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ABSTRACT
This paper presents a distributed set-membership estimation and formation control
algorithm for a fleet of vehicles. Each vehicle is equipped with an agent with sensing,
acting, computational and communication capacities. The agent’s objective is to
compute estimation set for the state of all the fleet of vehicles and, additionally,
generate control actions to keep its local vehicle in formation. In order to improve
the estimation, the agents exchange information with other neighbouring agents. The
estimation sets are mathematically characterized by zonotopes. The novelty of the
proposed solution lies in the fact that the estimation is guaranteed in spite of the lack
of knowledge of the control signal applied by the rest of vehicles. Then, in presence
of bounded disturbances and noises, the position reference for the vehicles can be
tracked with a bounded estimation. The proposed solution is tested by simulations.

KEYWORDS
Distributed estimation and control, fleet of vehicles, guaranteed estimation,
zonotopes.

1. Introduction

The emergence of Wireless Sensor Networks (WSNs), together with the cheapening
of IoT (Internet of Things) devices, has multiplied the number of tasks that can be
performed in a distributed environment. Among them, distributed monitoring using
a WSN is perhaps the field that has grown more in the last years. It is easy to find
applications of distributed monitoring in many fields, such as agriculture (Bencini,
Collodi, Di Palma, Manes, and Manes (2009)), water distribution system (M. Lin, Wu,
and Wassell (2008)), pipelines (Stoianov, Nachman, and Madden (2007)), electrical
power grids (Grilo et al. (2012)), structural health monitoring (Yu-liang, Yu, Lian-fen,
Jian, and Ying (2012)), or traffic control systems (Tubaishat, Shang, and Shi (2007)),
just to name a few.

It is important to mention that distributed estimation and distributed monitoring
are not exactly the same, but sometimes these terms are confused with each other.
Whereas distributed monitoring implies the deployment of a WSN to measure certain
parameters, and to reduce uncertainty and increase robustness, distributed estimation
additionally implies to get to know certain hidden variables that are not directly
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measured and that can be inferred from the data using a dynamical description of the
plant.

The literature of distributed estimation is vast, since it has become a hot topic in the
last years. Most of the estimation algorithms are modifications of classical centralized
estimators to cope with the new distributed paradigm. Then, different modifications of
the distributed Kalman filter have been proposed for plants affected by Gaussian noises
and disturbances (Battistelli and Chisci (2016); Cattivelli and Sayed (2010); Das and
Moura (2015); del Nozal, Orihuela, and Millán (2017); Olfati-Saber (2007); G. Wang,
Li, and Zhang (2017)). Distributed Luenberger observers have been also developed
for linear systems (del Nozal, Millán, Orihuela, Seuret, and Zaccarian (2019); Matei
and Baras (2012); Mitra and Sundaram (2018)). For nonlinear systems, distributed
Bayesian estimators have been developed in Forti et al. (2018). A complete survey of
distributed estimation algorithms based on consensus strategies can be found in Garin
and Schenato (2010).

However, the objective of guaranteed estimators is somewhat different. The estima-
tion goal is to compute a set in which the actual state of the plant is contained for
sure. Then, in addition to the estimation of the state, a guaranteed or set-membership
estimator must provide a set that contains, with probability equal to one, the state of
the system. In contrast to Kalman or stochastic filters, guaranteed estimators do not
require to know the statistical description of noises and disturbances, but only their
extreme bounds. Compared with classical methodologies, guaranteed observers finds
their place in applications where the uncertainty in the estimation might become a
critical issue, such as constrained control.

Perhaps the first feature that makes the difference between the approaches found
in the literature is the mathematical description of the sets, being the most common
solutions those based in ellipsoids (Wei, Liu, Song, and Liu (2015)), zonotopes (Alamo,
Bravo, and Camacho (2005); Combastel (2015)) and interval observers (Chabane, Ma-
niu, Alamo, Camacho, and Dumur (2014); Mazenc and Bernard (2011)). Recently,
the combination of probability-based and set-membership estimation has lead to in-
teresting novel formulations, as in Combastel (2016). Guaranteed estimators must not
be confused with robust estimators, that deals with uncertain models of the plant
dynamics, as in H. Dong, Wang, Alsaadi, and Ahmad (2015).

When it comes to the extension of the aforementioned formulation to a distributed
paradigm, a revision of the state of the art reveals that the literature is rather scarce.
Using a zonotope-based description, the authors in Garćıa, Rubio, Orihuela, Millán,
and Ortega (2017); Keiffer (2009) were able to present distributed estimation algo-
rithms that make use of intersections between sets. Another idea was used in Ori-
huela, Millán, Roshany-Yamchi, and Garcia (2018); Orihuela, Roshany-Yamchi, Gar-
cia, and Millán (2017), where the authors presented a Kalman-inspired set-membership
observer extending the idea in Combastel (2015) to a distributed framework with
network-based problems. The natural extension of the previously mentioned work
(Combastel (2016)) have been recently published in Combastel and Zolghadri (2018).
In Y. Wang, Alamo, Puig, and Cembrano (2018) the authors propose a distributed
zonotope-based estimator valid for a family of subsystems coupled by the state. Fi-
nally, the use of consensus techniques for distributed estimation with ellipsoidal sets
was reported in Ma, Wang, Lam, and Kyriakoulis (2017).

Sometimes, the result of distributed estimation algorithms are used as inputs to
distributed controllers. These are the so-called distributed joint estimation and control
problem. When an agent is able to apply control actions to the plant, the estimation
of the rest of agents is compromised, since those actions are unknown for the rest of
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agents. Hence, the solution for the joint problem is rather more complex. There exists
a common line of research that proposes different formulations of a cascade structure,
in which the estimation error must converge faster than the tracking error, see Rubio,
Millán, Orihuela, and Vivas (2014); Zhang, Hengster-Movric, Sebek, Desmet, and Faria
(2017). In all these papers, the authors assume that the control actions applied to the
system at any moment are the same that the local agent would apply if it has access
to all control channels. This incurs in an estimation error that disappears when the
estimated states of every agent actually converge to the system state.

