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Adaptive Incremental State Space MPC for collector defocusing of a parabolic
trough plant

A.J. Sáncheza,∗, A.J. Gallegoa, J.M. Escañoa, E.F. Camachoa

aDepartamento de Ingenieŕıa de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

Abstract

Commercial solar plants produce energy around a nominal operating point in which the solar field outlet temperature
is high and close to the thermal limit of the heat transfer fluid. The main control of the temperature is carried out by
means of the fluid flow-rate that circulates through the solar field. Defocusing the collectors is normally used as a safety
mechanism to avoid exceeding the thermal limit. However, in situations in which the flow is saturated, the control of
defocusing the collectors becomes of vital importance and is the system in charge of controlling the solar field outlet
temperature.

The paper presents an Adaptive State Space Model Predictive Control strategy with an incremental formulation
to control the fourth and third collector defocus angles for field outlet temperature set-point tracking at the nominal
operation point, avoiding the Heat Transfer Fluid temperature from exceeding the manufacturer thermal limit (oil
degradation). The state space description uses an Unscented Kalman Filter for estimating the non-measurable states.
A 50 MW parabolic solar trough plant nonlinear model has been used to design and validate the strategy. Simulation
results are presented showing the advantages of using the proposed strategy.

Keywords: Solar Energy, Model Predictive Control, Collector defocus, Electric power limitation

1. Introduction

Interest in the research and development of renewable
energies is currently increasing. The main reason is con-
cern about global warming. That is, the reason nowa-
days for promoting the use of renewable energies is to
reduce harmful emissions from conventional fossil power
plants and, therefore, their environmental impact (Blanco
and Santigosa, 2017). Hydro, solar and wind energies are
the renewable energy sources that are currently being ex-
ploited. However, solar energy is by far the most abundant
renewable energy. This paper focuses on thermal solar
trough plants.

Some examples of commercial Concentrating Solar Power
(CSP) plants with Parabolic Trough Collectors (PTC) that
have been built in the last decade are: Solaben CSPs 50
MW (1/2/4/6, total of 200 MW and 220 hectares, 90 loops
each) (Solaben 2, 2018) in Spain, Mojave CSPs 140 MW
(I/II, total of 280 MW and 714 hectares) in the United
States (Mojave Solar Project, 2018), and Kaxu Solar One
100 MW (Kaxu Solar One, 2018) in South Africa. One
of the most important characteristics of CSP plants is the
possibility of storing energy by means of a thermal energy
storage (Liu et al., 2016; Alva et al., 2017; Pelay et al.,
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2017; Sarbu and Sebarchievici, 2018). Generally, this is
done by using molten salt tanks (hot and cold) (Roca
et al., 2016; Solana Generating Station, 2018; Termesol
50, 2018).

Typically, the main objective when controlling solar
trough plants is to maintain the outlet temperature of the
field around a desired set-point. Unlike conventional fossil
fuel plants where the main source of energy (fuel) can be
manipulated, in solar plants, the main source of energy is
considered a disturbance since the plant controller has to
deal with radiation transients due to clouds and the daily
beam radiation profile.

In the literature, research works mainly focus on new
control methods for temperature tracking, stability, con-
straints, and optimization of the plant to name just a few.
Model Predictive Control (MPC) is one of the most ap-
plied techniques to improve temperature set-point track-
ing. Some examples are: Gil et al. (2014) where a Neu-
ral Network based MPC is presented; in Khoukhi et al.
(2015), authors presented nonlinear continuous-time Gen-
eralized Predictive Control (GPC) of solar plants, while
in Lima et al. (2016), an MPC is designed based on Fil-
tered Dynamic Matrix Control (FDMC); in Alsharkawi
and Rossiter (2017), an improvement of a dual Gain Schedul-
ing GPC by including a Feed Forward (FF) for disturbance
rejection is presented.

Regarding plant optimization, most of the effort has
been focused on cost reduction and power optimization
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(N.A Engineering, 2008; Blanco and Miller, 2017). Amongst
others can be found Camacho and Gallego (2013) an opti-
mization is proposed to obtain the optimal working tem-
perature throughout the day, taking into account the solar
field efficiency. An extensive energy and economic analy-
sis is presented in Desai and Bandyopadhyay (2015), in
which optimal turbine inlet pressure is proven to be a weak
function of design radiation. He et al. (2016) develops a
general model framework to optimize the offering strat-
egy for CSP plants in joint day-ahead energy, reserve and
regulation markets. In Vasallo and Bravo (2016) a model-
based predictive control (MPC) strategy to optimize the
scheduling in CSP plants usings short-term direct normal
irradiance forecast is proposed. In Sánchez et al. (2018b)
field temperature homogenization is achieved by means of
online, non-linear, model based optimization, since loop
efficiency may differ due to mirror dirt. By homogeniz-
ing the field, electric power improvements are obtained.
In Cojocaru et al. (2019) authors proposed a scheduling
strategy for CSP with thermal energy storage based on a
mixed-integer linear programming model which approxi-
mates the plant operation.

Nevertheless, there are situations in which tracking the
field outlet temperature set-point just by controlling the
flow-rate becomes impossible. This mainly occurs when
the plant is in two situations: (1) saturation, (2) power
limitation. In saturation, the plant has reached the limit
of solar energy that it is capable of processing to generate
the nominal power of the plant. In this case, the plant has
reached the maximum oil flow-rate; therefore, there is no
more control capability and the field outlet temperature
will increase. In the second situation, the plant is forced
by the Transmission System Operator (TSO) to reduce the
generated net power. Typically, when the electrical grid is
saturated, the plant will have a period in which to reduce
its generated electric power to a set-point determined by
the TSO. If the directive ordered by the TSO is not com-
plied with, the plant will face economic sanctions. To de-
crease power, it is necessary to decrease the oil flow-rate
that reaches the heat exchanger where the steam phase
begins. This situation is similar to saturation, since the
variable controlling the outlet field temperature (flow-rate)
has been limited. As in saturation, the outlet temperature
will inevitably increase. Plants with Thermal Energy Stor-
age (TES) are able to deal with these situations, at least
for a while, by diverting part of the flow-rate to the TES
until these are saturated. Plants with no TES cannot cope
with this so easily. This work focuses on plants that do not
have TES, such as the ones described in Guzmán (2018)
and Solaben 2 (2018).

