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Abstract
Multi-objective optimization deals with problems having two or more conflicting objectives that have to be optimized 
simulta-neously. When the objectives change somehow with time, the problems become dynamic, and if the decision maker 
indicates preferences at runtime, then the algorithms to solve them become interactive. In this paper, we propose the 
integration of SMPSO/RP, an interactive multi-objective particle swarm optimizer based on SMPSO, with InDM2, an 
algorithmic template for dynamic interactive optimization with metaheuristics. The result is SMPSO/RPD, an algorithm that 
provides the search capabilities of SMPSO, incorporates an interactive preference articulation mechanism based on defining 
one or more reference points, and is able to deal with dynamic problems. We conduct a qualitative study showing the 
working of SMPSO/RPD on three benchmark problems, remaining a qualitative analysis as an open line of future research.

Keywords Multi-objective optimization · Particle swarm optimization · Interactive decision making · Dynamic optimization 
problem · Comparative study

1 Introduction

Multi-objective optimization is the discipline dealing with
optimizing problems composed of two or more objectives or
functions at the same time. These objectives are usually in
conflict among them, so improvingone impliesworsening the
others. As a consequence, the optimum on a multi-objective
optimization problem is not usually a single solution, but a
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set of compromise solutions known as the Pareto optimal set;
the correspondence of this set in the objective space is called
the Pareto front.

Solving these kinds of problems is not a trivial task, partic-
ularly when they are also featured with characteristics, such
as NP-hard complexity, nonlinearity, epistasis, deceptive-
ness and constraint handling [19]. For these reasons, finding
for the Pareto front is not practical in general, so the goal
becomes to get an approximation of Pareto front as accurate
as possible by using non-exact algorithms. In this context, the
most widely used techniques are metaheuristics [4], a broad
family of solvers including evolutionary algorithms, swarm
intelligence algorithms, and many others [2].

When dealing with real-world problems, finding an
approximation to the Pareto front of a multi-objective prob-
lem is only the first step of the optimization process. The
second step isMCDM(multi-criteria decisionmaking), and it
is related to choosingwhich solution of that front ismost ade-
quate according to the requirements imposed by the decision
maker (i.e., the final user, which is an expert in the problem
domain). As the optimization can take a significant amount
of time, the decision maker may be interested in indicating
one or more preference regions of interest of the Pareto front
instead of the full front. These regions can be indicated a
priori (before running the optimization algorithm) or inter-
actively (during the execution of the algorithm) [9,13].
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Another feature of many real-world optimization prob-
lems is the fact that they are dynamic, i.e., they can change
with time. In the case of multi-objective problems, these
change can affect the Pareto set, the Pareto front, or both
of them [8]. Solving dynamic problems implies that meta-
heuristics must be adapted to detect changes in the problems
and to react consequently.

In this paper, we present an algorithmwhich is designed to
take into account the preferences of the decision maker using
both a priori and interactive schemes and also is able to tackle
dynamic problems. This algorithm, called SMPSO/RPD,
is the combination of SMPSO/RP [15] and InDM2 [17].
SMPSO/RP is an extension of SMPSO [16], a conventional
multi-objective optimizer, empowering it to focus the search
in several interests regions by using the concept of reference
point [21]. InDM2 is an algorithmic template that facilitates
the building of dynamic metaheuristics, enabling to incorpo-
rate restarting strategies to be applied when the problem or
some of the reference points change.

SMPSO/RPD is implemented in jMetalSP [1], a frame-
work providing support for dynamic problems, including
the real-time visualization of the fronts produced when the
problem has changed, as well as the integration with the
Apache Spark [22] stream processing engine. This way,
SMPSO/RPD can solve problems which change as a con-
sequence of the processing of streaming data.

The main contribution of this paper can be summarized as
follows:

– We propose a new algorithm, SMPSO/RPD, for solving
dynamic problems allowing at the same time to define
preference regions a priori and interactively.

– Our technique can adopt strategies for reacting when
changes in the problem and/or reference points are
detected.

– The fronts are visualized during the execution of the algo-
rithm, showing only those produced when the problem
has changed.

