
This is a repository copy of Fuzzy based state observer of a solar trough field in the 

Depósito de Investigación de la Universidad de Sevilla 

 
Version: Author Accepted Version 
 

Citation: Fuzzy based state observer of a solar trough field. Adolfo J. Sanchez, Juan 

Manuel Escano, Carlos Bordons, Eduardo F. Camacho. 2019 30th Irish Signals and 

Systems Conference (ISSC). 10.1109/issc.2019.8904927 

To cite this publication, please use the final published version (if applicable). 

Please check the document version above. 

 
Copyright: Other than for strictly personal use, it is not permitted to download, 
forward or distribute the text or part of it, without the consent of the author(s) 
and/or copyright holder(s), unless the work is under an open content license such 
as Creative Commons. 
 
Takedown policy: Please contact us (idus@us.es) and provide details if you believe 
this document breaches copyrights. We will remove access to the work immediately 
and investigate your claim 
 

mailto:idus@us.es


Fuzzy based state observer of a solar trough field
Adolfo J. Sánchez∗, Juan Manuel Escaño†, Carlos Bordons‡ and Eduardo F. Camacho§

Dept. of System Engineering and Automatic Control. Universidad de Sevilla.
Camino de los Descubrimientos s/n. 41092. Sevilla. Spain

Email: ∗asanchezdelpozo@us.es, †jescano@us.es, ‡bordons@us.es, §efcamacho@us.es

Abstract—The estimation of unobservable states of a process
is important when using control techniques that assume, said a
priori, known values. The controllers based on the state space
present good behavior and efficiency, even when the dynamics of
the process are non-linear. One of the processes with non-linear
dynamics and in which not all the states are observable is the
case of parabolic trough solar plants. In this work an observer is
presented, based on a fuzzy inference system, for the estimation
of the temperature profiles of the loops that make up the solar
field. This is a English translation of an earlier work presented
in the XXXIX Spanish workshop in Automatic Control [15].

Index Terms—Fuzzy estimator, parabolic trough solar plants,
Model Predictive Control.

I. INTRODUCTION

In the automatic control of industrial processes, the more
information about the process is sent to the controller, the
better the control will be.
The information that can be provided to the controller, will
depend in all cases on the type of controller that has been
designed. In the case of classic controllers such as a Propor-
tional Integral Derivative (PID) control, the only information
that will be received is the error between the reference and
the output of the system to be controlled. The knowledge of
the status of the plant in the controller is limited to an error
signal. In other more complex controllers, the information that
can be provided is greater. Complex controllers are, generally,
used to control systems with high non-linear dynamics. Model
Predictive Control (MPC) techniques have become popular.
The state space MPCs controllers need to know the value of
the different states of the system. These states may or may
not be observable. If they can not be measured by physical
or even economic impossibility, they can be estimated and the
controller can use the estimates as if they were measures. A
particular case where not all states can be measured, mainly
due to economic reasons, is a parabolic trough solar plant.
These plants are formed by numerous loops of solar collectors
of hundreds of meters [9], [13], [16], [17]. Given the non-
linear nature of the solar field process, multiple MPC control
techniques have been designed in the state space, obtaining
good results. In [6], the authors propose an adaptive model
MPC in the space of states for the control of the solar field
with an estimation by Unscented Kalman Filter (UKF). A
more advanced MPC in the state space is presented in [7]
where a Luenberguer observer is proposed for the estimation
of the states. An Extended Kalman Filter (EKF) is proposed
in [12] for the estimation of the temperatures of internal loop
and input assuming that there is no sensor to the input and

its application in a PID. In [14], the authors presented a non-
linear optimization to control the input valves. The optimzation
problem is solved using a reduced non-linear model in which
the states are estimated by means of a Classification and
Regression Trees (CARTs) observer. The linear estimators,
like Luenberguer observer, are based on the linear model of
the plant that is nothing more than an approximation of the
nonlinear model. Therefore, prediction errors are expected in
the estimation of the states. On the other hand, estimators
based on data, as in the case of CARTs, can provide small
error values if they are well designed, although at a higher
computational cost due to the size that the estimator will
occupy in memory. Although, generally, a small error is not
a concern for control, the aim is to keep it as low as possible
with the lowest computational cost.
This work deals with the estimation of the states of the solar
field based on Fuzzy Logic.