To prevent the temperature from exceeding the degra-
dation limit, commercial plants have a safety strategy: col-
lector defocus. This is applied in a staggered manner as
total or partial defocusing. Given that it is proposed as a
safety mechanism, it is highly inefficient due to the thermal
jumps caused by the application of full or partial defocus-
ing. Since it is usually carried out only on the basis of

thresholds, the mechanism of defocusing is reactive and
may cause oscillations in the outlet temperature of the
loops.

In this paper, an Adaptive Incremental State Space
Model Predictive Control (MPC) is proposed for defocus-
ing the fourth and third collectors in order to control the
loop outlet temperature, thus avoiding the loop temper-
ature from exceeding the degradation limit temperature,
since the flow-rate control will not be available in satu-
ration and power limitation events. The state space es-
timation is done by means of an Unscented Kalman Fil-
ter (UKF) which uses a nonlinear model to estimate the
states. Since the loops may differ, due to dust for exam-
ple, an estimation of the efficiency is obtained by means of
the lumped parameter model to adapt the MPC model to
the real collector state. To design and simulate the control
strategy, a 50 MW parabolic trough plant model is used.

There are very few works related to controlling the
temperature by using the defocus angle of the collector.
In Elias et al. (2018), authors presented a preliminary
study to defocus solar collectors to prevent the fluid outlet
temperature from exceeding the maximum temperature.
The control is done by means of a Mixed Logical Dy-
namical (MLD) model and a Practical Nonlinear Model
Predictive Controller (PNMPC) where the manipulated
variable is a defocus binary angle, zero or full collector
defocus. In Sánchez et al. (2018a), the authors presented
an Event based Gain Scheduling Model Predictive Con-
trol (GS-GPC) for defocusing the fourth and third collec-
tors and power control. In this work, authors opted for
a strategy of temperature tracking at the outlet of the
collectors instead of working in a reactive manner based
on a maximum threshold. The strategy is developed to
work both in saturation and power limitations. Although
the GS-GPC provides good results in simulations, it is a
controller based on linear models calculated at different
working points. Therefore, its performance may be af-
fected since it is based on linear models. As shown in
section 6, the proposed control strategy outperforms the
one proposed in Sánchez et al. (2018a).

The main advantages of the proposed control scheme,
with respect to the strategies already proposed, are:

1. The state space formulation permits the model to
adapt to the plant state each sampling time because
many coefficients depend on temperature and flow-
rate such as: heat transmission coefficient, global
thermal losses, density, to name but a few.

2. With the incremental formulation, the disturbance
estimator is not needed.

3. Estimation of the efficiency of the collectors.

This paper is organized as follows: In section 2 the
50 MW solar plant model is described. In section 3, the
flow-rate Gain Scheduling Generalized Predictive Control
scheme (GS-GPC) is explained as well as a series Feed-
Forward (FF). In section 4, electric power EGS-GPC is
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briefly described. In section 5, the fourth collector and
third collector MPCs are presented as well as the UKF
state estimation and collector loop efficiency estimation.
Simulation results are presented in section 6. Finally, in
section 7, the paper draws to a close with some concluding
remarks and future work.

2. Parabolic trough field model

Most of the Research works have used the ACUREX
solar plant model for designing and testing. The ACUREX
field, located at the Plataforma Solar de Almeŕıa, consists
of 480 parabolic trough collectors arranged in 10 loops with
a total length of 172 m. In order to correctly simulate
the defocus strategy in saturation and power limitation
events, a 50 MW plant model, based on Helios I (Guzmán,
2018; Helios I, 2018; Ibersol Ciudad Real, 2018), is used
in this paper to design and simulate the proposed MPC
strategy. To simulate the 50 MW solar plant, a distributed
parameter model is used (Camacho et al., 1997).

2.1. Parabolic trough field

The solar field of a 50 MW plant occupies around 220
hectares. The total length of each loop is 600 m with 4
collectors to each loop (Extresol-1, 2018; Guzmán, 2018;
Solaben 2, 2018). In commercial plants, the number of
loops is 80-100 loops (Guzmán, 2018; Helios I, 2018; Iber-
sol Ciudad Real, 2018; Majadas I, 2018; Palma del Ŕıo I,
2018; Solaben 2, 2018). The plant model chosen to design
and simulate the proposed strategy consists of 90 loops.
Each loop is composed of four collectors (150 meters each).
Fig. 1 presents the layout of a parabolic trough plant. The
plant model is assumed to have a north-south orientation.
Generally, this is the most common orientation in com-
mercial solar plants for efficiency reasons.
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Figure 1 Parabolic trough plant layout

2.2. Collector, receiver tube and heat transfer fluid

For the simulation model of this paper, the collector
EuroTrough ET150 (Rohani et al., 2017; Andasol 1, 2018;

System Advisor Model (SAM). NREL, 2018) has been se-
lected. In order to simulate the field, it is necessary to
describe the collector in terms of parameters such as focal
length, aperture width and collector length. For all Eu-
roTrough ET150 parameter descriptions and values refer
to Geyer et al. (2002), Kearney (2007), System Advisor
Model (SAM). NREL (2018).

One of the receiver tubes most used in commercial
plants (Andasol 1, 2018; Extresol-1, 2018; Ibersol Ciu-
dad Real, 2018) is the Schott PTR70. A full description
of Schott PTR70 can be found in SCHOTT Solar CSP
GmbH (2018). For this paper, the maximum values for
the collector reflectivity, tube efficiency and shape factor
have been assumed to be 0.91, 0.91 and 0.96 respectively.