– We compare SMPSO/RPD with two other algorithms
based on InDM2, showing the fronts obtainedwhen solv-
ing benchmark problems.

– The source code of SMPSO/RPD is freely available.1

The rest of the paper is structured as follows. Section 2
explains themain background concepts and presents a review
of the related work in the specialized literature. In Sect. 3,
the SMPSO/RPD algorithm is detailed. Section 4 describes
the experimental test carried out in terms of validating the
proposal. In Sect. 5, the results obtained are depicted and
commented. A further discussion of the algorithm is offered

1 jMetalSP: https://github.com/jMetal/jMetalSP.git.

in Sect. 6. Finally, concluding remarks and future lines of
research are presented in Sect. 7.

2 Background

In this section, we provide basic background concepts about
SMPSO, SMPSO/RP, InDM2, and jMetalSP, which are the
basis of our proposal.

2.1 The speed-constrainedmulti-objective PSO
(SMPSO) algorithm

SMPSO [16] is amulti-objective optimization particle swarm
optimization algorithm featured by using a constriction
mechanism to compute the particles’ velocities and by adopt-
ing an external archive to choose the leaders and to store the
non-dominated solutions found during the search.

As a conventional PSO [11], SMPSO works by manipu-
lating a set of particles (vector solutions), known collectively
as the swarm. The position of particle xi at a given generation
t is updated according to Eq. (1):

xi (t) = xi (t − 1) + vi (t) (1)

where the factor vi (t) is known as velocity, and it is defined
as:

vi (t) = w · vi (t − 1) + C1 · r1 · (xpi − xi )

+C2 · r2 · (xgi − xi ) (2)

In Eq. (1), xpi is the local best, i.e., the best solution that xi
has viewed; xgi is the global best or leader xgi , that is, the
best particle that the entire swarm has viewed; w is the iner-
tia weight of the particle and controls the trade-off between
global and local influence; r1 and r2 are two uniformly dis-
tributed random numbers in the range [0, 1]; and C1 and C2

are specific parameters that control the effect of the personal
and global best particles.

To control the velocity of the particles, SMPSO applies a
constriction coefficient (Eq. 3) obtained from the constriction
factor χ originally developed by Clerc and Kennedy (Eq. 2)
in [3]

The constriction coefficient is defined as:

χ = 2

2 − ϕ − √
ϕ2 − 4ϕ

(3)

where

ϕ =
{
C1 + C2 if C1 + C2 > 4

0 if C1 + C2 ≤ 4
(4)

https://github.com/jMetal/jMetalSP.git


Furthermore, SMPSO bounds the accumulated velocity of
each variable j (in each particle) by means of the following
velocity constriction equation:

vi, j (t) =
⎧
⎨

⎩

δ j if vi, j (t) > δ j

−δ j if vi, j (t) ≤ −δ j

vi, j (t) otherwise

(5)

where

δ j = (upper_limit j − lower_limit j )

2
(6)

So, in SMPSO the velocity of the particles is computed
following Eq. 2, which is then multiplied by the constric-
tion factor defined in Eq. 4 and the result is constrained by
applying Eq. 6.

A key component in SMPSO is the external archive,which
is updated whenever a new solution is found. It has a max-
imum capacity, so a density estimator is applied when it
becomes full to choose the particle to be removed to fos-
ter diversity. The leader of the swarm is selected from the
solutions of the archive by applying a binary tournament that
considers as winner the particle having the best density esti-
mator value. Finally, the resulting front of SMPSO is the
leader archive (not the swarm).

2.2 SMPSO/RP: SMPSOwith preference articulation

The SMPSO/RP algorithm (SMPSO with Reference Points)
is an extension of SMPSO to empower it with a prefer-
ence articulation mechanism [15]. Concretely, the adopted
approach is to replace the conventional external archive by
one or two more reference point archives. Each of these
archives has an associated reference point, in such a way that
only solutions that are non-dominated by the corresponding
reference point are inserted into them, as illustrated in Fig. 1.

As more than one reference point archive can be used
(one per preference region), the leader selection strategy
of SMPSO is modified to take the leader from a ran-
domly chosen external archive. Another interesting feature

P
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f
2

Fig. 1 Example illustrating the preference region demarcated by a ref-
erence point P

of SMPSO/RP is that the reference points of the external
archives can be modified during the running of the algo-
rithm. This way, the decision maker can guide interactively
the search toward the most preferred regions.