Fuzzy Inference Systems (FIS) systems are generic func-
tional approximations, that is, given a certain level of error, it
is possible to find a FIS that approximates any function with an
error lower than the fixed one. This makes the FIS suitable to
be used as estimators and they do not even have to be based
on the state space necessarily. Many methods can be found
in the literature for the identification of a FIS. One of the
most popular methods is the formulation of a Takagi-Sugeno
fuzzy system (TS) [18] as a Neural Network (NN) [11], also
called Adaptive Neuro-fuzzy Inference System (ANFIS). One
of the classic ways to, experimentally, model complex systems
is through the use of artificial NN. A FIS, used for estimation,
can handle non-linear systems and provide system knowledge.
In this work we propose a fuzzy TS-type system with Gaussian
membership functions, of the type:

m(x; c, σ) = e
−
1

2

(
x− c
σ

)2

(1)

with a set of rules Rj :

IF x1(k) is F1j and x2(k) is F2j ,
THEN:
yj(k) = a1jx1(k) + a2jx2(k) + a3j , where aij ∈ R

There are many learning algorithms applicable to ANFIS
to update the parameters of the layers. Notably, for example,
Backpropagation (BP) [19], has been used a lot in NN design.
There are other methods combined with BP, such as the hybrid



combination of least squares and backpropagation, [11], [8].
One of the advantages of fuzzy systems versus NNs is the
possibility to add ”expert” rules. These rules are given by the
engineer’s expert knowledge and observation of the system.
As discussed above, one of the most important properties of
the FIS is its ability to approximate nonlinear functions with
bounded approximation error. Improving accuracy may cause
an increase in the number of rules. It should be considered that
a system based on too many rules may not be practical and
causing a loss of understanding of the system. The use of a
grouping method can avoid the explosion of rules and obtain
the natural clusters between the input and output variables.
In this paper, some popular and widely used techniques are
presented to obtain the structure and train the FIS to adjust to
the real data.

The paper is organized as follows: Section II presents the
Acurex solar field model and the mathematical models used
in this work. In Section 3 we present the design of the fuzzy
estimator for the loop states of the Acurex field. Section 4
shows the results obtained with the fuzzy estimation in two
different simulated scenarios. Finally, Section 5 draws to an
end with some conclusions.

II. ACUREX SOLAR FIELD
The ACUREX field, located in the Plataforma Solar de

Almerı́a, is a solar field with 480 parabolic trough collectors.
The collectors are arranged in 10 loops. The total length of
each loop is 172 m, which includes active parts (142 m) and
passive parts, that is, junctions and other parts that do not
reach the concentrated solar radiation (30 m).

Fig. 1: Acurex Solar Field schematic.

In this paper, two types of mathematical models are used
for the plant: a distributed parameter model and a concentrated
parameter model. Both models have been obtained through
tests and validations carried out at the plant and have been
used by many authors. A schematic of the plant is shown in
Fig. 1. For a full description of the plant modeling procedure,
see [2], [3].

A. Distributed parameters model
The dynamics of the distributed solar collector field is

described by the following system of partial differential equa-

tions (PDE) that describe the energy balance that occurs in the
loop [2], [3]:

ρmCmAm
∂Tm
∂t

= IKoptnoG−HlG(Tm − Ta)

− LHt(Tm − Tf )
(2)

ρfCfAf
∂Tf
∂t

+ ρfCf q̇
∂Tf
∂x

= LHt(Tm − Tf ) (3)

where the subscript m refers to the metal and f refers to the
fluid. The parameters and units of the model are shown in
Table I.