However, this idea cannot be applied directly to set-membership paradigms, since
the described assumption will lead to non-guaranteed estimations in the transient.
From the authors’ knowledge there exists no paper in which this problem has been
solved, even for linear systems. The only solutions are restricted to formulations of the
plant divided into subsystems for which the estimation objectives are just local, as in
Combastel and Zolghadri (2018); Orihuela et al. (2018, 2017); Y. Wang et al. (2018).

Distributed control methodologies have found application in the control of vehi-
cle formations, where different approaches can be found in the literature either for
path planning and formation control. For example, in Achtelik, Lynen, Weiss, Chli,
and Siegwart (2014); Ousingsawat and Campbell (2004), path planning strategies are
presented for aerial vehicles, ensuring knowledge of the intervals containing critical
variables such as temperature, velocity, flow and so on. For surface vehicles, Liu and
Bucknall (2015) tested its results in real navigation maritime environment, by using
fast matching methodology to improve the path planning algorithm.

Regarding formation control, in Yang, Naeem, Irwin, and Li (2014) the task is trans-
formed into a group of decentralized problems and a stability analysis is presented.
In R. Dong and Geng (2016) a distributed control law is developed to achieve tra-
jectory tracking for N vehicles in rigid formation. For one-dimensional formation of
vehicles, F. Lin, Fardad, and Jovanović (2012) compute optimal control based on the
information of the nearest neighbours. More flexibility in the communication is taken
into consideration in Peng, Wen, Rahmani, and Yu (2015), where the formation con-
trol problem is solved by a consensus algorithm, or in Millan, Orihuela, Jurado, and
Rodriguez Rubio (2014), where the control strategy proposed makes possible to deal
with delays and packet dropouts. Non-linear approaches found in Cai and De Queiroz
(2015); Li, Shi, and Yan (2016) deal with backstepping and receding horizon control,
respectively. For constrained underactuated underwater vehicles, the leader-follower
paradigm has been successfully applied in Li, Xie, and Yan (2016). Application on a
quadrotor platform is presented in X. Dong, Yu, Shi, and Zhong (2015). Finally, model
and environmental uncertainties are considered in Peng, Wang, Chen, Hu, and Lan
(2013); Xue, Wu, and Wang (2015), respectively.

This paper tackles the joint problem of distributed set-membership estimation and
formation control for fleets of vehicles. The main contributions of the paper are:

• A distributed set-membership estimator is applied for the first time for a fleet
of vehicles. It is able to estimate, in a guaranteed way, the position and velocity
of each vehicle in a distributed way, assuming that the vehicles measure only
local information. In particular, one vehicle, the leader, is able to measure its
absolute position, while the others measure their relative position with respect to
their neighbours. In the literature, we can find an application of set-membership
estimation for the localization of a unique mobile robot in Zhou, Qian, Fang,
Ma, and Dai (2015).
• The proposed estimator provides guaranteed sets in spite of the presence of
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unknown control actions that are being applied to other vehicles. Distributed
set-membership estimators dealing with unknown control signals have been only
successfully applied when the estimation objectives were local Combastel and
Zolghadri (2018); Orihuela et al. (2018, 2017); Y. Wang et al. (2018).

In addition, the proposed methodology have some other relevant positive features.
Firstly, the sets are characterized as zonotopes, this easing the transmission of in-
formation through the network. Secondly, both the estimator and the controller are
designed in a decentralized way. Finally, although the stability is proven for vehicles
with linear models, it is shown that the proposed algorithm can be applied to the
unicycle model under some mild assumptions.

The paper is organized as follows. Section 2 presents the notation and preliminary
concepts related to set-membership estimation. Section 3 describes the fleet of vehicles,
the agents and formulates the problem under consideration. Section 4 presents the
distributed estimation algorithm. The formation control is described in Section 5. The
proposed solution is tested by simulations in Section 6. Finally, some conclusions and
remarks are drawn in Section 7.

2. Notation and Preliminaries

A zonotope is an affine transformation of an unitary hypercube that can be used to
characterize sets in a given state space. It will be represented with a calligraphic letter
X , and is defined by its centre c ∈ Rn and its generator matrix H ∈ Rn×b, that is:

X = 〈c,H〉 ,

{
c+

b∑
i=1

ζihi : |ζi| ≤ 1

}
, (1)

where hi represent a column of matrix H. The dimension of the zonotope is n and its
order is b. Let X = 〈cx, Hx〉 and Y = 〈cy, Hy〉 be two zonotopes, and R a matrix, all
of them of appropriate dimensions. Then, it holds:

RX = 〈Rc,RH〉, (2)

X ⊕ Y = 〈cx + cy, [Hx Hy]〉, (3)

where ⊕ denotes the Minkowski sum of two sets.
The operator red(·) consists in an order reduction of a zonotope, in such a way

that the order of red(X ) is smaller than the order of X , and X ⊆ red(X ). The order
of red(X ) is q. This operation has been defined in the literature in different ways.
Throughout this document, the order reduction will be defined as in Combastel (2015).
According to that paper, if the order is to be reduced from p to q, the procedure starts
by sorting the columns of H on decreasing vector norm to construct matrix H̄:

H̄ =
[
h1 · · · hj · · · hb

]
, ‖hj‖2 ≥ ‖hj+1‖2,

and enclosing the set H< generated by the b− q + n smaller columns into a box:

red(〈c,H〉) =

{
〈c,H〉, b ≤ q,
〈c, [H> box(H<)]〉, b > q,
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where

H> =
[
h1 · · · hq−n

]
,

H< =
[
hq−n+1 · · · hb

]
,

and box(H) ∈ Rn×n is computed as

box(H) =


∑b

j=1 |h1j | . . . 0
...

. . .
...

0 . . .
∑b

j=1 |hpj |

 .
A strip can be used to characterize a set of states consistent with a given scalar

measurement. It will be represented with a capital letter S, and is defined as the set
S , {x : |cTx− d| < σ}, where d, σ ∈ R and c, x ∈ Rn.

The set of states resulting after the intersection of a strip and a zonotope, i.e.
X ∩ S, or after the intersection of two zonotopes, i.e. X1 ∩ X2, can be enclosed by
a new zonotope. With some abuse of notation, we will refer this new zonotope Z as
Z , X ∩ S or Z , X1 ∩ X2. The construction of such zonotopes is well described in
Alamo et al. (2005).