The Heat Transfer Fluid (HTF) is specifically devel-
oped for the indirect transfer of process heat. In this paper,
Therminol VP1 is used. The optimum range for operation
is between 12 ◦C and 400 ◦C (Therminol VP1 HTF, 2018).
Above 400 ◦C the fluid starts to degrade. Fluid density
(ρf ) and specific heat capacity (Cf ) are temperature de-
pendent and can be obtained by equations (1) and (2). For
more parameter approximations, refer to Therminol VP1
HTF (2018).

ρf = −0.90797 · T + 0.00078116 · T 2 − 2.367× 10−6 · T 3

+1083.25
(1)

Cf = 4.5904× 10−8 · T 4 − 3.1536× 10−5 · T 3 + 0.006498 · T 2

+2.3458 · T + 1500.8

(2)

The power generation is proportional to the oil flow-
rate and the HTF temperature drop (Temperature of the
hot HTF minus the temperature of the cold HTF returning
to the solar field) at the steam generator. This tempera-
ture drop is approximately 90-100 ◦C in current plants
with an outlet temperature of around 393 ◦C and field in-
let temperature of 293 ◦C at nominal operation. In this
paper an efficiency of the Rankine cycle of 0.381 (Andasol
1, 2018; Extresol-1, 2018)) is used as well as an exchanger
efficiency of 0.9 and parasitic effects, typically 0.9, which
reduce the generated power and therefore there is a gross
and a net power (System Advisor Model (SAM). NREL,
2018). Finally, under nominal operation (inlet temper-
ature of 293 ◦C, outlet temperature of 393 ◦C approx-
imately) the HTF flow-rate needed to produce 50 MW
is 3350 m3/h, approximately, using equation 3, (Sánchez
et al., 2018a).

Q =
P · 106

∆T · Cf · µrank · µex · µparas
(3)

To simulate the power at each instant, equation 3 is
used. The calculated power is then filtered applying a first
order transfer function depending on the flow-rate (Schenk
et al., 2015; Montañés et al., 2018).
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Nomenclature

A Cross-sectional area of the pipe (m2) t Time (s)

C(t, T ) Specific heat capacity (J/(kg◦C)) T (x, t) Temperature (◦C)

D Hydraulic diameter of the pipe (m) Ta(t) Ambient temperature (◦C)

G Collector aperture (m) T iC3 Third collector temperature (loop i) (◦C)

Hl(t, T )
Thermal loss global coefficient

(W/(m2C))
Tin Inlet temperature (◦C)

Ht(t, T, q)
Metal-fluid heat transmission coefficient

(W/(m2C))
Tout Outlet temperature (◦C)

I(t) Direct solar radiation (W/m2) Tmean
Mean temperature between inlet and

outlet temperature (◦C)

k(t, T ) Thermal conductivity (W/(m◦C)) Tset−point Temperature reference for tracking (◦C)

Kopt Optical efficiency (Unitless) Tref−C3
Temperature set-point applied

to the 3rdcollector (◦C)

L Length of pipeline (m) Tref−C4
Temperature set-point applied

to the 4thcollector (◦C)

no(t) Geometric efficiency (Unitless) Tref−sat
Temperature set-point for the 4th

collector in saturation (◦C)

Nu Nusselt number Tref−nosat
Temperature set-point for the 4th

collector not in saturation (◦C)

P Power (MW) x Space (m)

Pcp
Fixed factor (loop geometrical and thermal

properties)
∆T Thermal difference (◦C)

phi Fixed factor (Unitless) βik
Defocus angle, 4th collector, loop i,

instant k (deg)

Pr Prandtl number γik
Defocus angle, 3th collector, loop i,

instant k (deg)

Q(t) Solar field oil flow rate (m3/h, kg/s) µ(t, T )
Dynamic viscosity of the fluid

(Pa · s = N · s/m2 = kg/(m · s))
q(t) Loop oil flow rate (m3/s) µcol(t, T ) Collector defocus efficiency (Unitless)

qff
Computed flow-rate by the

Feed Forward (m3/s)
ν(t, T ) Kinematic viscosity (m2/s)

Re Reynolds number ρ(t, T ) Density (kg/m3)

S Total reflective surface (m2)

2.3. Distributed parameter model

The dynamics of the distributed solar collector field are
described by the system of partial differential equations
(PDE) given in equation 4. These equations describe the
energy balance in the system (Carmona, 1985; Camacho
et al., 1997):

ρmCmAm
∂Tm

∂t
= IKoptnoG−HlG(Tm − Ta)− LHt(Tm − Tf )

(4a)

ρfCfAf
∂Tf

∂t
+ ρfCfq

∂Tf

∂x
= LHt(Tm − Tf ) (4b)

where the subindex m refers to the metal and f refers
to the fluid. The geometric efficiency depends on hourly
angle, solar hour, declination, day of the year, local lat-
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itude and collector dimensions. The density ρ, specific
heat C and coefficients Ht and Hl depend on fluid tem-
perature. Ht also depends on the HTF flow-rate (Camacho
et al., 1997). Ht can be calculated with the equations (5)
(Therminol VP1 HTF, 2018) and Hl can be obtained from
Burkholder et al. (2007), Lüpfert et al. (2008).

Re = q ·D/(ν ·A) (5a)

Pr = Cf · µ/k (5b)

Nu = 0.025 · (Re0.79) · (Pr0.42) · phi (5c)

Ht = Nu · k/D (5d)

where k, µ and ν (VP1 parameters) are temperature
dependent (Therminol VP1 HTF, 2018). The model dis-
cretization is done along the longitudinal dimension of the
tube. In this manner, a chain of sub-models is used to sim-
ulate the dynamics of each loop. The loops are divided into
300 segments of approximately 2 meters in length. This
length of segment provides good simulation performance
and low computation times (Sánchez et al., 2018a).

2.4. Lumped parameter model

The Lumped parameter model (LPM) provides a gen-
eral description of the whole field. This model describes
the variation in the internal energy of the fluid by equa-
tion 6. This model will be used to implement a series
Feed-Forward control and to estimate the collector global
efficiency.