TABLE I: Parameters description.

Symbol Description Unit
t Time s
x Space m
ρ Density kg/m3

C Specific heat capacity J/(kg◦C)
A Cross-sectional area of the pipe m2

T Temperature ◦C
Ta Ambient temperature ◦C
q Oil flow rate m3/s
I Solar radiation W/m2

no Geometric efficiency
Kopt Optical efficiency
G Collector aperture m
Hl Global coefficient of thermal loss W/(m2◦C)
Ht Coefficient of heat transmission metal-fluid W/(m2◦C)
L Length of pipeline m

The geometric efficiency depends on the hour angle, the
solar time, the declination, the day of the year, the local
latitude and the dimensions of the collector. The density
ρ, the specific heat C and the heat transfer coefficient Ht

depend on the temperature of the fluid. The coefficient of heat
transmission depends on the temperature and oil flow [2]. The
model is discretized in the longitudinal dimension of the tube,
so the dynamics of each loop can be simulated as a chain of
submodels. A segment length of 1 meter was chosen for the
implementation of the simulation model (172 segments per
loop).

B. Lumped parameters model

The concentrated parameter model provides a general de-
scription of the entire field. The variation in the internal energy
of the fluid can be described by the equation:

C
dTout
dt

= KoptnoSI − qPcp(Tout − Tin)

−Hl(Tm − Ta)
(4)

where C is the thermal capacity of the loop, Kopt is the
optical efficiency that takes into account elements such as
reflectivity and absorptance. The geometric efficiency no is
determined by the position of the mirrors with respect to the
vector of the radiation beam. The factor Pcp takes into account
some geometrical and thermal properties of the cycle. Tin is
the inlet temperature, Hl is the coefficient of global thermal
losses, Tm is the average temperature between the inlet and
outlet temperature, and Ta is the ambient temperature. The



coefficient Hl can be approximated by 1.05 kW/◦C, Pcp
by 1, 924 × 106 kJ/◦C, C by 2267 kW/◦C, and the total
reflecting surface S takes the value of 2674 m2. These values
have been obtained based on the data related to the measures
in the plant that work in different adjustment points by means
of the multiple regression analysis [2].

III. FUZZY ESTIMATOR OF LOOP SEGMENT
TEMPERATURE

For the training of the fuzzy system it is necessary to have a
broad data set. This set of data will be divided into two parts:
a first part will be dedicated to the training of the estimator
and the second part will serve to make the check test used
to check the error obtained with the designed system. The
dataset will be created using the distributed parameter model.
The solar field will be simulated by modifying the values of
irradiance, geometric efficiency, ambient temperature and oil
flow. Since it is not computationally feasible to have a set of
data that contains all the nonlinear dynamics of the plant at
any point of operation, the data set will be limited to obtain the
variables in the steady state. Once the plant reaches the steady
state, the value of the outlet temperature of the loop will be
obtained as well as the temperature values of each segment of
the pipe. Although the dataset includes values for irradiance,
geometrical efficiency, etc., the training of the system is based
only on the inlet and outlet temperature as well as the flow-
rate as inputs while the outputs are the temperatures of the
different segments of the loops. Basically, the estimator will
be trained based on the thermal jump that occurs in the loop
and the oil flow. In this way given a flow and a thermal jump,
the temperature of each piece can be estimated. This method
of training the system has been chosen to reduce the data set
and to avoid the explosion of rules since, at the end of the day,
a thermal jump and a given flow rate will implicitly include
other variables such as irradiance and geometric efficiency.
For computational reasons, the loop is divided into 16 pieces
instead of the 172 pieces into which the distributed parameter
model is divided, both in the size of the fuzzy estimator and
for its subsequent use, for example, in MPCs in the state space.
The fuzzy estimation of the temperatures of the 16 segments
is done with the same sampling time that is used in the plant
controller, generally, Ts = 39s, [2]. Initially, to obtain the
membership functions, it is useful to use a clustering method.
Many algorithms come out for the clustering analysis [5],
[10], [1], [20]. A fast single-iteration algorithm for estimating
the number of clusters and the cluster centers of a data set
is Subtractive Clustering (SC) [4]. This technique, like any
grouping method, is used to obtain the appropriate linguistic
variables. SC is a modification of the Mountain Method [21].
In SC, the following function is defined