As SMPSO, SMPSO/RP is implemented in the jMetal
framework formulti-objective optimizationwithmetaheuris-
tics [7,14], and its source code is freely available under MIT
license in the GitHub repository hosting jMetal.

2.3 InDM2

The underlying idea of InDM2 (interactive dynamic multi-
objective decision making) [17] is to provide a software
template that, given an interactive multi-objective algorithm
based on reference points, to extend it with support for
dynamic problems solving in a simple and structured way.
The resulting algorithm can define strategies for reacting to
changes in the problem and in the reference points. These
strategies have two components: one for removing solutions
and another for filling the gaps of the removed ones. Exam-
ples of removing criteria are random selection, the lowest
contribution according to a quality indicator or the solu-
tions in themost crowded regions; examples of filling criteria
include the randomly new solutions or solutions created from
the remaining ones using some variation operator.

An key feature of InDM2 is the ability to visualize the
approximations of the interest regions during the execution
of the algorithm. This way, the decision maker can observe
whether the optimization process is well focused and, if not,
the reference points can be updated tomodify the search. The
operation of InDM2was illustrated in [17] by embedding into
it two reference point-based solvers, WASF-GA [18] and R-
NSGA-II [6]. InDM2 is implemented on top of jMetalSP,
which is described next.

2.4 The jMetalSP framework

jMetalSP is a framework written in Java aimed at solv-
ing dynamic multi-objective optimization problems with Big
Data technologies [1]. It is based on jMetal, which provides
most of its core features (including the implementation of
SMPSO/RP, as commented previously).

The most salient characteristic of jMetalSP is that it can
incorporate oneormore components that can receive and ana-
lyze data coming in streaming by using the Apache Spark
general-purpose cluster computing system [22]. The gen-
erated results can lead to the modification of a dynamic
problem, which is being solved by a dynamic metaheuris-
tic. The object-oriented architecture of jMetalSP enables the
easy incorporation of streaming components. As jMetalSP
uses Spark, it can be deployed in Hadoop/Spark clusters [20]
and access the HDFS file system.



Fig. 2 Layer scheme of the implementation of SMPSO/RPD

2.5 SMPSO/RPD implementation scheme

The implementation of SMPSO/RPD is based on the previ-
ously detailed algorithms and software framework, following
the structure depicted in Fig. 2. Our proposal combines
InDM2 and SMPSO/RP, being the former based on jMetalSP
and the latter on jMetal. Finally, jMetalSP relies on jMetal
and Spark.

3 Algorithm description

In this section, we provide a high-level description of
SMPSO/RPD. A pseudocode is included in Algorithm 1,
which is the result of embedding SMPSO/RP into InDM2.

Algorithm 1 Pseudocode of SMPSO/RPD
1: N ; // Swarm size
2: Gmax ; // Maximum number of generations
3: m ; // Mutation (turbulence operator)
4: S ; // Size of the external archives(s)
5: ϕq ; // Restart strategy when the reference changes
6: ϕp ; // Restart strategy when the problem changes
7: M ← {SMPSO/RP} ; // Base optimization algorithm
8: t ← 0 ; // Generation counter
9: PSt ← Unchanged ; // Problem status
10: qt ; // Initial reference point(s)
11: Pt ← ini tiali zeSwarm(N ) ;
12: evaluate(Pt ) ;
13: At ← ini tiali zeExternal Archives(S, Pt ,qt ) ;
14: while true do
15: while t < Gmax do
16: (Pt+1, At+1) ← M .step(M,qt ,m, Pt , At ) ;
17: if qt+1 �= qt then
18: (P ′

t+1, At+1) ← restart(Pt+1, ϕq ,qt+1) ;
19: else if PSt+1 �= PSt then
20: P ′

t+1 ← restart(Pt+1, ϕp, At+1) ;
21: end if
22: t ← t + 1 ;
23: end while
24: R : (At ) ; // Return external archive(s)
25: t ← 0 ;
26: end while

The parameter settings of the algorithm are defined in
lines 1–7. They include the swarm size, the maximum num-
ber of generations, a mutation operator (turbulence), the size
of the external reference-point-based archives (for the sake
of simplicity, we assume that all of them have the same
size), the restarting strategies when changes in the refer-
ence points and/or problem state, and the base algorithm
(SMPSO/RP).

