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The study of the sensitivity and the specificity of a classification test constitute a powerful
kind of analysis since it provides specialists with very detailed information useful for
cancer diagnosis. In this work, we propose the use of a multiobjective genetic algorithm
for gene selection of Microarray datasets. This algorithm performs gene selection from
the point of view of the sensitivity and the specificity, both used as quality indicators
of the classification test applied to the previously selected genes. In this algorithm, the
classification task is accomplished by Support Vector Machines; in addition a 10-Fold Cross-
Validation is applied to the resulting subsets. The emerging behavior of all these techniques
used together is noticeable, since this approach is able to offer, in an original and easy
way, a wide range of accurate solutions to professionals in this area. The effectiveness
of this approach is proved on public cancer datasets by working out new and promising
results. A comparative analysis of our approach using two and three objectives, and with
other existing algorithms, suggest that our proposal is highly appropriate for solving this

problem.

1. Introduction

Microarray technology [1] (DNA Microarray) allows bi-
ologists to simultaneously analyze thousands of genes and
can thus provide important insights into cell functioning,
since changes in the physiology of an organism are gener-
ally associated with changes in gene expression patterns.
The vast amount of data involved in a typical Microarray
experiment naturally leads to using statistical analysis, in
addition to classifying the dataset into correct classes. The
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key issue in this classification procedure is to identify sig-
nificant and representative gene subsets that may be used
to predict class membership for new external samples of
genes. The main difficulty in the Microarray classification
problem is the availability of a relatively small number of
samples in comparison with the large number of genes in
each sample. In addition, expression data are highly redun-
dant and noisy, and most genes are believed to be uninfor-
mative with respect to classes studied, as only a fraction of
genes may present distinct profiles for different classes of
samples.

In this context, feature selection is considered a nec-
essary preprocess step to analyze large datasets, as this
method can reduce the dimensionality of the datasets and
often leads to better analyses [2]. Therefore, in feature se-
lection, the objective is to select subsets, which are as
small as possible, of informative features from the initial
dataset, in order to obtain high classification accuracy.

Nevertheless, optimal feature selection is a complex
problem proved to be NP-hard [3], and hence, only meta-
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heuristic approaches are capable of solving it accurately
and efficiently. Evolutionary Algorithms (EAs) have been
successfully used in the past to tackle the gene selection of
Microarray datasets [4-6]. Specifically, Multiobjective Evo-
lutionary Algorithms (MOEAs) [7-9] are actually quite pop-
ular for feature selection, since they allow a given solution
to be evaluated (selected subset) in a more suitable and
straightforward way. From this point of view, two objec-
tives are clearly involved in the evaluation of solutions:
minimizing the number of genes and maximizing the classi-
fication accuracy. However, using this approach, the range
of good solutions (i.e.,, <10 genes and >90% accuracy) is
normally limited, which is a problem for the subsequent
expert decision making process. In this sense, the analy-
sis of the sensitivity and the specificity (ROC analysis) [10]
of a diagnostic test constitutes a powerful analysis in su-
pervised classification since it provides the specialists with
more detailed information about the validity of a solu-
tion. Moreover, the use of the sensitivity and the speci-
ficity as objectives in the evaluation task, instead of the
accuracy rate, offers a mathematically equivalent method
since these two factors are proportionally (weighted to
the prevalence) included in the overall accuracy calcula-
tion. Therefore, despite the intuitive appeal of using only
the overall accuracy as a single measure of test validity,
its dependence on the prevalence renders it inferior to a
careful and balanced consideration of sensitivity and speci-
ficity [11].

Recent studies have used multiobjective algorithms in
order to optimize the sensitivity and the specificity for a
given classifier [12,13]. However, the main goal of these ap-
proaches consisted of looking for a favorable trade-off be-
tween sensitivity and specificity, considering neither sub-
set selection nor dataset reduction purposes. In this pa-
per, we extend these works by using a MultiObjective Ge-
netic Algorithm (MOGA) for gene selection and classifica-
tion of Microarray datasets, which optimizes three objec-
tives: maximize the sensitivity, maximize the specificity,
and minimize the number of genes. Initially, this algo-
rithm selects the subsets of genes encoded in the tentative
solutions manipulated by the algorithm. After that, each
solution is evaluated using the Support Vector Machines
(SVMs) classifier, and 10-fold cross-validation is then ap-
plied to assess the percentages of sensitivity and speci-
ficity. In addition, each generation, specialized crossover
and mutation operators, both adapted to feature selection,
are applied to the population. Our contribution is notice-
able since this approach is able to offer a number of ac-
curate solutions to professionals in this area. As we will
show in the experiments, the effectiveness of this approach
is evaluated on three well-known datasets, and new and
promising results are obtained.

