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An Application of the Logarithmic Mean Divisia Index Method
for Predictive Control Schemes to a Power Flow Network*

J. M. Maestre†, P. Velarde‡ and F. J. Muros†

Abstract— In this paper, a method typically used in economics
is applied to distributed decision making problems solved by
model predictive control. The main purpose is to analyze the
changes in certain aggregate indicators under study, which
are decomposed among a number of factors. In particular,
the logarithmic mean divisia index (LMDI) method is used to
study how controllers contribute to the performance and how
disturbances are generated. Finally, a flow network, which is a
system structure that appears in many real problems such as
power grids, is used as an academic case study to illustrate the
proposed method.

I. INTRODUCTION

Model predictive control (MPC) is a computer-based con-
trol approach widely used in the process industry [1], [2].
The key to its success is the versatility of its framework.
MPC uses a mathematical model of a system to predict its
future evolution as a function of the sequence of present and
future inputs applied. The model is used to formulate an
optimization problem in which the evolution of the system
is steered according to a certain objective, e.g., regulation
towards a reference. The first element of the input sequence,
i.e., that corresponding to the current time instant, is applied
to the system and the rest of the elements are discarded,
although they provide valuable information regarding the
expected future. At the next time instant, the optimization
problem is solved again using the most recent information
available and once again only the calculated actions for the
present time are implemented. This procedure is repeated
in a receding horizon fashion. Issues such as constraints
in the system variables, delays, and multiple objectives,
can be explicitly included in the formulation of the opti-
mization problem.

As a computer-based approach, the applications of MPC
have grown enormously with the great advances in infor-
mation and communication technologies of the last decades.
One of the blooming fields in the research of this type of
controllers has been that of distributed MPC (DMPC). Under
this paradigm, the overall control problem is partitioned into
a set of less complex control problems that are assigned to
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local controllers or agents. The performance of the overall
system depends on the coupling and interaction between
the local controllers, which can exchange information to
coordinate their actions. Likewise, it is also possible to use
the DMPC framework to improve the coordination in situa-
tions in which different independent entities with possibly
different objectives interact with each other. See [3] for
surveys on the topic.

In most DMPC schemes, local controllers cooperate in
static groups. More specifically, each controller coordinates
its control actions with any other agent it is coupled to,
which means that there is permanent communication between
coupled controllers. While communication is essential for
the sake of coordination, it may not always be strictly
necessary. The coupling degree between subsystems may
evolve with time and eventually the side effects derived
from the evolution of the subsystems can be low so that the
disturbances generated can be neglected. In this situation, it
may be preferable to switch to a decentralized behavior in
which there is no communication between the corresponding
controllers. This is the rationale behind coalitional control
schemes, in which the local controllers are grouped dynam-
ically into cooperating sets called coalitions [4].

Several applications have been developed under the coali-
tional MPC approach: as [5], where a hierarchical coalitional
control scheme of an irrigation canal is presented; [6], where
cooperative game theory tools are considered to include
constraints on the links and the agents of networked control
systems; or [7], which apply a non-centralized time-varying
scheme to large-scale systems so that each controller can
operate under a decentralized, distributed, and/or hierarchical
fashion over the time. Another related work is presented
in [8], where a DMPC framework is proposed for tracking
by considering a time-varying communication topology.

In this work, we deal with the problem of estimating the
impact of individual local controllers and coalitions from an
economic viewpoint. In particular, we propose to use the
logarithmic mean divisia indices (LMDI) to decompose the
influence of the controllers and coalitions, hence gaining
a valuable insight into their contribution to the overall
performance. To the best of our knowledge, this is the first
time that these indices are considered in a control context.
The application of this method is performed analogously as
it is used in economics to analyze the changes in certain
aggregate indicators under study, which are decomposed
among a number of factors. A gentle introduction to this
method is given in [9]. Likewise, a survey with applications
of this approach in energy and environmental studies can be



found in [10]. Notice that there are methods with similar
goals that have been applied in both energy economics
and control among many other fields. This is the case of
the Shapley value [11], which is used as a decomposition
technique for carbon emissions in [12]; as a means to
calculate the relevance of controllers and links in networked
systems in [4], [6]; or as an alternative tool to perform
system partitioning in [13]. Also, measures to determine
the relevance of the entities in a graph have been used
already in social networks [14] and shareholder influence
attribution in companies [15]. Likewise, the calculation of
link measures from node measures has been present in other
works for decades [16].

The rest of this article is structured as follows. In Sec-
tion II, the distributed and coalitional control problem is
introduced. Section III presents the LMDI method and how it
can be applied in the context of distributed control systems.
Section IV presents a simulation example to illustrate a
power flow network application of the LMDI method in
this context. Final conclusions and remarks are given in
Section V.