Cloop
dTout
dt

= KoptnoSI − qPcp(Tout − Tin)−HlS(Tmean − Ta)

(6)

where Pcp can be approximated by 1.868× 106 J/m3C,
Cloop is approximated by 3.287× 106 J/◦C and S is equal
to 3427 m2 (Sánchez et al., 2018a).

3. Flow-Rate MPC control scheme

This section describes the control scheme used to per-
form the outlet temperature tracking. A GS-GPC is used
for the flow-rate control scheme and a series FF is used for
disturbance rejection. The series FF has proven to be very
effective at rejecting measurable disturbances affecting the
solar field. (Camacho et al., 1997).

3.1. Generalized Predictive Control

The GPC algorithm is based on the CARIMA model
(single-input single-output model) (Camacho and Bordons,
2007):

A(z−1)yk = z−dB(z−1)uk−1 +
C(z−1)

∆
ek (7)

where uk and yk are the control and output sequences
of the plant, ek is a zero mean white noise term, d is the

dead time of the system and ∆ is the integrator operator.
A,B and C are polynomials in the backward shift operator
z−1 (Camacho and Bordons, 2007). Consider a multistage
cost function of the form:

J(N1, N2, Nu) =

N2∑
j=N1

δ(j)[ŷ(k + j|k)− w(k + j)]2

+

Nu∑
j=1

λ(j)[∆u(k + j − 1)]2

(8)

where ŷ(k + j|k) is an optimum j step ahead predic-
tion of the system output, N1 and N2 are the minimum
and maximum costing horizons, Nu is the control horizon,
δ(j) and λ(j) are weighting sequences and w(k + j) is the
future reference trajectory. The future reference trajec-
tory is either constant or variable in case there is a previ-
ous knowledge of the set-point the plant/operator is going
to apply. Since solar plants have to deal with ambient
perturbations, there is no usually previous knowledge for
the future field outlet temperature set-points and there-
fore is set to a constant value. Moreover, in saturation,
the applied future reference trajectory is constant at 393
◦C since is the nominal operating point. The aim of GPC
is to minimise J(N1, N2, Nu) in order to compute a future
sequence of control actions u(k), u(k + 1), · · · , u(k + Nu)
that drives the future plant output y(k + j) close towards
w(k + j). Hence, given a CARIMA plant model and suit-
able cost function, the minimum of the cost function can
be obtained by setting the gradient of J equal to zero and
solving the control sequence ∆u by the following equation
(Camacho and Bordons, 2007):

∆u = (GGT + λI)−1GT (w− f) (9)

where matrix G contains the step response coefficients
of the forced response model (Camacho et al., 2012), I is
the eye matrix, f is the free response of the plant, w is
the future reference trajectory vector and λ is the control
weighting vector (Camacho and Bordons, 2007), being δ =
1 and λ = 10.

3.2. Gain Scheduling

The design of the GS-GPC is described in Camacho
et al. (1994, 1997). The GS-GPC controller has demon-
strated to have very good behaviour not only in respect
to set-point tracking but also in disturbance rejection ca-
pabilities (Camacho et al., 1997). Depending on the point
at which the system operates, the GS-GPC feedback gain
is adjusted in order to compensate variation in the plant
response under different working conditions. In a solar
trough plant, dynamics are mainly dictated by the oil flow.
Suitable identification of linear models at four different set-
points for the oil flow-rate covering the operation range,
(1494, 1908, 2322 and 2736 m3/h), will be used (Sánchez
et al., 2018a). The linear models have been obtained by
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applying a PRBS signals with Tin = 293, I = 600 and
Ta = 293, to obtain the models at each flow-rate. The
linear models obtained describe the plant dynamics in a
global manner. The discrete-time transfer functions have
been chosen as indicated in Eq. (10) and Table 1 shows
the parameter of linear models for the considered HTF
flow-rate operating point. For the gain scheduling tran-
sitions, intermediate values have been deduced by linear
interpolation (Camacho et al., 1997).

G =
b0z
−1 + b1z

−2 + b2z
−3 + b3z

−4

1 + a0z−1 + a1z−2 + a2z−3 + a3z−4
(10)

Table 1
Flow Linear model parameters depending on the HTF flow (m3/h)

Q 1494 1908 2322 2736

b0 0.01388 0.01198 0.03897 0.04289

b1 - 0.01376 -0.002375 -0.02267 -0.005028

b2 0.005233 0.004182 0.01313 0.01046

b3 0.005655 0.006583 0.009729 0.01582

a0 -2.025 -2.035 -1.972 -1.802

a1 1.105 1.317 1.311 1.132

a2 0.03021 -0.2882 -0.3369 -0.3352

a3 -0.09569 0.03236 0.03794 0.07595

3.3. Series Feed-Forward

The use of a series Feed-Forward controller action has
proven to be very effective at rejecting solar radiation dis-
turbances when using linear controllers. Moreover, it sig-
nificantly contributes to preserving the validity of the as-
sumed linear description of the plant over its operation
range. The FF input signal is a temperature set-point
from GS-GPC control, while the control output is the oil
flow-rate qff which is computed by the lumped parameter
description (Camacho et al., 1992):

qff =
KoptnoSI −HlS(Tmean − Ta)

Pcp(Tref − Tin)
(11)

The control algorithm works as follows: the GS-GPC
receives the temperature set-point for the solar field and
the current mean temperature and computes a virtual ref-
erence temperature, Tref , for the FF. The FF computes oil
flow taking into account the virtual reference and the mea-
sured disturbances to track the desired set-point. Since the
GS-GPC + FF scheme is considering a global model for
one loop, the calculated flow-rate is for one loop (Sánchez
et al., 2018a). The applied final flow-rate to the solar plant
is qff multiplied the number of loops (all loops receives
the same amount of HTF since the loop valves are nor-
mally used to equilibrate the flows in the loops).