After the generation counter is started to 0 (line 8), the fol-
lowing objects are initialized (lines 8–13): the problem status
(which can take twovalues: changed orunchanged), the ini-
tial reference point(s), the swarm and the external archives.
Note that the swarm is evaluated after being initialized (line
12).

The main loop of SMPSO/RPD is included in the code
between lines 15 and 23, where the following steps take
place: A step of SMPSO/RP is executed, resulting in modi-
fications in the swarm and the external archives (line 16);
then, if a change in the reference point(s) and/or in the
problem status is detected, the corresponding restart strat-
egy is executed (lines 17–21); finally, the generation counter
is increased.

By default, it is assumed that the algorithm runs forever
(loop between lines 14 and 26) and that everymaximumnum-
ber of generations a Pareto front approximation is returned
[(i.e., the external archive(s)] and the algorithm starts again
(lines 24 and 25). As SMPSO/RPD runs on jMetalSP, the
resulting front can be stored then into files or displayed in a
chart.

4 Experimentation

In order to verify theworking of SMPSO/RPD,we compare it
in this study against two other interactive and dynamic algo-
rithms developed with InDM2 when solving three dynamic
benchmark problems. A detailed description of these prob-
lems and the experimental methodology are provided next.

4.1 Description of the compared algorithms

In the paper describing InDM2 [17], two-reference-point-
based algorithms were adapted to be integrated with it,
namely WASF-GA [18] and R-NSGA-II [6].

TheWeighting Achievement Scalarizing FunctionGenetic
Algorithm (WASF-GA) considers a reference point to define
the user preferences. It is based on a scalarizing approach,
which takes into account the reference point [21] and a sam-
ple of weight vectors.

The Reference-Point-Based NSGA-II algorithm or R-
NSGA-II gives the chance to the DM of defining one or
more reference points. The main change compared to the
original NSGA-II [5] algorithm is the replacement of the



crowding distance density estimator by a preference distance
that equally emphasizes solutions whose objective vectors
are close to any of the given reference points with respect
to the Euclidean distance. An additional niching operator is
needed to control the distribution of the emphasized solu-
tions.

4.2 Benchmarking problems

As benchmark problems, have dealt with those proposed
for the CEC 2018 competition on dynamic multi-objective
optimization [10]. This test suite, called DF, comprises nine
bi-objective and five tri-objective problems; all of them are
included in jMetalSP. For simplicity andwith the aimof prop-
erly illustrating the performance of the proposal, we have
selected two bi-objective problems, DF1 and DF6, as well as
the tri-objective problem DF10. The number of objectives is
represented in the equations as M , and n is the number of
decision variables.

The time is defined according to Eq. 7

t = 1

nt

⌊
σ

σT

⌋
(7)

where σ is the generator counter, σT is the number of gen-
erations for which t remains fixed, and nt is the number of
distinct steps in t . In the benchmark specification [10], the
authors recommend to set n = 10, σt = 10 (fast-changing
environment) or σt = 30 (slow-changing environment), and
nt = 10.

The first problem is DF1, which is a dynamic bi-objective
problem with Pareto fronts changing from convex geometry
to concave geometry and Pareto sets also changing over time.
The problem is defined in Eq. 8:

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1

f2(x) = g(x)
(
1 −

(
xi
g(x)

)H(t)
)

where:

g(x) = 1 + ∑n
i=2 (xi − G(t))2

H(t) = 0.75 sin(0.5π t) + 1.25

G(t) = |sin(0.5π t)|
t = 1

nt

⌊
σ
σT

⌋

PS(t) : 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n

PF(t) : f2 = 1 − f H(t)
1 , 0 ≤ f1 ≤ 1

and the search space is [0, 1]n

(8)

The Pareto front geometry of problem DF6 is time-
changing, and the Pareto front is featured by having knee
regions/points and long tails. The problem is defined in Eq. 9.