An estimation zonotope computed by agent i at time instant k with the information
available at k is denoted as X̂i(k|k). Furthermore, a prediction zonotope at instant k+1

with the information available at k is denoted as X̂ (k + 1|k).
The connectivity of the agents is topologically defined by a graph G = (V,E). The

graph G is assumed connected and undirected, with vertices V = {1, 2, . . . , p} and
edges E ⊂ V × V . The set of vertices to which vertex i is connected is named the
neighbourhood of i and is denoted by Ni ≡ {j : (i, j) ∈ E}. Edge (i, j) implies that
vertex i sends information to vertex j. The distance between vertex i and vertex j,
measured as the number of edges in a shortest path connecting them, is dij . Finally,

the diameter of the graph d̄ , max{dij} is the greatest distance between any pair of
vertices.

3. Problem formulation

This paper presents some contributions to the problem of estimation and formation
control of fleet of vehicles. The objective is to present a distributed control algorithm
that can be implemented when the disturbances affecting the vehicles are unknown
but bounded. The distributed controllers require to know the state of the vehicles,
which is not directly measurable. In order to solve this problem, a distributed guar-
anteed estimator is presented, in such a way that it is able to deal with the possible
measurement noises and, at the same time, incorpore the information received from
other estimators. The solution for the joint problem of guaranteed estimation and
control and the complete algorithm that will be implemented in every agent is given
in Sections 4-5.

Prior to that, the description of the fleet of vehicles and of the agents are given in
the next subsections. The control and estimation problem will be formally stated at
the end of this section.
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3.1. Fleet description

We consider a fleet of vehicles characterized as in Lafferriere, Williams, Caughman,
and Veerman (2005), where p vehicles with the same dynamics1 are considered:

ẋi(t) = Ac
vehxi(t) +Bc

vehui(t), i = 1 . . . p, (4)

where the entries of xi ∈ R2r represent r configuration variables for vehicle i and their
derivatives, and ui ∈ Rr represents control inputs. As in Lafferriere et al. (2005), it is
further assumed that matrices Ac

veh and Bc
veh have the form:

Ac
veh = diag

{[
0 1
a1

21 a1
22

]
, . . . ,

[
0 1
ar21 ar22

]}
, Bc

veh = Ir ⊗
[

0
1

]
, (5)

where ⊗ stands for the Kronecker product of two matrices. This model corresponds
to the situation in which the individual configuration variables are decoupled and
the acceleration is controlled separately. The odd-numbered entries of xi represent
position-like variables, whereas the even-numbered entries represent velocity-like vari-
ables.

The previous dynamics are discretized with sampling time Ts and additive distur-
bances are included:

xi(k + 1) = Avehxi(k) +Bvehui(k) + wi(k), i = 1 . . . p, xi ∈ R2r, (6)

where Aveh, Bveh correspond to the discrete-time version of Ac
veh, B

c
veh. The distur-

bances wi(k) ∈ R2r can be caused by various reasons, such as non-modelled motor dy-
namics, lack of accuracy in certain actuators, wind (aerial or ground vehicles), currents
(water vehicles), etcetera. Throughout the paper, we consider that these disturbances
are unknown, but they always belong to known bounded sets, that is, wi(k) ∈ Wi.
These sets are modeled as:

Wi = 〈0, Qi〉. (7)

Let x(k), u(k), w(k) be defined by stacking all the state vectors, control actions and
disturbances of each vehicle, that is, x(k) = [x1(k)T x2(k)T . . . xp(k)T ]T , u(k) =
[u1(k)T u2(k)T . . . up(k)T ]T , w(k) = [w1(k)T w2(k)T . . . wp(k)T ]T . Then, the dy-
namics of the complete fleet can be written as follows:

x(k + 1) = Ax(k) +Bu(k) + w(k) (8)

where A , Ip ⊗Aveh and B , Ip ⊗Bveh.

3.1.1. Unicycle model for the vehicles

The presented formulation of the vehicles as linear systems in (4), although simple,
can be used for more complicated models. In particular, this section summarises the
results in Lawton, Beard, and Young (2003), in which they present an output feedback

1The estimation and control algorithm presented in the next section is still valid if vehicles with different

dynamics are considered. For the matter of simplicity in the notation, we consider the case of equivalent
vehicles.
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linearizing control for the control of the hand position of a vehicle, whose dynamics
can be written as a double integrator.

The hand position of the vehicle is a point hi = [hxi , h
y
i ] that lies a distance Li along

the line that is normal to the wheel axis and intersects the wheel axis at the center
point bi = [bxi , b

y
i ], as shown in Figure 1. As it is well known, the dynamical equations

of the unicycle model are:
ḃxi
ḃyi
θ̇i
ṡi
ω̇i

 =


si cos(θi)
si sin(θi)

ωi

0
0

+


0 0
0 0
0 0
1
mi

0

0 1
Ii


[
Fi

τi

]
, (9)

where bi = [bxi , b
y
i ]T , θi, si, ωi are, respectively, the inertial position, orientation, linear

speed and angular speed of vehicle i. The mass and moment of inertia of the vehicle
are mi and Ii. The input signals are the torque τi and the force Fi.

Figure 1. Unicycle model for the vehicle used for controlling the hand position

Letting zi = [bxi , b
y
i , θi, si, ωi]

T and νi = [Fi, τi]
T , the dynamical equations can be

easily written as:

żi = f(zi) + giνi (10)

Considering the hand position of each vehicle as output, it is shown in Lawton et al.
(2003) that system (10) has constant relative degree equal to two and can, therefore,
be output feedback linearized about the hand position. Now, by using the next output
feedback linearizing control:

νi =

[ 1
mi

cos(θi) −Li

Ii
sin(θi)

1
mi

sin(θi)
Li

Ii
cos(θi)

]−1(
ui −

[
−siωi sin(θi)− Liω

2
i cos(θi)

siωi cos(θi)− Liω
2
i sin(θi)

])
, (11)

the input-output dynamics of each vehicle can be represented by the double integrator
system:

ḧi = ui. (12)

It should be mentioned that the internal dynamics, related to the orientation of the
vehicle itself, are unobservable and uncontrollable. However, it is also shown in Lawton
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et al. (2003) that this internal dynamics is stable, but not asymptotically stable.
Therefore, we will assume that the orientation of each vehicle is locally measured.