4. Event based GS-GPC for electric power refer-
ence tracking

Sometimes, the solar plant may receive an order for
power limitation by the TSO, generally, due to a high sat-

uration of the electrical grid. Upon receiving the order, the
plant is obligated to reduce its net power injected into the
electricity grid. In order to fulfill the power constraint,
the plant will have time to comply with the TSO com-
mand. This is achieved by decreasing the flow-rate and,
in general, this is a complex operation for the operator.

In this work an Event based GS-GPC (EGS-GPC) is
applied to control the electric power generated by the plant
(Sánchez et al., 2018a). An event detection system will be
responsible for activating the control strategy of the net
power generated when power limitations are imposed. Al-
though the power cycle is not linear and depends on the
flow-rate, at nominal temperature it can be approximated
as a first-order system with different time constants de-
pending on the oil flow-rate (Schenk et al., 2015; Montañés
et al., 2018). Since this situation generally occurs in satu-
ration, nominal operating conditions are assumed.

G =
b0z
−1

1 + a0z−1
(12)

Table 2
PW Linear model parameters depending on flow (m3/h)

Q 855 1710 2565

b0 0.01385 0.009328 0.006185

a0 -0.8382 -0.891 -0.9277

The operating range of the EGS-GPC, in this mode of
operation, has been divided into 3 flow-rate points: 167.06,
334.1 and 501.16 kg/s (855, 1710 and 2565 m3/h). The GS
will consist of the linear models obtained at these three
working points. The discrete-time transfer functions have
been chosen as indicated in Eq. (12) and Table 2 shows
the parameter of linear models for the considered HTF
flow-rate operating point. Refer to Sánchez et al. (2018a)
for full details.

When a power limitation is received by the TSO, the
control strategy is switched from the temperature track-
ing GS-GPC to the power tracking GS-GPC. Boolean vari-
ables will manage the event detection system by activating
it or deactivating when receiving power limitations. The
time required to reach the power limitation is taken into
account in the power GS-GPC by taking advantage of the
use of the sliding horizon. In this way it is possible to cre-
ate time ramp power set-points (future set-points). This
will make better and smoother power set-point tracking
than with a simple power step. When the TSO removes
the power limitation, the power GS-GPC will start the
power up-ramp to reach nominal conditions. The control
is switched from power tracking to temperature tracking
if the nominal power is reached or if it is not possible to
reach it due to low field outlet temperature.

5. Fourth and third collector defocus MPC

Parabolic trough plants have a safety mechanism to
prevent the temperature of the loops from exceeding the
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optimum thermal limits of the HTF. This is done by de-
focusing the collectors, thus modifying the angle of the
collector. The defocusing of the fourth collector is gener-
ally applied to prevent the oil temperature from exceeding
a maximum temperature (400 ◦C). However, a control
based on threshold causes oscillations in the outlet tem-
perature.

Generally, the defocusing action of the fourth collec-
tor is, in normal situations, sufficient to control the outlet
temperature around a set-point, avoiding exceeding the es-
tablished thermal limit. However, when power limitations
appear, defocusing the fourth collector is not enough to
avoid exceeding the safe thermal limit of the HTF, and
the third collector defocus has to be applied. In a previ-
ous work (Sánchez et al. (2018a)) a GS-GPC was devel-
oped for the defocusing of the fourth and third collectors.
This strategy was based on linear models for different flow-
rates and defocus angles (due to the non-linear nature of
the defocus curve, see Fig 2). The GS-GPC showed good
performance at controlling the temperature. However, its
performance may be affected due to the fact that it is
based on linear transfer functions and does not take into
account all the parameter variations at the different work-
ing points.
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Figure 2 Efficiency - Defocus angle curve.

In this section, the adaptive incremental state-space
MPC is presented. The proposed strategy is applied to
control the defocus angle of the fourth and third collectors.
Since the MPC makes use of the state, the distributed pa-
rameter model in equation (4) will be used for its calcula-
tion. To avoid high computing times and maintain a good
level of similarity with the non-linear model, the collectors
have been divided into 5 segments. Since the only mea-
surable temperature states are the inlet temperature and
the outlet temperature of the fluid, it is necessary to in-
clude estimation of the intermediate states by an observer.
This is achieved using an unscented Kalman filter (UKF).
The overall optical efficiency of the collector is also esti-
mated. In plants with a large number of collectors, the
overall optical efficiency of the collectors can vary. Per-
forming defocus control with unrealistic values may result
in inefficient control actions. For the estimation of this pa-
rameter, the lumped parameter model in equation (6) is

used. The defocus curve and temperatures set-points for
the MPC defocus strategy are detailed in subsection 5.5.

5.1. MPC formulation

The linear state space model is an approximation of
the PDE system (4), consisting of a set of matrices de-
pending on inputs and system states. Let xt be the state
vector formed by the temperatures of the 5 metal and fluid
segments. The manipulated variable is µcol, which is the
collector defocus efficiency. This variable is converted into
degrees by using the defocusing curve, Fig 2, producing
the values of the defocus degrees to be applied to the col-
lectors, γ and β in Fig. 5.

The linear model in continuous time is computed using
Eq. (13). Tin is the inlet temperature, q is the HTF flow-
rate and Ta the ambient temperature. ∆l, Eq. (14), is the
length of each segment in which the metal tube is broken
down (30 m). In order to reduce the complexity of the
control strategy and the computational burden due to high
order matrices, a segment length of 30 m is used instead of
the 2 m length of the simulation model. Ieff = IKoptno
is the effective solar radiation, Eq. (18).

ẋt = Axt +But +Bddt

yt = Cxt

ut = µcol dt = [q Tin Ta]T

(13)

The model matrices are calculated as follows:

P0 =
−HlG− LHt

ρmCmAm
P3 =

q

Af∆l
(14)

P1 =
LHt

ρmCmAm
P4 = −P2 − P3 (15)

P2 =
LHt

ρfCfAf
(16)

A =



P0 0 0 0 0 P1 0 0 0 0

0 P0 0 0 0 0 P1 0 0 0

... ... ... ... ... ... ... ... ... ...

0 0 0 0 P0 0 0 0 0 P1

P2 0 0 0 0 P3 0 0 0 0

0 P2 0 0 0 P4 P3 0 0 0

... ... ... ... ... ... ... ... ... ...