II. PROBLEM SETTING

In this section, we briefly introduce how the MPC problem
is formulated in a coalitional control framework. For the
sake of simplicity, we will present the problem in a pure
coalitional setting. As it will be seen, this is the most general
way to proceed.

We consider that the system is composed of a set of
N = {1, 2, . . . , N} subsystems. Each of these subsystems is
governed by a local controller or agent. At each time step k,
the agents can communicate with each other by using a com-
munication network described by a graph G(k) = (N , E(k)),
where E(k) is the set of edges or communication links that
are active at time step k. Notice the dependence on time
of both G(k) and E(k). As a result of the communication
network, the set of agents is partitioned into a set of disjoint
communication components or coalitions N/G(k)1. Given a
coalition C ∈ N/G(k), any agents i, j ∈ C can communicate
with each other because there exists at least an indirect path
of links in E(k) that allows the communication. Likewise,
there is no communication between different coalitions, i.e.,
while there is full communication inside coalitions, they
work in a decentralized fashion.

Notice that in the coalitional control framework, a cen-
tralized control problem computed in a distributed fashion
is represented simply by taking C = N . Analogously, if the
communication graph is empty, i.e., it has no active links,
the system is partitioned into N coalitions of one agent. This
case corresponds to decentralized control. In this way, it is
possible to formulate all possibilities in terms of coalitions.

It will be assumed that the model of each coalition C ∈
N/G(k) can be described by the following discrete time

1This notation is used in cooperative game theory to denote that the set
of players N is divided by the communication network described by G(k).

equation:

xC(k + 1) = ACxC(k) +BCuC(k) + ECwC(k), (1)

with xC = [xi]i∈C being the state of the corresponding
subsystem, where uC = [ui]i∈C is the vector of manip-
ulated variables, and with wC = [wi]i∈C being a vector
of measurable disturbances. AC , BC , and EC are matrices
of proper dimensions. Likewise, we consider the following
linear constraints in the states and the inputs:

xC ∈ XC , uC ∈ UC , (2)

where XC and UC define a closed set by means of a system of
linear inequalities, where the constraints of the coalition are
formed as the cartesian product of those in the corresponding
subsystems, i.e., XC =

∏
i∈C Xi and UC =

∏
i∈C Ui.

In this work, it is assumed that the control objective of
each coalition C is the regulation of the corresponding state
vector towards the origin. This is expressed mathematically
by the following performance index:

J(uC(k : k +Np − 1), xk) =

Np−1∑
l=k

[
(xC(l + 1)− xref)TQC(xC(l + 1)− xref)

+uTC (l)RCuC(l)
]
,

(3)

where QC = diag(Qi)i∈C , and RC = diag(Ri)i∈C are
constant weighting matrices of the proper size, Np is the
prediction horizon, and xref is the desired state reference.
According to (1), J depends on the control input sequence
uC(k : k+Np − 1) = (uC(k), . . . , uC(k+Np − 1)) and the
value of the state at time step k, xC(k).

Inside each coalition C, a communication-based negotia-
tion procedure is carried out to calculate the optimal control
sequence that minimizes (3). Hence, each coalition solves
the following problem to calculate its control actions:

u∗C(k : k +Np − 1) =

arg min
uC(k:k+Np−1)

J(uC(k : k +Np − 1), xk)

s.t.

xC(l + 1) = ACxC(l) +BCuC(l) + ECwC(l),

xC(l) ∈ XC ∀l ∈ {k + 1, . . . , k +Np},
uC(l) ∈ UC ∀l ∈ {k, . . . , k +Np − 1},
xC(k) = xC,k,

wC(k : k +Np − 1) = ŵC(k : k +Np − 1),

(4)

where ŵC(k : k + Np − 1) = (ŵi(k : k + Np − 1))i∈C is a
deterministic sequence composed by the expected values of
the disturbances. From the resulting control sequence, only
the values corresponding to the current time step are applied.
The rest of the sequence is discarded, although it can be used
to obtain information regarding the expected evolution of
the decision variables and to guarantee theoretical properties



such as stability. This is repeated at each time step in a
receding horizon strategy.

Summing up, the main idea of the coalitional based
MPC is to manage the overall network by establishing a
compromise between the communication burden and the
control requirements. In this sense, the cooperation among
the different parts of the system is carried out by adapting the
control network to the varying coupling conditions at each
time instant, as pointed out in [4], [5].