3.2. Agent description

It is assumed that each vehicle is equipped with an agent that has sensing, control,
computational and communication capacities. In what respect to the sensing ability,
each agent i is assumed to measure the following output:

yi(k) = Cix(k) + vi(k), (13)

where yi ∈ Rmi is output vector, Ci is the output matrix and vi represents measure-
ment noise. It is assumed that the noises are unknown, but they always belong to
known bounded sets, that is, vi(k) ∈ Vi. These sets are modelled as:

Vi = 〈0, Ri〉. (14)

We distinguish two kinds of agents: a) those who are able to measure the absolute
position-like variables of its local vehicle (by using GPS-like sensors or similar),
and b) those who measure relative position-like variables (distances, with optical or
acoustic sensors). Both kind of agents are assumed to get information concerning its
local velocity-like variables. Matrix Ci, as supposed, is structurally different for each
kind of agent.

Example 1. Consider p = 3 vehicles moving in a one-dimensional space. Then,

Ac
veh =

[
0 1
a1

21 a1
22

]
, Bc

veh =

[
0
1

]
,

and vector x(k) ∈ R6.
Let’s assume that agent 1 is able to measure its own position, whereas agents 2

and 3 measure relative positions. Considering a graph topology given by 1 ↔ 2 ↔ 3,
matrices C1, C2, C3 are given by:

C1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
,

C2 =

 −1 0 1 0 0 0
0 0 1 0 −1 0
0 0 0 1 0 0

 ,
C3 =

[
0 0 −1 0 1 0
0 0 0 0 0 1

]
.

�
The agents are endowed with communication devices that let them send/receive

information to/from their neighbours. The communication topology is mathematically
described by a graph G. It is assumed that two possible topologies are valid, chain
or star. This assumption will be required later to solve the problem of distributed
guaranteed estimation. For instance, for a four vehicle fleet, the two possible schemes
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are depicted in Figure 22. The arrows represent the communication between the agents.

(a) Chain (b) Star

Figure 2. Scheme of the formation of the vehicles with the communication between agents

It is worth mentioning that those topologies only apply for the communication, not
for the very formation of the vehicles. It will be shown in the examples that both
topologies can be used to keep different formations.

By using the available information, that is, the measured outputs and the infor-
mation received from the neighbourhood, the agents must compute estimations sets
X̂i(k|k) within which the state must be contained. The construction of this estimation
set is described in Section4.

Regarding the control of the vehicle, it is considered that each agent computes and
applies the control signals to its local vehicle. The control signal applied by agent i to
the vehicle is chosen as:

ui(k) = Kici(k|k), (15)

where the design of matrix Ki will be tackled in Section 5.

3.3. Problem statement

The goal of control formation problem is to keep a prescribed position for the vehicles.
The global reference to be tracked zref (k) ∈ Rr×p is assumed to be known by each
vehicle. Now, the problem can be formally stated.

Problem 1. Let’s consider a fleet of p vehicles described by the dynamical model
(6). Consider an identical number of agents deployed together with the vehicles. Those
agents get some outputs from the fleet given by (13). Let’s assume that the distur-
bances and noises affecting the state and output are bounded by (7)-(14). The agents
are able to exchange information according to a communication graph G, with chain
or star topology. Given a set of position-like references for each vehicle zref (k), the
objective of each agent is:

(1) Find an estimation set X̂i(k|k) such that x(k) ∈ X̂i(k|k) for all instant k.
(2) Design a local controller Ki in such a way that the fleet is able to follow the

reference zref (k).

2The image of the vehicle is obtained from the url: http://i-hls.com/wp-content/uploads/2013/08/

Autonomous-Underwater-Vehicle-AUV-Aselsan.jpg
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Compared to Orihuela et al. (2017), the estimation objective is here more complex,
since in that paper the agents’ goal was to estimate the state of its associated subsystem
xi(k). The ignorance of the control actions applied by the rest of agents, that is, uj(k)
for j 6= i, does not lead to a difficulty in the estimation problem formulated in Orihuela
et al. (2017). However, in Problem 1, this fact appears as the main complication.

4. Guaranteed distributed estimator

This section presents the estimation algorithm that aims to satisfy objective (1) of
Problem 1. Nevertheless, there are some common obstacles that arise in this sort of
estimation and control problems that should be described firstly.

4.1. Main obstacles and proposed solutions for the joint distributed
control and estimation problem

When facing the joint problem of distributed estimation and control, the control en-
gineer finds two main drawbacks:

• Estimating the whole state with partial information: this difficulty is
common in the literature of distributed estimation, no matter the sort of estima-
tor used. The output measured by an agent does not contain enough information
to estimate the whole state vector. Although the mathematical details vary be-
tween the different formulations, the solution typically consists in introducing
the information received from neighbouring agents in the formulation of a cen-
tralized observer. For instance, distributed Kalman filter formulations modify
the classical Kalman filter by adding the neighbouring information using con-
sensus, as in Battistelli and Chisci (2016); Das and Moura (2015); del Nozal et
al. (2017); Olfati-Saber (2007), or with diffusion strategies, see Cattivelli and
Sayed (2010); G. Wang et al. (2017). Consensus algorithms have been also used
to extend the Luenberger observer to a distributed formulation in del Nozal
et al. (2019); Matei and Baras (2012); Mitra and Sundaram (2018), or for the
distributed the Bayesian filter, see Forti et al. (2018).

The literature of distributed set-membership estimation is not that rich. How-
ever, some interesting solutions for this problem can be found. The information
received from the neighbourhood can be incorporated in the estimated set by
intersection, see Garćıa et al. (2017); Keiffer (2009), or by means of linear combi-
nations of the sets, as in Combastel and Zolghadri (2018); Orihuela et al. (2017).
Previous papers described the sets using zonotopes. Recently, it has been pro-
posed the use of consensus techniques for distributed estimation with ellipsoidal
sets, see Ma et al. (2017).
• Predicting with an unavailable control signal: this problem only appears

when the joint distributed and estimation scheme is tackled at the same time.
When a local observer has to make predictions, it must incorporate, at least, two
terms: the dynamics of the system and the control actions applied to it. Although
a perfect knowledge of the dynamics is assumed, how can an individual agent
know the actual control actions if they might be applied by agents that might
be geographically distributed?