Mi =

N∑
j=1

e−α‖zi−zj‖
2

(5)

This function is called the mountain function, where α = 4/r2a
and ra > 0 defines the neighborhood radius for each group (it
is chosen according the desired groups resolution) .
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Fig. 2: Membership functions of fuzzy estimators

If F ∗1 is the highest value of the function, belonging to the
point z∗1 , chosen as the center of the group, for each point zi,
the next reduced function is calculated,

Mi ⇐=Mi −M∗1 e−β‖zi−z
∗
1‖

2

(6)

The algorithm is the following:



IF M∗k > εuM∗1
Acept z∗k as a new center of the group

and continue;
ELSE IF M∗k < εdM∗1
Reject z∗k and exit;

ELSE
Let dmin be the minimum distance between

z∗k and all the found centres;

IF dmin

ra
+

M∗
k

M∗
1
≥ 1

Acept z∗k as the next center of the
cluster and continue;
ELSE
Reject z∗k and assign value 0;
Select the highest value point of

mountain function as new z∗k;
Repeat the test;

ENDIF
ENDIF

ENDIF

Where εu is a threshold above which the point is selected as
the center and εd another threshold below which the point is
discarded. Typically εu = 0.5 and εd = 0.15 (with normalized
values). The radius for the reduced potential must have greater
degree than the radius of the neighbor, to prevent spaced
clusters. Normally rb = 1.5 · ra. Fig. 2 shows the resulting
membership functions for each input (thermal jump and flow)
and each segment. Similarities between the functions of each
loop can be seen.

In Fig. 3, surfaces of the estimators are plotted against the
measured values of temperature in each segment, together with
a validation measure, such as the mean of the absolute value
of the estimation error: |e|. It can be seen that the last segment,
being the outlet temperature, has zero error.

IV. RESULTS

This section presents the results of the Fuzzy observer for
the temperature estimation of the segments of different loops.

Acurex is a plant with 10 loops that can have different
reflectivities due to dirt. The simulations have been carried out
by applying a model-based controller whose mission will be to
track a temperature reference at the field’s outlet temperature.
Since the plant consists of ten loops, the outlet temperature of
the field will be the weighted average of the temperatures of
all the loops that make up the field.

In the simulations, changes are made in the set-points of
field outlet temperature to observe the estimation in different
points of operation. Two simulations have been carried out
with different set-points of temperature throughout the day. In
these simulations, each loop has a different reflectivity, see
Table II.

TABLE II: Simulated cases.
Reflectivities set L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Case 1 0.65 0.67 0.68 0.7 0.715 0.73 0.75 0.77 0.79 0.8
Case 2 0.67 0.71 0.71 0.74 0.74 0.76 0.76 0.79 0.79 0.8
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Fig. 3: Actual and estimated outlet temperature for each seg-
ment (oC). Inputs: Thermal jump (oC) and flow rate (m3/s)

For visual and space reasons, the results of two of the



ten loops with different reflectivities are presented, for each
simulation, and the estimates of the 4 segments that correspond
to each of the 4 collectors that make up a loop are presented.
The first simulated scenario is presented in Figs. 4, 5 and 6.
Fig. 4 presents the simulation of the operation of the flow-rate
controller based on the model for case 1. It can be seen how
it manages to keep a good tracking of the reference applied in
the field outlet temperature. Fig. 5 shows the fuzzy estimation
of the segments temperatures of loop 1, with a reflectivity of
0.65. It is possible to observe that the estimator has a good
performance in both dynamic and static.