III. THE LMDI METHOD FOR DISTRIBUTED AND
COALITIONAL SYSTEMS

In this section, we present the LMDI method and how can
be applied in a distributed and coalitional control context.
Basically, the goal is to use simple logarithmic properties
to find appropriate indices that help us to determine how
the disturbances affect the performance of the system from
a global and a local perspective, paying attention to factors
such as the structure of the system and the weight of the
coalition regarding the overall performance. To this end,
we first focus on the disturbances generated by the local
controllers and propose the following index that measures
the sum of disturbances experienced by all subsystems:

w =
∑
i∈N
|wi| =

∑
i∈N

J
Ji
J

|wi|
Ji

=
∑
i∈N

JSiIi, (5)

where |wi| is the norm of the disturbances registered by local
controller i, Ji is its corresponding cost, and J is the overall
cost of the system. Two auxiliary variables, Si = Ji/J and
Ii = |wi|/Ji, are introduced to simplify the notation.

Notice that the increment in the overall level of distur-
bances between two given time instants can be explained
using the following components:

∆w = w(k)− w(k0) = ∆wper + ∆wstr + ∆wint, (6)

where ∆w stands for the increment of the overall disturbance
level between the time instants k and k0, which is set as the
reference instant. Then, by taking the logarithm in Eq. (5),
it is possible to link the overall increment of disturbances
∆w to the increment of the overall performance ∆wper,
the structure of the system regarding the distribution of the
overall cost between the local subsystems ∆wstr, and the
intensity of the disturbances with respect to the local cost
registered by each subsystem ∆wint. These factors will be
named from now on as LMDI indices and can be calculated
in the following way:

∆wper =
∑
i∈N

αi log
(

J(k)
J(k0)

)
,

∆wstr =
∑
i∈N

αi log
(

Si(k)
Si(k0)

)
,

∆wint =
∑
i∈N

αi log
(

Ii(k)
Ii(k0)

)
,

(7)

where the weights αi are in turn calculated as

αi =
|wi(k)| − |wi(k0)|

log(|wi(k)|)− log(|wi(k0)|)
. (8)

Fig. 1: Diagram of the benchmark considered in the case
study. The arrows represent the direction of the flows.

Note that an alternative to built the LMDI indices would
be to define the incremental variables, given by (7), (8), by
taking into account consecutive time instants, i.e., the current
time step k and the last time instant k−1 instead of k0. In any
case, both options establish performance metrics that achieve
the goal of identifying how and where some changes have
arisen in the control structure.

IV. CASE STUDY

In this work, a benchmark composed of 16 interconnected
batteries is used to test the proposed method. This benchmark
has been obtained by modifying that of [17], which was
designed to test distributed and coalitional control systems
with a water flow network. To this end, batteries and cables
replaced tanks and pipes, respectively. The modified bench-
mark will be used to illustrate some preliminary results of
the application of LMDI in this context.

The case study consists of 16 batteries arranged in a
4 × 4 matrix. Each battery is connected with its direct
neighbors by means of cables that allow lossless power flow.
For simplicity, it is considered that there is neither power
generation nor consumption so that we can focus exclusively
on the coordination between the different local controllers
to regulate their states. A diagram of the benchmark can be
seen in Fig. 1. The following dynamics are assumed for each
battery:

xi(k + 1) = xi(k) + Ts
1

bi

∑
j∈Ni

uij(k), (9)

where the state variable xi(k) is the state of energy (SoE)
of battery i and bi is the maximum capacity of storage; Ts
is the time step length; uij(k) is the power flow through
the cable that connects the batteries i and j; and Ni is
the set of batteries connected to battery i. Note also that
the SoE is expressed relatively to maximum capacity so that
xi(k) ∈ [0, 1].



Fig. 2: LMDI for the centralized control approach.

The objective of the control architecture is to minimize
a cost function that includes both communication costs and
performance. To this end, each subsystem is governed by a
local controller that can manipulate the flow of all variables
covered by the corresponding shadow in Fig. 1. There are
constraints that limit the amount of power flow transmitted
between batteries, which has to be lower than 10 kW. The
numerical values of the parameters used for the simulation
are setting as follows: the initial value for each battery is
xi(0) = 0, the reference level for all batteries is xref = 0.5,
the prediction horizon is Np = 5, and the weights Qi and
Ri are equal to 100 and 1, respectively. The simulations are
performed over 500 s.

A. LMDI to identify strategies

It is possible to use the LMDI indices to identify the con-
trol strategy that it is applied in a certain scenario. This way,
it is noteworthy the evolution of the previously introduced
LMDI indices with time, which have been computed using
the first time instant of the simulation as a reference, i.e.,
k0 = 1. These values have been computed for three different
control strategies, namely:
• Centralized control strategy: the actuation of all local

controllers is coordinated using centralized planning.
The evolution of the different LMDI indices can be seen
in Fig. 2.