The solutions adopted in Millán et al. (2013); Orihuela, Millán, Vivas, and
Rubio (2016); Rubio et al. (2014); Zhang et al. (2017) present different formula-
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tions of a cascade structure, where the estimation errors must converge to zero
to achieve the control objectives. In all these papers, the authors assume that
the control actions applied to the system at any moment are the same that the
local agent would apply if it has access to all control channels. This incurs in an
error that dissapears when the estimated states of every agent converge to the
system state.

This idea cannot be applied directly to set-membership paradigms, since the
described assumption will lead to non-guaranteed estimations in the transient.
The literature of distributed control and set-membership estimation is rather
scarce, and it is limited to formulations of the plant divided into subsystems
for which the estimation objectives are just local, see Combastel and Zolghadri
(2018); Orihuela et al. (2018, 2017).

4.2. Proposed guaranteed estimation algorithm

This section presents the distributed estimation algorithm that will be executed by
every agent deployed in the vehicles. In order to save the obstacle described before for
the joint control and estimation problem, the proposed solution makes use of two key
observations.

Recall that X̂i(k|k) stands for the estimation set (described by a zonotope) computed
by agent i at instant k with all the information available at instant k. Let’s denote by
Zi(k) to the zonotope sent by agent i to all its neighbours. This zonotope differs, in
general, with the estimation set computed by agent i. Then, if agent j is going to use
the zonotope received from agent i at instant k to obtain an estimation set X̂j(k|k)
by intersection with Zi(k), then agent i knows that the estimation set of agent j at
instant k, at least, belong to Zi(k). Hence, when agent j computes and applies its local
control action to the plant based on (15), agent i will know a region into which the
actual control action applied by j is guaranteed to belong. This region will be used to
construct the guaranteed prediction sets.

Nonetheless, observe that the previous mechanism is only valid for direct neighbours.
To be applicable in general, an additional observation is required. When agent i sends
a zonotope Zi(k) at instant k, the information carried in this set spreads through
the network in direct paths (without loops) and will be received by every agent, at
most, at instant k + d̄ − 1. This is true due to the particular topologies considered.
Since every agent j 6= i will incorpore this information to construct their estimation
set X̂j(k + α|k + α) by intersection, for some α ≤ d̄ − 1, then agent i will be able to
compute a possible control region for the control action applied by agent j at instant
k + α by means of open-loop predictions.

Before introducing the mathematical details, an illustrative example is presented
that will surely help to clarify these ideas.

Example 2. Consider p = 3 vehicles with associated agents connected with a chain
topology 1 ↔ 2 ↔ 3. Consider that agent 3 applies a control action at instant k + 1.
Agent 1 requires to compute a region that contains for sure this control action u3(k+1).

Figure 3 depicts, by using illustrative colours and shapes, the way the information
spreads through the network. The zonotope sent by agent 1 at instant k (blue circle)
affects the estimation set computed by agent 2 (brown triangle). Then, after an
adequate evolution of this set (big brown triangle), it will affect the estimation set
of agent 3 at instant k + 1. Since the information of each set is used by means of
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k

Agent 1 Agent 2 Agent 3 

(Controller)

Intersection

Figure 3. Illustrative example of the transmission of information through the network. Intersections and

evolutions of the sets are not pretended to be exact

Table 1. Control and estimation loop

0) Initial zonotope X̂i(k|k − 1)

1) Measurement yi(k)

1.1) Strip Si(k)

1.2) Intersection Zi(k) , X̂i(k|k − 1) ∩ Si(k)

1.3) Order reduction red(Zi(k))

2) Communication

2.1) Send red(Zi(k)), to all j : i ∈ Nj

2.2) Receive red(Zj(k)), ∀j ∈ Ni

2.3) Compute Iij(k) , red(Zi(k)) ∩ red(Zj(k))

3) Estimation X̂i(k|k) =
⋂

j Iij , ∀j ∈ Ni

4) Control ui(k) = Kici(k|k)

5) Prediction X̂i(k + 1|k) = AX̂i(k|k)⊕BÛi(k)⊕W

intersections, agent 1 will be able to evolve its estimation set at instant k (green
rectangle) in open loop to obtain a predicted set (big green rectangle) that contains
the actual control action u3(k + 1). �

The complete control and estimation algorithm performed by every agent has five
main steps. Next, we provide a description of this algorithm, which has been summa-
rized in Table 1.

1. Measurement: using the measured outputs, yi(k) in (13), the agents compute
a strip of consistent states with each component of this vector, Sl

i(k), for l = 1 . . . ,mi.
These strips are defined as in Section 2. In particular, considering for example a uni-
dimensional output, the strip will be given by Si(k) = {x(k) : |Cix(k)− yi(k)| < Ri},
where Ri is related with the output noise, see (14). Note that the width of this strip di-
rectly grows with the energy of the measurement noise. Then, the prediction zonotope
available from the last time step X̂i(k|k− 1) is intersected with every Sl

i(k), obtaining
Zi(k) as a final result. The intersection between a strip and a zonotope can be written
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as a zonotope, as was explained in Section 2. Finally, an order reduction operation is
executed to obtain zonotope red(Zi(k)).

2. Communication: at this step of the algorithm the agents send the reduced-order
zonotopes obtained before to all its neighbours. After that communication, each pair of
connected agents computes the intersection zonotope Iij(k) , red(Zi(k))∩red(Zj(k)),
which allows them to reduce the estimation uncertainty. Observe that Iij(k) = Iji(k),
as they are related to the same edge in an undirected graph. As explained in Section
2, the intersection between zonotopes can be written as a zonotope.

3. Estimation: by including the information of every edge (in other words, of every
neighbour), the agents obtain the best estimation set with the information available

at instant k, that is, X̂i(k|k).
4. Control: the control action applied by agent i to its vehicle is obtained using

the center of the estimation set according to (15).