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = g(x)(x1 + 0.1 sin(3πx1))αt

f2(x) = g(x)(x1 + 0.1 sin(3πx1))αt

where:

g(x) = 1 + ∑n
i=2

(|G(t)| y2i − 10 cos(2π yi + 10)
)

yi = xi − G(t)

G(t) = |sin(0.5π t)|
αt = 0.2 + 2.8 |G(t)|
PS(t) : 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n

t = 1
nt

⌊
σ
σT

⌋

PF(t) : f
1
α1
1 + f

1
α1
2 =

1 + 0.2 sin

(

3π
f

1
α1
1 − f

1
α1
2 +1

2

)

, 0 ≤ f1 ≤ 1

and the search space is [0, 1]x[−1, 1]n−1

(9)

The third problem considered, DF10, is a dynamic three-
objective optimization problem whose Pareto fronts change
over the time from convexity to concavity, and vice versa. Its
formulation is included in Eq. 10.

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = g(x) [sin(0.5πx1)]H(t)

f2(x) = g(x) [sin(0.5πx2) cos(0.5πx1)]H(t)

f3(x) = g(x) [cos(0.5πx2) cos(0.5πx1)]H(t)

where:

g(x) = 1 + ∑n
i=3

(
xi − sin(2π(x1+x2))

1+|G(t)|
)2

t = 1
nt

⌊
σ
σT

⌋

H(t) = 2.25 + 2 cos(0.5π t)

G(t) = |sin(0.5π t)|
PS(t) : 0 ≤ xi=1,2 ≤ 1, xi = sin(2π(x1+x2))

1+|G(t)| ,

i = 3, . . . , n

PF(t) : ∑M
i=1 f

2
H(t)
i = 1, 0 ≤ fi :1:M ≤ 1

and the search space is [0, 1]2x[−1, 1]n−2

(10)

4.3 Experimental methodology and parameter
settings

To verify the working of SMPSO/RPD and to compare the
results it provides against the other InDMS2-based WASF-
GA and R-NSGA-II algorithms, we have conducted the
following experiments:

– Experiment 1 Solving the DF1 and DF6 problems with
SMPSO/RPD without (a) indicating any reference point
and (b) defining two regions of interest.

– Experiment 2 Solving the same two problems starting
with SMPSO/RPD, WASF-GA, and R-NSGA-II with
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Fig. 3 Pareto fronts approximation obtained by SMPSO/RPD when solving problems DF1 and DF6 without reference points (top) and with
reference points (0.2, 0.8) and (0.9, 0.4) for DF1 and reference point (0.2, 0.6) for DF6 (bottom)

reference point (0.0, 0.0) and changing it after a num-
ber of fronts have been generated.

– Experiment 3 Solving problemDF10 with the three algo-
rithms with reference point (0.0, 0.0, 0.0) and changing
it after a number of fronts have been generated.

population/swarm size) and generating M new random solu-
tions in both cases. WASF-GA and R-NSGA-II use a SBX
crossover operator with probability equal to 0.9 and a distri-
bution index value of 20.0.

5 Results

In this section, we show the fronts obtained by the algorithms
compared in accordance with the three experiments defined
in the previous section.

5.1 Experiment 1

In Fig. 3, the approximations of the regions of interest found
by SMPSO/RPD for theDF1 andDF6 problems are depicted.
At the top are shown the Pareto fronts when no reference
points are taken into account, whereas we can see at the
bottom of this figure how SMPSP/RPD found the Pareto
fronts that belong to the regions of interest delimited by the
reference points. In case of DF1, the reference points are
(0.2, 0.8) and (0.9, 0.4), while for DF6 the new reference
point is (0.2, 0.6). For these two problems, it can be observed
how the regions of interest are properly delimited by the ref-
erence points, so the front approximations generated cover

In this study, SMPSO/RPD and InDM2 have been run 
for solving the aforementioned problems and the preferences 
(i.e., the reference point) have been manually changed during 
the execution time. The goal is to assess how SMPSO/RPD 
is able to adapt the optimization process to the changes (both 
in the problem configuration and in the preferences) and to 
show the effect of these changes in the Pareto front approxi-
mations obtained, which must approximate only the regions 
of interest associated with the reference points given.