11 12 13 14 15 16 17 18

Time (h)

240

260

280

300

T
e

m
p

e
ra

tu
re

 (
ºC

)

T
ref

T
out

11 12 13 14 15 16 17 18

Time (h)

0

500

1000

Ir
ra

d
ia

n
c
e

 (
W

/m
2
)

0

5

10

F
lo

w
 r

a
te

 (
l/
s
)I

Q

Fig. 4: Case 1: Field outlet temperature set-point tracking.

11 12 13 14 15 16 17 18

Time (h)

200

220

240

260

280

300

T
e

m
p

e
ra

tu
re

 (
ºC

)

Estimated Collector Temp

Simulated Collector Temp

11 12 13 14 15 16 17 18

Time (h)

-4

-2

0

2

4

6

8

T
e

m
p

e
ra

tu
re

 (
ºC

)

Estimation Error Collector 1

Estimation Error Collector 2

Estimation Error Collector 3

Estimation Error Collector 4

Collector 4

Collector 3

Collector 2

Collector 1

Fig. 5: Case 1: Loop 1 (reflectivity 0.65) temperatures estima-
tion of 4 segments.

In Fig. 6 the fuzzy estimation of the temperatures of the
segments of the loop 10 is presented, with a reflectivity of 0.8.

It is observed that, although having a higher reflectivity, the
estimator is capable of capturing it since the outlet temperature
and loop input are being used as inputs to the fuzzy system. As
explained above, when designing the estimator, data were used
in steady state of the plant with changes in radiation, flow rate,
ambient temperature, etc. Since only temperatures and flow
were used for training, the reflectivity is implicitly included
in the thermal jump that occur in the loop between inlet and
outlet. This is reason for the estimation to be satisfactory in
loops with different reflectivities.
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Fig. 6: Case 1: Loop 10 (reflectivity 0.8) temperatures estima-
tion of 4 segments.

The second simulated scenario is presented in Figs. 7, 8 and
9. As before, the simulation of the operation of the model-
based controller of case 2 is presented, see Fig. 7.
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Fig. 7: Case 2: Field outlet temperature set-point tracking.
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Fig. 8: Case 2: Loop 4 (reflectivity 0.74) temperatures estima-
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11 12 13 14 15 16 17 18

Time (h)

200

220

240

260

280

300

T
e
m

p
e
ra

tu
re

 (
ºC

)

Estimated Collector Temp

Simulated Collector Temp

11 12 13 14 15 16 17 18

Time (h)

-4

-2

0

2

4

6

8

T
e
m

p
e
ra

tu
re

 (
ºC

)

Estimation Error Collector 1

Estimation Error Collector 2

Estimation Error Collector 3

Estimation Error Collector 4

Collector 4

Collector 3

Collector 2

Collector 1

Fig. 9: Case 2: Loop 8 (reflectivity 0.79) temperatures estima-
tion of 4 segments.

Figs. 8 and 9 show the results of the fuzzy estimation of the
segments of loops 4 and 8, with reflectivities 0.74 and 0.79
respectively. Again, it is observed that the estimation is quite
similar to the real behavior of the loop, both in the dynamic
zone and in the steady state around the different operation
points.

V. CONCLUSION
In this work, fuzzy estimators have been developed, made

from operational data, using clustering techniques. They have

been used for the temperature estimation of the segments of
a parabolic trough solar plant. Two cases have been simu-
lated in which different set-points of temperature are applied
throughout the day. In these simulations each loop has a
different reflectivity. The simulations show good performance
at estimating the states of the loops even with different
reflectivities.
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I. González Pérez P. Merchán Garcı́a J. Lozano Rogado S. Salamanca
Miño y B.M. Vinagre Jara I. Tejado Balsera, E. Pérez Hernández, editor,
Actas de las XXXIX Jornadas de Automática, pages 908–915, Badajoz,
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