5. Prediction: finally, the prediction sets X̂i(k + 1|k) are computed as:

X̂i(k + 1|k) = AX̂i(k|k)⊕BÛi(k)⊕W. (16)

Three terms appear in the previous equation, one for each term in (8): 1) the open-

loop dynamics of the system, with the term AX̂i(k|k); 2) the set of possible control

signals applied to the plant, BÛi(k); 3) and the set of all possible disturbances, given

byW , [WT
1 WT

2 · · · WT
p ]T . The set Ûi(k) should contain every control action applied

to the plant at instant k. Next, we present a method to compute this set.
Note that Bu(k) can be written as

∑p
m=1Biui(k), where Bi is the submatrix of

B for the control channels of agent i. With a little abuse of notation, let’s denote

Ûi(k) =
[
Ûm
i (k)

]
, where Ûm

i (k) is a set computed by agent i that must contain the

vector um(k), and it is given by:

Ûm
i (k) ,



(a) : if m = i
Kici(k|k)

(b) : if m 6= i, m ∈ Ni

KmIim(k)
(c) : otherwise

KmÎim(k|k − dim + 1),

(17)

being Îim(k|k − dim + 1) the prediction of the intersection zonotope computed as:

Îim(k|k − dim + 1) = Adim−1Iij(k − dim + 1)⊕
dim−1⊕
n=1

An−1BÛi(k − n)

⊕

[
dim−1∑
n=1

An−1

]
W (18)

where j ∈ Ni is a neighbour of agent i such that there exists a path from m to j.
Observer that the zonotope Îim(k|k − dim + 1) represents the open-loop evolution of

the zonotope Îij for dim − 1 time instants, which is the number of instants required

for the zonotope Îij to reach agent m.
Please note that for m ∈ Ni expression (17)-(b) matches (17)-(c), for dim = 1.

Nonetheless, three cases has been defined to distinguish between three important sit-
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uations: (a) agent i applies its local control signal ui; (b) agent i is a neighbour of the
agent with access to the control channel; and (c) agent i is not neighbour of the agent
applying um.

Next theorem states that, with the proposed algorithm, objetive (1) of Problem 1
is met, that is, every agent is able to compute estimation sets containing the actual
state vector of the whole fleet of vehicles.

Theorem 1. Assume that x(k0) ∈ X̂i(k0|k0 − 1) holds for all agents i = 1, 2, . . . p at

some arbitrary initial instant k0. Also assume that x(k0 − t) ∈ X̂i(k0 − t|k0 − t) and

u(k0 − t) ∈ Ûi(k0 − t) holds for all agents i = 1, 2, . . . , p and for t = 1, 2, . . . , dmax.
Then, if each agent implements the distributed algorithm described in Table 1, it is
satisfied that x(k) ∈ X̂i(k|k) and x(k + 1) ∈ X̂i(k + 1|k), ∀k, i.

Proof. The theorem will be proved by induction. Assume, hence, that x(k) ∈ X̂i(k|k−
1),∀i.

The first part of the proof focuses on the estimation set X̂i(k|k). By construction,
the strip Si(k) is the set consistent with the measurement, so x(k) ∈ Si(k). Since

zonotope Zi(k) is the representation of the intersection of Si(k) and X̂i(k|k − 1),
then x(k) ∈ Zi(k). The order-reduction operation verifies that Zi(k) ⊆ red(Zi(k)), so
x(k) ∈ red(Zi(k)), ∀i.

It is trivially true that x(k) ∈ Iij for the same reasons exposed above. As zonotope

X̂i(k|k) is computed as the intersection of several Iij (as many as neighbours), then it

holds x(k) ∈ X̂i(k|k).
Now, let’s move to the second part of the theorem that focuses on the prediction set.

By comparing both equations (8) and (16), it is easy to check that Ax(k) ∈ AX̂i(k|k)

and w(k) ∈ W. Next, it will be proven that um(k) ∈ Ûm
i (k), ∀m.

For m = i it is trivially true, since Û i
i (k) = ui(k). For m ∈ Ni, note that um(k) =

Kmcm(k|k), and cm(k|k) is the centre of the estimation zonotope X̂m(k|k). Zonotope

X̂m(k|k) is obtained by the intersection of all the Imj(k), ∀j ∈ Nm. In particular,

Iim(k) is one of those sets, so X̂m(k|k) ⊆ Imi(k) = Iim(k). Then, cm(k|k) ∈ Iim(k)

and, therefore um(k) ∈ Ûm
i (k).

Finally, consider the last case, whose proof is based on how the information travels
though the communication network. The second assumption says that x(k − t) ∈
X̂i(k − t|k − t) for all the agents, and for t = 1, 2, . . . dmax − 1, and by definition

of X̂i(k − t|k − t) that can be expressed as x(k − t) ∈ Iij(k − t). It also says that

u(k − t) ∈ Ûi(k − t) for all the agents, and for t = 1, 2, . . . dmax. Summarizing, if it
is known a set where the state was in a known instant, Iij(k − dim + 1), the control
signals applied and the set of disturbances, then the state at instant k belongs to
Îim(k|k − dim + 1).

The set Iij(k − dim + 1) travel through the network and affects to X̂m(k|k) in an
undirected way due to the interactions among the agents of the network (intersection

of zonotopes). Its evolution due to matrix A gives a bigger set than X̂m(k|k) since it is
not corrected with measurements or communication with other agents, and then the
set of action signals and the set of disturbances are added in order to compute a set that
is affected in the same way than the state. So the centre cm(k|k) ∈ Îim(k|k− dim + 1)

and then um(k) ∈ Ûm
i (k).

Then, by properties of the Minkowski sum of sets, it is proved that x(k + 1) ∈
X̂i(k + 1|k) for all i. Since x(k0) ∈ X̂i(k0|k0 − 1) was required by assumptions, the
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theorem is proved by induction.

The hypothesis of Theorem 1 are standard for induction-based proofs. Moreover,
they can be easily fulfilled since the initial sets, namely X̂i(k0|k0 − 1), X̂i(k0 − t|k0 −
t), Ûi(k0− t|k0− t) for t = 1, 2, . . . , dmax, can be trivially enlarged so that they contain
for sure the required state vector. Another initialization scheme consists in a preliminar
execution of the algorithm for dmax time instants with ui(k) ≡ 0 (open-loop dynamics).

