study, but others can be developed by considering different
scenarios involving the automatic configuration of NSGA-II, such
as fixing the stopping condition in a low number of evaluations
or using problems with more than two objectives. We plan also to
extend the features of the jmetal-auto package to incorporate more
algorithmic components, in particular from indicator-based and
decomposition-based multi-objective algorithms.

6 ACKNOWLEDGEMENTS
This work has been partially funded by Spanish Grants TIN2017-
86049-R (Spanish Ministry of Education and Science) and P12-TIC-
1519 (Plan Andaluz de Investigación, Desarrollo e Innovación).
Cristóbal Barba-González is supported by Grant BES-2015-072209

Settings for auto-NSGA-II Settings of auto-NSGAII (DTLZ1, DTLZ3, WFG8)
–algorithmResult externalArchive –algorithmResult externalArchive
–populationSizeWithArchive 20 –populationSizeWithArchive 20
–offspringPopulationSize 100 –offspringPopulationSize 5
–variation crossoverAndMutationVariation –variation crossoverAndMutationVariation
–crossover BLX_ALPHA –crossover SBX
–crossoverProbability 0.9874 –crossoverProbability 0.9791
–crossoverRepairStrategy bounds –crossoverRepairStrategy random
–blxAlphaCrossoverAlphaValue 0.59.6 –sbxDistributionIndexValue 5.0587
–mutation polynomial –mutation uniform
–mutationProbability 0.0015 –mutationProbability 0.0463
–mutationRepairStrategy random –mutationRepairStrategy random
–polynomialMutationDistributionIndex 158.05 –uniformMutationPerturbation 0.2307
–selection tournament –selection tournament
–selectionTournamentSize 9 –selectionTournamentSize 4

Table 7: Settings for auto-NSGAII: first experiment (left) and second experiment (right).

Additive epsilon NSGAII SMPSO AutoNSGAII AutoNSGAIIb
DTLZ1 3.53e − 021.5e−01 6.30e − 035.5e−04 3.08e + 011.7e+01 7.06e − 032.4e−03
DTLZ3 1.00e + 016.4e+00 5.97e − 033.5e−01 1.05e + 023.6e+01 2.87e − 022.6e−02
WFG8 1.68e − 011.0e−01 1.69e − 011.7e−02 2.45e − 011.3e−03 2.44e − 011.0e−01
Spread NSGAII SMPSO AutoNSGAII AutoNSGAIIb
DTLZ1 1.04e + 002.6e−01 6.83e − 021.4e−02 6.00e − 016.1e−03 6.28e − 021.8e−02
DTLZ3 9.25e − 011.3e−01 1.26e − 014.8e−01 6.04e − 011.0e−02 2.14e − 012.1e−01
WFG8 6.17e − 016.5e−02 7.43e − 013.5e−02 5.46e − 013.2e−02 5.33e − 015.5e−02
Hypervolume NSGAII SMPSO AutoNSGAII AutoNSGAIIb
DTLZ1 4.66e − 011.6e−01 4.94e − 011.9e−04 0.00e + 000.0e+00 4.93e − 013.9e−03
DTLZ3 0.00e + 000.0e+00 2.10e − 016.3e−02 0.00e + 000.0e+00 1.76e − 013.1e−02
WFG8 1.48e − 012.3e−02 1.48e − 011.0e−03 1.39e − 012.3e−03 1.46e − 013.4e−03
IGD+ NSGAII SMPSO AutoNSGAII AutoNSGAIIb
DTLZ1 1.93e − 029.0e−02 2.81e − 031.0e−04 4.31e + 012.1e+01 3.61e − 032.1e−03
DTLZ3 1.01e + 018.3e+00 2.09e − 031.6e−01 1.35e + 024.7e+01 2.78e − 022.5e−02
WFG8 4.24e − 022.3e−02 4.26e − 022.3e−03 5.80e − 023.0e−03 5.06e − 029.1e−03

Table 8: Median and Interquartile Range of the indicator values for the DTLZ1, DTL3, and WFG8 instances experiment (Au-
toNSGAIIb is NSGA-II auto tuned with the second configuration).

(Spanish Ministry of Economy and Competitiveness). José García-
Nieto is the recipient of a Post-Doctoral fellowship of “Captación
de Talento para la Investigación” Plan Propio at Universidad de
Málaga.