0 0 0 0 P2 0 0 0 P4 P3


(17)

The first 5 state variables are the metal tube temper-
atures. The last 5 state variables correspond to the fluid
(HTF) temperatures. As can be observed, signal q ap-
pears in Matrix A, specifically in term P3. It defines the
operating point of the nonlinear model linearization.

The disturbance matrices, Bq, BTin and BTa, are com-
puted as follows:
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B =
[

GIeff

ρmCmAm
. . .

GIeff

ρmCmAm
01x5

]ᵀ
(18)

Bq =
[
01x5

1
Af∆l . . . 1

Af∆l

]ᵀ
(19)

BTin =
[
01x5

q
Af∆l 01x4

]ᵀ
(20)

BTa =
[

HlG
ρmCmAm

. . . HlG
ρmCmAm

01x5

]ᵀ
(21)

Bd =
[
Bq BTin BTa

]
(22)

C =
[
0 0 0 0 0 0 0 0 0 1

]
(23)

It is important to stress that only parameters ρm, Cm,
Af , Am and G are constants. As has been mentioned
before, pf , Cf , Hl and Ht depend on the states (temper-
atures). These parameters are computed at the operating
point at which the plant is working at each sampling time.
Notice that matrix A depends on the system states, pa-
rameters and oil flow-rate; BTa is function of the states
and parameters and BTin depends on the oil flow-rate. To
compute the MPC strategy the linear matrices are dis-
cretized using a sample time of 30 seconds.

As far as the sampling time is concerned, it was found
that adequate control sampling times are within the range
of 15-40 seconds according to the dynamics of the system
(Sánchez et al., 2018a). Faster sampling times allow faster
reactions but the high frequency dynamics of the system
may be excited (Álvarez et al., 2010). This effect can be
seen in section 6, where the high frequency dynamics of
the plant are excited when the controller is too demand-
ing. Furthermore, in order to preserve the actuator life,
abrupt and frequent changes in the control action are not
desirable. In this paper, a control sampling time of 30 s has
been chosen. This sampling time avoids excessively brisk
control actions while maintaining adequate performance.

Generally, the mathematical formulation of the MPC
problem is posed as follows:

min
∆u

J =Ry

Np∑
t=1

(yk+t|k − yrefk+t)
ᵀ(yk+t|k − yrefk+t)

+Ru

Nc−1∑
t=0

∆uᵀk+t|k∆uk+t|k

s.t.

yk+t|k = f(∆u, yk+t−1, yk+t−2, ...)

uk+t|k = uk+t−1|k + ∆uk+t|k
umin ≤ uk+t|k ≤ umax

(24)

where f(∆u, yk+t−1, yk+t−2, ...) is the function used to
compute the future evolution of the system. Np and Nc

stand for the prediction and the control horizons respec-
tively. The parameter Ry penalizes the tracking error and
Ru penalizes the control effort. Then uk ≡ uk|k is applied
to the system. In this case, only constraints in the ampli-
tude of the efficiency have been considered. The changes
of the parameters of the solar plant model used by the
controller adapt the controller to the changing situations.
The general control parameters of the controller (horizons
and weights) are not changed. The control tuning values
selected are, Ry = 1, Ru = 700, Np = 12 and Nc = 6.
When solving the MPC the values of Tin, Ta and Ieff
are kept constant along the prediction horizon (persistence
method) due to their stochastic nature and the difficulty
of modeling these disturbances.

5.2. Incremental state space MPC formulation

In this subsection, the incremental state-space formu-
lation is presented.

A drawback of using a state-space formulation in model
predictive control strategies is that steady-state errors may
appear due to modeling mismatches. One of the possi-
ble solutions is using disturbance estimators at the cost of
having additional dynamics and parameters to be adjusted
(Maeder et al., 2009; Limon et al., 2010).

The solution chosen in this paper is to use an incre-
mental state-space formulation as explained in (di Ruscio,
2013). The advantage is that this formulation achieves
offset-free responses when step references and step distur-
bances are considered. The formulation is only outlined
since the complete explanation can be found in (di Rus-
cio, 2013).

Let’s consider a general linear state-space model with
n inputs, m outputs, p states and r disturbance sources:

xk+1 = Axk +Buk +Bddk

yk = C xk (25)

The state vector is augmented to include the output of
the system. The incremental formulation is as follows:

∆xk+1 = A∆xk +B∆uk +Bd∆dk (26)

yk = yk−1 + C∆xk (27)

where ∆xk = xk − xk−1.
Considering (26) and (27), the complete state-space

model is rewritten as follows:

x̃k+1︷ ︸︸ ︷[
∆xk+1

yk

]
=

Ã︷ ︸︸ ︷[
A 0n×m
C Im×m

] x̃k︷ ︸︸ ︷[
∆xk

yk−1

]
+

B̃︷ ︸︸ ︷[
B

0m×r

]
∆uk+

(28)
B̃d︷ ︸︸ ︷[
Bd

0p×r

]
∆dk (29)
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yk =

C̃︷ ︸︸ ︷[
C Im×m

] [ ∆xk

yk−1

]
(30)

The new matrices can now be included in the MPC
algorithm to obtain the control signal at each sampling
time. The free response of the system depends on the
measurement of the output of the system, yk−1, di Ruscio
(2013). The new system can be formulated as follows:

x̃k+1 = Ãx̃k + B̃∆uk + B̃d∆dk (31)

yk = C̃x̃k (32)

Since the model used is linear, the predicted response
of the system can be described by the sum of the forced
response, a term which depends on the future control ac-
tions, and the free response which does not depend on the
future control actions (Camacho and Bordons (2007)) as
follows:

y = G∆u+ f (33)

where G can be obtained from the model matrices
(equations (31) and (32)) and the free response can be
computed as a matrix depending on the past values of
the states, outputs and measured disturbances. Since it
is difficult to know how disturbances are going to evolve
in the future, they are assumed to be constant along the
prediction horizon. The free response can be calculated as
follows (Camacho and Bordons, 2007):

f = F

[
∆x̃k

yk−1

]
+Gq∆q +GTin∆Tin+GTa∆Ta (34)

where matrix F can be obtained from the model, and
matrices Gq, GTa and GTin are the contribution of each
variable to the future evolution of the output.