Then, it will be easily satisfied that u(k0 − t) ∈ Ûi(k0 − t) for t = 1, 2, . . . , dmax. After
this initial steps, the algorithm can run in its proposed manner.

Theorem 1 proves that every agent is able to find sets that contain for sure the
actual state for the plant. However, it did not directly mention that these sets are
found in an optimal way. In fact, the reader might think that the sets could grow until
infinity, in such a way that the theorem would be fulfilled but the estimation would
be inadequate.

Nevertheless, two main facts prevent the uncontrolled growing of the estimation sets.
On the one hand, the mathematical operations involving zonotopes, such as intersec-
tion with strip, intersection between zonotopes and order reduction, are computed
using published methods that ensure the optimality of those operations (see Section
2 and the references therein). On the other hand, under standard observability as-
sumption, all the outputs collected by the whole fleet contain enough information to
estimate the complete state. Since the algorithm is based in the inclusion of this in-
formation by means of intersections, the estimation sets are always kept under some
bounds.

Finally, it is worth mentioning that the prediction step (Step 5 in Table 1) must
be deeply analyse in the future, since its performance can be improved if it takes into
consideration the particular topology. It is left for future research.

5. Control formation

In the following, we briefly describe how to track position references in a space state
representation, inspired on Orihuela et al. (2016). Given (8), a new system’s output
is set as z(k) = Czx(k), where Cz is a matrix that selects the position (X and Y )
of each vehicle. On the other hand, the position references are given by the vector
zref (k), which in general, might take different values for different instants. The equi-
librium point (xeq(k), ueq(k)) of system (8) (without disturbances) associated with the
reference zref (k) at instant k must satisfy

xeq(k) = Axeq(k) +Bueq(k),
zref (k) = Czxeq(k),

(19)

which can be expressed as:[
0

zref (k)

]
=

[
A− I B
Cz 0

] [
xeq(k)
ueq(k)

]
(20)

According to previous equation, the equilibrium point associated with zref (k) can
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be obtained as [
xeq(k)
ueq(k)

]
=

[
A− I B
Cz 0

]−1 [
0

zref (k)

]
. (21)

Then, in order to track the reference zref (k), the following linear system must be
stabilised

xr(k + 1) = Axr(k) +Bur(k), (22)

where xr(k) = x(k)−xeq(k) and ur(k) = u(k)−ueq(k). Previous system is completely
equivalent to the one given (8).

Concerning the design of the local controllers Ki, note that each vehicle has its own
estimation about the positions and velocities of the whole fleet. Furthermore, observe
that matrices A,B in (22) decouple the fleet control formation problem into p local
control problems, assuming that each vehicle knows its own reference. Let’s denote
(xieq(k), uieq(k)) as the equilibrium point for vehicle i related to the global reference
zref (k). Now, let’s define the following local cost function:

Ji =

∞∑
k=0

(ci(k|k)− xieq(k))TΦi(ci(k|k)− xieq(k)) + (ui(k)− uieq(k))TΘi(ui(k)− uieq(k)),

(23)
being Φi,Θi two positive-definite matrices. The local controller is then found by find-
ing the gain Ki that minimizes the previous cost function, following a LQR-based
paradigm with the controllable pair (Aveh, Bveh).

6. Simulation examples

The performance of the algorithm is illustrated with several simulations with a fleet
of 4 vehicles. The dynamics of each of them in (5) are particularized as a double
integrator and in a 2D scenario. Table 2 presents the set of common parameters that
have been chosen for the simulations. The rest of parameters, such as the weighting
matrices for the LQR cost function or the noise zonotopes, will be given in the different
examples, since they will take different values for each experiment.

Table 2. Parameters for the simulations

Configuration variables 2

Vehicle dynamics ar21 = 0, ar22 = 0, r = 1, 2

Sampling time Ts = 0.1s

Maximum order 200

6.1. Example 1

We consider a fleet of four vehicles, being the vehicle 1 the one that is able to measure
its absolute position, and the rest measure relative positions. We will compare both
topologies considered in the paper. The communication topology, then, will be different
in each case:
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Chain veh1 ↔ veh2 ↔ veh3 ↔ veh4

Star veh1 ↔ veh2, veh1 ↔ veh3, veh1 ↔ veh4

This example will show that the fleet is able to keep a given formation (which
indeed is different to a linear or star formation) when the proposed algorithm is used.
In addition, all the agents will be able to compute adequate estimation sets for the
whole fleet. We assume, as in Lafferriere et al. (2005), that the disturbances affecting
the model are equal to zero. Measurement noises are however taken into consideration.
It is also assumed that the center of the initial zonotopes is located exactly where the
initial state of the vehicles is.

Without loss of generality, the reference trajectory is divided into four waypoints
(see Section 5). Figures 4a-4b depict, for both situations, the actual trajectories of
the vehicles on the plane xy using solid lines. The initial position is marked with a
circle, and the final position with a triangle. The references are represented in dashed
lines. It can be seen that the proposed control formation obtains very nice results. No
remarkable differences can be found between both scenarios in what respect to control
formation.
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Figure 4. Trajectory of the four vehicles considering both communication topologies

On the other hand, the estimation performance can be checked in Figures 5a-5b.
The figures depict the horizontal position of the vehicle 1 (black solid line), its refer-
ence (blue solid line), and the estimation that every agent computes. Note that the
zonotopes represent an interval when considering a unique variable (in this case, the
horizontal position), and so, minimum and maximum values for the state are depicted
by each agent (dashed lines of different colours).

It is easy to check that the state is always contained within the sets that all agents
compute, this showing that the first requirement of a guaranteed estimator is fulfilled.
Figure 5 also shows that the settling time of the tracking is around 40 sampling instants
(4 seconds) with the chosen controller for both cases.

In addition, the example illustrates the effect of the distance in the estimation when
the chain topology is considered, in the sense that the farther an agent is to the agent
measuring the particular state (in this case, agent 1), the wider its bounds are. The
center of the zonotopes (the best estimation) does not suffer from this effect. On
the contrary, for the star topology, all the agents can be considered symmetric and,
therefore, they obtain a similar performance.
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(b) Star

Figure 5. Vehicle 1, actual horizontal position, reference and estimation of the position x by all agents

6.2. Example 2

This simulation example shows that the proposed distributed estimation and control
method can be used for the nonlinear model of the unicycle, as long as the control of
the hand is pursued.