REFERENCES
[1] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle. 2016. Automatic Component-

Wise Design of Multiobjective Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation 20, 3 (June 2016), 403–417.

[2] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. 2003. PISA
— A Platform and Programming Language Independent Interface for Search
Algorithms. In Evolutionary Multi-Criterion Optimization (EMO 2003) (Lecture
Notes in Computer Science), Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler,
Kalyanmoy Deb, and Lothar Thiele (Eds.). Springer, Berlin, 494 – 508.

[3] C.A. Coello Coello, G.B. Lamont, and D.A. van Veldhuizen. 2007. Multi-Objective
Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc. 2nd Ed.,
NY, USA.

[4] K. Deb. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons, New York, NY, USA.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation 6, 2 (2002), 182–197.

[6] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2005. Scalable test problems
for evolutionary multiobjective optimization. In Evolutionary Multiobjective
Optimization. Theoretical Advances and Applications, Ajith Abraham, Lakhmi
Jain, and Robert Goldberg (Eds.). Springer, USA, 105–145.

[7] J.J. Durillo and A.J. Nebro. 2011. jMetal: A Java framework for multi-objective
optimization. Advances in Engineering Software 42, 10 (2011), 760 – 771. https:
//doi.org/10.1016/j.advengsoft.2011.05.014

[8] J.J. Durillo, A.J. Nebro, and E. Alba. 2010. The jMetal Framework for Multi-
Objective Optimization: Design and Architecture. In CEC 2010. IEEE, Barcelona,

Spain, 4138–4325.
[9] J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. 2006. jMetal: a Java

framework for developing multi-objective optimization metaheuristics. Technical
Report ITI-2006-10. Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, E.T.S.I. Informática, Campus de Teatinos.

[10] S. Huband, L. Barone, R.L. While, and P. Hingston. 2005. A Scalable Multi-
objective Test Problem Toolkit. In Third International Conference on Evolutionary
MultiCriterion Optimization, EMO 2005 (Lecture Notes in Computer Science), C.A.
Coello, A. Hernández, and E. Zitler (Eds.), Vol. 3410. Springer, Berlin, Germany,
280–295.

[11] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas
Stützle, and Mauro Birattari. 2016. The irace package: Iterated Racing for Auto-
matic Algorithm Configuration. Operations Research Perspectives 3 (2016), 43–58.
https://doi.org/10.1016/j.orp.2016.09.002

[12] A.J. Nebro, J.J. Durillo, J. García-Nieto, C.A. Coello Coello, F. Luna, and E. Alba.
2009. SMPSO: A New PSO-based Metaheuristic for Multi-objective Optimization.
In 2009 IEEE Symposium on Computational Intelligence in Multicriteria Decision-
Making (MCDM 2009). IEEE Press, 66–73.

[13] A.J. Nebro, Juan J. Durillo, and M. Vergne. 2015. Redesigning the jMetal Multi-
Objective Optimization Framework. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO
Companion ’15). ACM, New York, NY, USA, 1093–1100. https://doi.org/10.1145/
2739482.2768462

[14] E. Zitzler, M. Laumanns, and L. Thiele. 2001. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. In EUROGEN 2001. Evolutionary Methods for
Design, Optimization and Control with Applications to Industrial Problems, K. Gian-
nakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty (Eds.). International
Center for Numerical Methods in Engineering, Athens, Greece, 95–100.

[15] E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: a compara-
tive case study and the strength Pareto approach. IEEE Transactions on Evolution-
ary Computation 3, 4 (Nov 1999), 257–271. https://doi.org/10.1109/4235.797969

https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1145/2739482.2768462
https://doi.org/10.1145/2739482.2768462
https://doi.org/10.1109/4235.797969

	Abstract
	1 Introduction
	2 Software Tools
	2.1 The jMetal Framework
	2.2 The irace Package

	3 Approach for Extending jMetal to Work with irace: Redesigning NSGA-II
	3.1 New Template for Evolutionary Algorithms
	3.2 Autoconfiguring NSGA-II
	3.3 Creating the irace Parameter File

	4 Experimentation
	5 Conclusions and Future Work
	6 Acknowledgements
	References