5.3. Nonlinear state estimator: the unscented Kalman fil-
ter

Since Rudolf Kalman presented his original work about
optimal estimators (Kalman, 1960), the Kalman filter has
been a widely used tool for state estimation in linear sys-
tems and then in nonlinear systems using extensions such
as the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) (Haykin, 2001).

The state space model considered in the MPC strat-
egy uses the metal-fluid temperature profiles as the model
states. Only the inlet and outlet fluid temperatures are
measurable so that the intermediate fluid temperatures
and metal temperatures have to be estimated. In this pa-
per, a UKF is used to estimate the metal-fluid temperature
segments. The nonlinear model used in the UKF is a sim-
pler version of that described by equations (4), dividing
the tube into 5 segments instead of the 75 used in the
full nonlinear model used for simulation purposes. This

simplification is used to reduce the computational burden
and complexity of the control strategy. A greater number
of segments considered would increase the number of the
parameters to be adjusted in the covariance matrices, as
shown in Gallego and Camacho (2012).

The UKF is based on the unscented transformation,
which represents a method to calculate the mean and co-
variance of a random variable that undergoes a nonlinear
transformation (Romanenko and Castro, 2004; St-Pierre
and Gringras, 2004). Since the appearance of the UKF
algorithm, several improvements and variations have been
developed (Li et al., 2014; Zhou et al., 2015). In Wang
et al. (2017), an improved unscented transformation by in-
corporating the random parameters into the state vector
to enlarge the number of sigma points is proposed. For
more details about the UKF implementation, the reader
is referred to Haykin (2001).

Another important issue is the sampling time of the
UKF estimator. In order to capture the dynamics of the
temperature evolution, the UKF sampling time has been
chosen as 10 seconds, since the control sampling time (30
seconds) is too long to capture the temperature evolution
properly.

It was found that smaller sampling times did not pro-
duce any improvement in the estimation. Furthermore,
smaller sampling times would be too demanding, since the
computational time for 90 loops is about 4 seconds. Re-
sults of the fluid temperatures estimations are compared
to the distributed parameters model (DPM) simulation in
Fig. 3, showing good performance.
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Figure 3 Collector fluid temperature estimation.

5.4. LPM collector efficiency estimation

In plants of considerable size such as 50 MW plants
(220 hectares, 360 collectors), the optical efficiency of the
collectors may change. Given the dimensions, it is not
efficient to approximate all loops by a collective average or
unique value. Optical efficiency depends proportionally on
the reflectivity, shape factor and efficiency of the receiver
tube. Therefore, due to dust, wind, position of collectors
and other environmental factors, not all loops will have
the same optical efficiency. Since an adaptive strategy is
being implemented, the estimation of collector efficiency
is necessary to adjust the parameter of the linear model
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used in the MPC. The optical efficiency of each collector
is estimated using the lumped parameter model (35).

Kopt =
C dTout

dt + qPcp(Tout − Tin) +HlS(Tmean − Ta)

noSI
(35)

Figure 4 Collector efficiency estimation using the lumped parameter
model.

Since it is a quasi-static parameter, its variation through-
out the day is slow, the resulting estimate obtained with
the lumped parameter model will be filtered to avoid false
estimates in sudden changes due to the very nature of the
lumped parameter model. Results presented in Fig. 4
show reasonably good performance at estimating the effi-
ciency of a collector with a mean error of 0.02 (2%) with
respect to the real value of the efficiency being used in the
simulation of the plant.
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Figure 5 Flow/Power EGS-GPC + C4/C3 MPC control scheme.

5.5. Defocus curve and tracking references

A function that relates the defocus angle to collector
efficiency is needed. An approximation of this function is
presented in Fig. 2, (Goswami et al., 2000). From a certain
defocus angle, efficiency begins to decrease rapidly, since
rays no longer reach the receiver tube. As can be observed,
the defocusing curve is non-linear. The curve has a steep
slope around 2–3 degrees of defocus. Beyond 3 degrees, the

efficiency approaches zero, which means very little control
ability. The temperature set-point for the third collector
has been chosen to be 385 ◦C (Sánchez et al., 2018a).

Tracking references for the fourth collector defocus MPC
are automatically applied by a set of rules. 393 ◦C and
396 ◦C temperatures (Tref−sat and Tref−nosat) references
will be applied depending on the field outlet temperature,
power limitation events and flow-rate. For a complete de-
scription of the rules the reader is referred to Sánchez et al.
(2018a). The full control scheme is presented in Fig. 5.

6. Results

In this section, results from simulations are presented.
Two scenarios have been simulated: (1) the plant receives
a command to limit the power to 40 MW, and (2) the
power limitation is 30 MW. These scenarios have been
simulated to show the defocus angle needed in each case.
In both scenarios, the proposed incremental MPC control
strategy is compared to the GS-GPC control scheme. The
GS-GPC has been fine tuned in order to have a fair com-
parison.
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Figure 6 Efficiency - Defocus angle curve with modeling errors.

In order to show the capabilities of both strategies
when there are modeling errors, different efficiency defo-
cus curves have been applied. Fig. 6 presents 3 different
defocusing curves. The curves applied to simulate the real
efficiency of the collectors in respect to the defocus angle
are the curves denoted as ”Real Defocus Curve 1 ” and
”Real Defocus Curve 2 ” in Fig 6. The ”Modeled Defo-
cus Curve” is that applied to the control strategy and the
estimations. The RMSE for ”Real Defocus Curve 1 ” is
0.7059, while for ”Real Defocus Curve 2 ” is 0.7712. The
error in the range of 1.5-3 degrees varies between a 10% to
a 15% approximately in both curves respect to the modeled
curve. Finally, to show the MPC improvements in the form
of quantitative results, Integral Total Accumulated Error
(ITAE) and Integral Square Error (ISE) performance in-
dexes have been computed for all the simulated scenarios.
The compared values are shown in Tables 3 and 4.
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Figure 7 GS-GPC vs MPC results. Real Defocus Curve 1. 40 MW
limitation received (60 min ramp). Top plot: Fluid temperature.
Bottom plot: Collector defocus angle control action.
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Figure 8 GS-GPC vs MPC results. Real Defocus Curve 2. 40 MW
limitation received (60 min ramp). Top plot: Fluid temperature.
Bottom plot: Collector defocus angle control actions.