We will assume, for the sake of simplicity, that the masses, moments of inertia
and hand positions are the same for every vehicle, this is, mi = 1, Ii = 1, Li =
1, ∀i. Furthermore, the bounds of noises and disturbances are also the same, Wi =
〈0, 0.05〉,Vi = 〈0, 0.1〉. A chain topology is considered for the communication between
the vehicles.

In order to compute the output feedback linearizing control (11), it is assumed that
each vehicle is equipped with an additional sensor that measures its local orientation
θi. The rest of variables, namely, si, ωi can be obtained with the information of the
estimation sets. The local cost functions in (23) are defined with Φi = 0.1I,Θi = I, ∀i,.

Figures 6a-6b depicts, respectively, the position of the hand and the position of the
vehicle. Starting for different initial positions, the fleet is trying to join their hands at
the origin. These figures effectively show how the proposed method is still valid for the
control of the hand position of the fleet. The effect of the internal dynamics is clear in
Figure 6b.

Figure 6b also shows the bounds for the coordinate y obtained with the set-
membership estimator. Similarly that in the previous example, wider bounds are ob-
tained for the vehicles located far from the leader. Although it is possible to obtain
bounds for the coordinate x as well, we have not included them in the figure to make
it clearer for the reader. Note that the bounds could be used for collision avoidance. In
particular, vehicle 2 and 3 might have a collision after some time when their bounds
intersect each other.

6.3. Example 3

In this new example, we study the influence that the disturbances have in the esti-
mation performance. The analysis is made considering again a chain communication
topology, which increases the uncertainty. Since we are interested in the estimation
bounds, we will assume that initial zonotopes are centered in the actual initial state
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Figure 6. Position of the hand and vehicle considering the unicycle model

of the vehicles.
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(a) Without disturbances
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(b) With disturbances

Figure 7. Comparative in the chain communication scenario between the simulation without disturbances
and with them

Two scenarios are compared in Figure 7. In both cases, the observers consider that
the disturbances might affect the vehicles, so zonotopes Wi = 〈0, 0.2I〉, ∀i, in (7) are
included in the prediction step. Whereas Figure 7a corresponds to the case in which
no actual disturbances are applied, Figure 7b shows the case in which the disturbances
are actually affecting the dynamics.

It can be seen that the proposed control and estimation algorithm is able to track
the prescribed reference in spite the fact that the estimation is degraded. Although
the control signal applied by the rest of the fleet is ignored and the disturbances are
affecting the vehicles, the guaranteed estimation is achieved.

The reader might think, from the previous simulations, that the reference is not
tracked in the presence of disturbances. Then, we have made a longer simulation,
depicted in Figure 8, that shows that the actual position of the vehicles evolve around
the equilibrium point, within a confined region. The size of this region is related, as
expected, to the energy of the disturbances.
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Figure 8. Vehicle 1, actual position, reference and bounds of the estimation of the position x by all agents

6.4. Example 4

This example analyse the relation between the control matrix Ki designed and the esti-
mation performance. We will consider two identical settings (same initial condition, no
noises, no disturbances) to perform a fair comparison. Although no noises and distur-
bances actually affect the system, the agents will take into account the corresponding
zonotopes. In particular,Wi = 〈0, 0.1I〉,Vi = 〈0, 0.1I〉,∀i. In addition, we will consider
in this example that the initial position of the vehicles is unknown, so all the observers’
initial condition is set to zero and the initial zonotope X̂i(0| − 1) = 〈0, 2.5I〉 is built
big enought to encompass the initial state of the vehicles. This fact will let us compare
the speed fo convergence of the estimation with respect to the control.

Two families of LQR controller have been synthesised, with different aggressiveness.
In particular, the local cost functions in (23) are defined with Φi = 10I,Θi = I, ∀i, in
the first scenario, and Φi = 1I,Θi = I, ∀i, in the second one. A chain communication
topology has been considered here.

The results are illustrated in Figure 9 using black color lines for the first scenario
and red color lines for the second one. The figures show the actual state in solid lines,
the center of the estimation with circles, and the bounds with dashed lines. They all
show the estimation of the vertical position of the first vehicle.

Several conclusions can be drawn from this set of figures:

• As in the previous results, the closer an agent is respect to the agent measuring
the variable under consideration, the narrower the estimation is.
• The very first instants, in which the dynamics are frozen, represent the initial-

ization procedure described after Theorem 1.
• The speed of convergence of the estimators is much faster than that of the

controllers, this implementing the standard cascade structure shown by other
combined algorithms, such as LQG.
• The values of the weighting matrices in the cost functions have a double impact:

first of all, they let us tune the speed of convergence to the desired reference.
However, the more aggressive the controllers are, the wider the estimation bounds
become. This is due to the calculations made in the prediction step (16), that
uses the controller matrices of the neighbours to compute the predicted zonotope.
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More aggressive controller means bigger values for the control matrices Ki and,
then, bigger prediction zonotopes following equation (17). As expected, this effect
does not appear in the first agent, because this is the one measuring the vertical
position.
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Figure 9. Comparative of the gain Ki based on a more aggressive control and on a less aggressive control,

estimation of state 1 by all agents.

7. Conclusions

This paper proposes a set-membership distributed estimation and control algorithm.
This approach assumes not only uncertainties in the model and in the measurement,
but also lack of knowledge about the signal control and about the complete plant by
the agents.

It has been tested on two different topologies, chain and star communication. The
star communication obtains better results, since the maximum distance in the network
is smaller than in the chain case. However, the relative distance between the central
vehicle and each of the neighbour must belong within radio range. The extension of
the proposed algorithm to other topologies, specially those containing a spanning tree
(so that a directed path from every agent to any node with control capacities exists),
is a natural extension of this work.

The impact of the controller design method in the estimation performance, and
viceversa, must also be analyzed in the future. How is the control performance affected

21



by the uncertainty in the estimation? How could the control matrix Ki be designed
with the combined objective of control and estimation performances? The answers to
these questions will be subject of future research. Furthermore, considering unreliable
links (with delays and dropouts) is another key problem in this field that will tackled
in the future.
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