The configuration of all the algorithms includes com-
mon values, when possible, to ensure that the comparative 
is fair. Thus, all of them use a population/swarm size of 
100 solutions, the maximum number of generations is 250, 
and they use the polynomial mutation operator with prob-
ability p = 1/L (L is the number of decision variables 
of the problem) and the value of the distribution index is 
20.0. The restarting strategies when changes in the problem 
and the reference points are detected consist in removing 
M solutions selected randomly (where M is the half of the
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Fig. 4 Approximations of the region of interest found by SMPSO/RPD for the DF1 problem, using first the reference point (0.0, 0.0) (left) and,
after producing fix fronts, it is changed to (0.5, 0.5) (right)
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Fig. 5 Approximations of the region of interest found by WASF-GA for the DF1 problem, using reference points (0.0, 0.0) (left) and reference
point (0.5, 0.5) (right)
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Fig. 6 Approximations of the region of interest found by R-NSGA-II for the DF1 problem, using reference points (0.0, 0.0) (left) and reference
point (0.5, 0.5) (right)

the preferred area, independently of the shape in the objective
space.

5.2 Experiment 2

This experiment is conducted to highlight the capacity
of SMPSO/RPD to dynamically obtain regions of interest
delimited by reference points. In order to assess its per-

formance, in visual way, we compare SMPSO/RPD with
WASF-GA and R-NSGA-II when solving the bi-objective
problems DF1 and DF6. In Figs. 4, 5, and 6, we have simu-
lated a real scenario where the reference points are modified
during the optimization process. In the three figures, a chart
with the Pareto front approximations obtained when the ref-
erence point is (0.0, 0.0) is shown in the left part, whereas
the chart in the right part depicts the fronts obtained with the



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Objective 1

O
bj

ec
tiv

e 
2

SMPSO/RPD,DF6

Front 0
Front 1
Front 2
Front 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Objective 1

O
bj

ec
tiv

e 
2

SMPSO/RPD,DF6

Front 0
Front 1
Front 2
Front 3
Front 4
Front 5
Front 6
Front 7

Fig. 7 Approximations of the region of interest found by SMPSO/RPD for the DF6 problem, using no reference points (top left), reference points
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Fig. 8 Approximations of the region of interest found by WASF-GA for the DF6 problem, using reference points (0.0, 0.0) (left) and reference
point (0.4, 0.4) (right)
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Fig. 9 Approximations of the region of interest found by R-NSGA-II for the DF1 problem, using reference points (0.0, 0.0) (left) and reference
point (0.4, 0.4) (right)

by R-NSGA-II (Fig. 6). Furthermore, R-NSGA-II approxi-
mates areas outside of the preference regions.

Similar behaviors can be inspected in Figs. 7, 8, and 9 but
with the DF6 problem. In this case, SMPSO/RPD (Fig. 7)
achieves wider fronts than WASF-GA with reference point
(0.0, 0.0).

reference point having been changed to (0.5, 0.5). (The color 
of the previous fronts has been changed to gray for the sake 
of clarity.)

At a glance, we can observe that the approximation of the 
regions of interest produced by SMPSO/RPD (Fig. 4) and 
WASF-GA (Fig. 5) is more evenly spread than that generated
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that moment in order to apply the indicators. This is an open
research line that is left for future work.

From an overall perspective, and in accordance with our
study, we can conclude that SMPSO/RPD and InDM2 with
WASF-GA have led to approximations with more evenly
spread solutions in comparison with those generated when
using InDM2 with R-NSGA-II. In many cases, the solutions
obtained by SMPSO/RPD and WASF-GA dominated those
ones of R-NSGA-II.

Although the performance of SMPSO/RPD and WASF-
GA in the selected problems seems similar in the considered
bi-objective problems, it must be noted that WASF-GA is
limited to one reference point, while the proposed algorithm
SMPSO/RPD allows to define any number of them. In the
case of the three-objective problem, SMPSO/RPD is clearly
the most salient algorithm.