In Figs. 7 and 8, the simulated scenarios are 40 MW
power limitations when real defocus curves, ”Real Defocus
Curve 1 ” and ”Real Defocus Curve 2 ”, are applied to the
simulation. The flow-rate shown in this section, Q, is the
flow-rate of the plant which it can be either the flow-rate
computed by the power GS-GPC or the computed flow-
rate by the Feed-Forward multiplied by 90 loops. It can be
seen that the MPC control is able to perform better than

the GS-GPC when there are irradiance transients. In gen-
eral, the MPC is capable of acting before the GS-GPC due
to the state space formulation which can precisely simulate
the fluid temperature transported to the output of the col-
lectors. It can be seen that both strategies are performing
similarly when there are modeling errors.

11 12 13 14 15 16

Time(h)

375

380

385

390

395

400

405

410

415

T
e
m

p
e
ra

tu
re

 (
ºC

)

0

100

200

300

400

500

600

700

800

900

1000

(W
/m

2
)

MaxTemp 400ºC

T
C4-ref

T
C4

 GS-GPC

T
C4

 MPC

T
in

 GS-GPC + 90

T
in

 MPC + 90

Irradiance+100

11 12 13 14 15 16

Time(h)

0

1

2

3

4

5

D
e
fo

c
u
s
 A

n
g
le

 (
d
e
g
)

20

30

40

50

70

85

100

(m
3
/h

) 
(M

W
)

C4 GS-GPC

C4 MPC

Q/90

PW
ref

PW
out

Figure 9 GS-GPC vs MPC results. Real Defocus Curve 1. 30 MW
limitation received (60 min ramp). Top plot: Fluid temperature.
Bottom plot: Collector defocus angle control actions.
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Figure 10 GS-GPC vs MPC results. Real Defocus Curve 2. 30 MW
limitation received (60 min ramp). Top plot: Fluid temperature.
Bottom plot: Collector defocus angle control actions.

In Figs. 9 and 10, simulations for the 30 MW scenarios

11



are presented. As before, the simulated scenarios, ”Real
Defocus Curve 1 ” and ”Real Defocus Curve 2 ” are used in
the control strategies. It is possible to observe that both
strategies are performing similarly, but as can be seen in
Tables 3 and 4, the incremental MPC obtains improve-
ments in both indexes.

Notice that in Fig. 10, the GS-GPC has been fine
tuned up to the limit, in order to compare both strategies.
Fig. 10 shows that, at this point, the GS-GPC is about
to excite high frequency dynamics, see marked area. To
emphasize the consequences of making the GS-GPC more
reactive in order to achieve similar results, in Fig. 11 a
simulation of the GS-GPC is shown. The high frequency
dynamics excitation by the GS-GPC, see marked areas in
Fig. 11, are now affecting the plant outlet temperature
(oscillation pattern).
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Figure 11 GS-GPC vs MPC results. Real Defocus Curve 2. GS-
GPC control exciting high frequency dynamics. Top plot: Fluid
temperature. Bottom plot: Collector defocus angle control actions.

Tables 3 and 4 show that the behaviour of the MPC
is better than that of the GS-GPC. From the ITAE point
of view and depending on the scenario, the MPC improve-
ment achieved goes from 2% up to a 15%. The ISE index
shows improvements from 7% to 16%. From the ITAE
index, it can be observed that the MPC has better perfor-
mance in tracking and it is faster than the GS-GPC. The
ISE also shows that the MPC has less oscillations than the
GS-GPC since this index penalizes more this type of error.

Table 3
ITAE comparison (◦C · s).

Scenario ITAE GSGPC ITAE MPC Reduction(%)

40 MW, Curve 1 9.0871×107 7.9772e×107 12.2133

40 MW, Curve 2 9.3993×107 7.9204×107 15.7341

30 MW, Curve 1 4.9391×107 4.6249×107 6.3601

30 MW, Curve 2 5.1933×107 5.0930×107 1.9309

Table 4
ISE comparison (◦C2).

Scenario ISE GSGPC ISE MPC Reduction(%)

40 MW, Curve 1 4.3276×104 3.9597×104 8.5016

40 MW, Curve 2 4.5096×104 3.9381×104 12.6729

30 MW, Curve 1 9.2271×103 8.5824×103 6.9869

30 MW, Curve 2 10.535×103 8.776×103 16.6983

Some final comments to end this section. It has to be
highlighted that the GS-GPC has been fine tuned up to
the limit and high frequency dynamics excitations have
already been detected in the 30 MW scenario, while the
MPC is still performing without these excitations. Notice
that it is always difficult to improve MPC control strate-
gies that are already performing properly.

7. Conclusions

In this paper, an adaptive incremental state space MPC
for defocusing the fourth and third collector has been pro-
posed. The control strategy uses an Unscented Kalman
filter to estimate the state temperatures and an estimator
based on the lumped parameter model to obtain an estima-
tion of the collector efficiencies. Moreover, the proposed
MPC strategy has been compared to a GS-GPC control.

It has been proven that the proposed MPC strategy
shows better performance and disturbances rejection than
the GS-GPC. The MPC control is superior due to two main
facts: (1) adaptive scheme and (2) incremental state space
formulation. The GS-GPC has been fine tuned up to the
limit in order to obtain a fair comparison. Moreover, the
GS-GPC cannot be further adjusted due to high frequency
dynamic excitation.
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