• Individually rational coalitional control strategy [17]:
the local controllers can negotiate and form coalitions.
In particular, coalitions are formed whenever there is a
reduction of cost for the parties involved in the coali-
tion. The evolution of the LMDI indices is represented
in Fig. 3.

• Coalitional control strategy based on PageRank: it is
another coalitional control strategy recently developed
in [18]. In this case, the local controllers can send
aid requests to their neighbors. As a consequence, a
communication network is formed and the PageRank

Fig. 3: LMDI for the individually rational coalitional control
approach.

Fig. 4: LMDI for the coalitional control approach based on
PageRank.

of the subsystems in the network is used as a criterion
to activate the control links. The evolution of the LMDI
indices is depicted in Fig. 4.

As can be seen in the aforementioned figures, each strategy
presents a different LMDI footprint. In the centralized case,
the control architecture is constant and this is clearly trans-
lated in the evolution of ∆wstr. Likewise, the improvement
in the performance mitigates the total disturbances by means
of ∆wper. Finally, the relationship between disturbances
generated and cost is worse towards the end of the simulation
and for this reason ∆wint grows.

In the individually rational coalitional control approach,
the structure evolves and hence changes are appreciated in
the evolution of ∆wstr. The same holds for the PageRank
strategy, although in this case the network can change more
abruptly and as a consequence there are greater changes in
the structure. These changes are translated in reductions of
the disturbances due to the improvement of the performance.



Fig. 5: A comparison of the LMDI evolution for the in-
dividually rational coalitional control approach, where the
superindex ∗ denotes a change of the reference level.

In general, as the local costs fall, the relevance of the
disturbances generated locally grow, specially after a switch-
ing in the control topology is implemented, which increases
again the disturbances because less coordination is used.
All in all, the LMDI indices can provide information about
the behavior of the control system and the effect of mutual
disturbances in performance.

B. LMDI detection capabilities

It is also possible to apply the LMDI method to detect
modifications regarding the problem setting, e.g., reference
levels, constraints, changes in the cost function, among
others. This is relevant for instance from the viewpoint of
cyber-security, for agents might have incentives to introduce
changes in their optimization problems to take advantage of
the rest of the network. To this end, we change the reference
level of battery 6 at the time instant k = 250. In particular,
the reference changes from 0.5 to 0.75 for the individually
rational coalitional control approach. The LMDI footprint
presents a different evolution from the time instant in which
the reference was changed, as shown in Fig. 5. The dashed
lines indicate the LMDI footprint by introducing the afore-
mentioned modification in the reference level. Therefore, by
pointing out when a change emerges in the problem setting,
the LMDI indices show sensitivity to detect modifications in
the optimization problem of an agent.

Finally, we pay attention to the disaggregate indices Si =
Ji/J, ∀i ∈ N , which are the variables that show more clearly

Fig. 6: Evolution of Si for the individually rational coali-
tional control approach.

Fig. 7: Evolution of Si for the individually rational coali-
tional control approach with a change of the reference level
for battery 6.

the aforementioned reference change. Fig. 6 indicates the
evolution of Si for each of the 16 batteries, before changing
the reference level. A different behavior, shown in Fig. 7,
arises due to this modification, particularly for battery 6. It
means that significant changes are taking place, especially in
the cost function of this battery compared with the remaining
agents. In this manner, index Si allows for detecting the
agent that presents a change in its optimization problem,
by means of the different LMDI footprint that emerges
from this change in the reference. Finally, Fig. 8 shows
the contribution to the LMDI indices of battery 6 (which
presents a modification in its optimization problem) and for a
standard battery, in this case battery 10. In particular, ∆wstr

also shows differences due to change in structure: it turns
positive after the modification of the reference.



Fig. 8: LMDI for batteries 6 and 10 for the individually
rational coalitional control approach.

V. CONCLUSIONS

We have transposed a method used in economics to
distributed control. The LMDI method is oriented to analyze
changes when different time instants are compared. There-
fore, the proposed method provides a different perspective,
which is specially interesting for coalitional control systems,
where the detection of changes in the coupling plays an
essential role.

Interestingly, a certain footprint has been detected for the
type of control strategy and the evolution of the LMDI
indices. This connection will be subject of further research.
Likewise, it will be analyzed whether these indices can be
used as key performance indicators for the assessment of
control strategies and, moreover, as a way to determine the
evolution of the topology of the control architecture.

Finally, modifications in the local control problem set-
ting can be identified. Hence, changes due to malicious or
malfunctioning controllers could be detected by using this
method. For this reason, applications of LMDI to cyber-
security and fault detection real case problems will be
object of further study. Likewise, ways to design the optimal
topologies via the LMDI indices will also be considered as
future research.
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