7 Conclusions and future work

We have presented SMPSO/RPD, an interactive multi-
objective optimization metaheuristic for solving dynamic
multi-objective optimization problems. SMPSO/RPD is an
extension of the SMPSO/RP combined with InDM2, which
incorporates a preference articulation mechanism based on
indicating reference points and interactivity during the opti-
mization process. Hence, it enables the decision maker
to interactively change the regions of interest by giving
and updating one or more reference points defining them.
SMPSO/RPD is implemented within the jMetalSP frame-
work, and its source code is freely available.

SMPSO/RPDhas been described in detail, and itsworking
procedure has been analyzed by solving three represen-
tative continuous dynamic multi-objective problems. The
reportedfigures have shownhowour algorithmbehaveswhen
the problem and the reference points change. The practical
goal is to give an illustrative idea of the full potential of
SMPSO/RPD, as a dynamic algorithm handling preferences
interactively, which has been able to generate approximation
adjusting to the given preferences (i.e., the region of inter-
est), in real time, while the problem also changes at the same
time.We have also discussed a number of open issues related
to our proposal.

As a main line of future work, we plan to investi-
gate the mechanisms to compute performance indicators in
dynamic optimization scenarios where interactive processes
of reference-point selection for preference articulation are
involved. To this end, the use of artificial decision mak-
ers acting with certain synchronization steps seems to be
a promising way to allow fair comparisons among similar
approaches. In addition, we also aim to study the perfor-
mance of SMPSO/RPD when solving complex real-world
dynamic problems, for which domain expert knowledge can

5.3 Experiment 3

Let us continue with the dynamic three-objective optimiza-
tion problem DF10. Its Pareto fronts change over time 
from convexity to concavity, and vice versa, so one of the 
challenges when facing this problem is how to maintain uni-
formity of solutions on the badly shaped Pareto front at some 
time step. To easily visualize the approximations found by the 
algorithms for DF10, which belong to the three-dimensional 
objective space, we have used bi-dimensional images, which 
show the values of each pair of objectives for all the solutions 
in the approximations (i.e. 2D projections of each pair of 
objectives). Figure 10 plots the Pareto front approximations 
generated by SMPSO/RPD without any reference point (first 
row) and with the reference points (0.0, 0.0, 0.0) (green) or 
(0.5, 0.5, 0.5) (red). The third row of plots in Fig. 10 illus-
trates the performance of WASF-GA, and the fourth one 
corresponds to R-NSGA-II. At the glance, we can observe 
that the approximation of the regions of interest produced by 
SMPSO/RPD has a higher degree of convergence and diver-
sity than that generated by R-NSGA-II and WASF-GA.

6 Discussion

After studying the experiments from the previous section, we 
can observe that SMPSO/RPD has performed as expected, 
although it is worth discussing a number of issues that have 
emerged after analyzing the behavior of the algorithm pro-
posed.

The first issue has to do with the way of assessing the per-
formance of the search capabilities of SMPSO/RPD. We have 
conducted a qualitative experimentation that has shown the 
behavior of our algorithm when solving a number of bench-
mark problems. However, the standard methodology in the 
literature is to perform a quantitative analysis by compar-
ing the proposed technique with other algorithms of the state 
of the art based on applying some quality indicators about 
the convergence and diversity degrees of the obtained Pareto 
front approximations. We can find proposals of quality indi-
cators for dynamic problems, such as the mean IGD and mean 
hypervolume defined in [10], and there are also metrics, e.g., 
the R-Metric [12], for reference-point-based algorithms, but 
to the best of our knowledge, there are not indicators for 
multi-objective algorithms which are both dynamic and inter-
active. We can think of an approach to tackle this issue by 
combining these kinds of quality indicators, taking as the 
basis a benchmark of dynamic problems, and we would need 
do define exactly (probably, in terms of number of algorithm 
iterations) when the problem and the reference points change. 
We should need besides to decide when the indicators should 
be applied and the portion (or portions if there is more than 
one reference point) of the Pareto front that it is expected in



be included on the fly to influence algorithm behavior and
final results. Another open line is to improve the visualiza-
tion capabilities when dealing with problems having more
than two objectives.
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