The remaining of this paper is organized as follows.
In Section 2, we provide the reader with basic concepts
about the feature selection problem, the sensitivity and
specificity analysis, the Support Vector Machines classifier
and the Microarrays technology. Section 3 gives the de-
tails of our specialized MOGA algorithm for gene selection
and classification. Experimental results and comparisons
are presented in Section 4. Conclusions and further work
are finally given in Section 5.

2. Basic concepts

In this section, preliminary concepts of the feature se-
lection problem, the sensitivity and specificity analysis, the
SVMs classifier and the Microarrays technology are briefly
introduced.

2.1. Feature selection

When applied to Biology, feature selection is also called
gene selection, targeted to distinguish influential genes from
irrelevant ones based on DNA Microarray datasets. This
technique is normally coupled with learning algorithms
that use the reduced subset of features in order to pro-
ceed as a supervised classifier. The formal definition of the
feature selection problem is given as follows:

Definition. Let F ={f1,..., fi,..., fn} be a set of features;
find a subset F/ C F that maximizes a scoring function
©®:I' — G such that F' = argmaxg{©(G)}, where I' is
the space of all possible feature subsets of F and G a sub-
set of I" [14].

In feature selection, two different models may be used
depending on whether the learning algorithm is coupled
with the selection method or not, respectively wrapper
model and filter model. On the one hand, the filter model
carries out the selection and classification regardless of
the learning algorithm used. Filter methods are based on
a performance evaluation metric calculated directly from
the data.

On the other hand, the wrapper model, which performs
feature subset selection and classification in the same sin-
gle process, internally uses a learning algorithm to mea-
sure the accuracy.

2.2. Sensitivity and specificity

The sensitivity is a statistical value measuring how well
a binary classification test correctly identifies a condition.
The sensitivity is the proportion of true positives of all dis-
eased cases in the entire population. For example, for a
medical test to determine if a person has a certain disease,
the sensitivity to the disease is the probability that if the
person has the disease, the test will be positive. However,
the sensitivity alone does not tell us how well the test pre-
dicts other classes.

The specificity is a statistical measure of how well a
binary classification test correctly identifies the negative
cases, or those cases that do not meet the condition be-
ing studied. For example, given a medical test that deter-
mines if a person has a certain disease, the specificity of
the test to the disease is the probability that the test in-
dicates “negative” if the person does not have the disease.
The specificity is thus the proportion of true negatives of all
negative cases in the population.3

3 The sensitivity depends on the number of true positives (#TP) and
true negatives (#TN). The specificity depends on the number of true nega-
tives (#TN) and false positives (#FP). The number of false negatives (#FN)
is included in the calculation of a third value: accuracy.
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Egs. (1) and (2) calculate the sensitivity and specificity
factors of a prediction test, respectively.

A combination of these two measures is the most
widely used method to quantify the diagnostic ability of
a test, since these measures constitute basic factors in-
cluded in all well-known statistical analysis such as the
receiver operating characteristic (ROC curve) and the F-mea-
sure. A useful measure, the accuracy value of a test, may be
determined by combining sensitivity and specificity, with
another measure called Prevalence, using the following
equation:

Accuracy = Sensitivity x Prevalence
+ Specificity x (1 — Prevalence) 3)
being

#classes (2 in this work)
Prevalence = - . (4)
#genes (in the dataset)

In addition, the accuracy can also be expressed in terms
of the true/false positive/negative factors as formulated in
Eq. (5):

#TP + #TN

Accuracy = .
V= ¥TP 1 #FP + #FN + #IN

(5)
2.3. Support Vector Machines

Support Vector Machines, derived from statistical learn-
ing theory, are used to classify points by assigning them to
one of two disjoint half spaces. The objective is to provide
a model which predicts, as efficiently as possible, the class
of a given data instance in the testing set where only the
values of the features are known and there is no informa-
tion about the classes. Vapnik and Cortes [15] defined the
SVMs method as follows:

Definition. Given a training set of instance-label pairs
(xi, yi) with i =1,2,...,] where x; € R" (training vectors)
and y; € {1, -1} (classes), the Support Vector Machines
require the solution of the following optimization problem:

1
1 7
Mr/r}égiw W+C;Ei (6)
being
yiwTox) +b) =1-&, &>0. (7)

Here, C > 0 is the penalty parameter of the error
term. For linearly separable data, SVMs obtains the vec-
tor which maximizes the distance between the training

4 In Biology, the Prevalence of a disease is the proportion of total cases
(classes) of the disease in the studied population (set) divided by the
number of individuals (genes) in this population (studied subset).

samples and the class boundary. For non-linearly separa-
ble data, samples (x;) are mapped to a high-dimensional
space by means of the function ¢, where a separating hy-
perplane can be found. The assignment is carried out by
means of the equation K(x;,x;) = ¢(x,~)T¢(xj) called the
kernel function.

In the classification of informative genes embedded in a
given dataset of gene expression levels, SVMs uses the ker-
nel function to find an orthogonal hyperplane to a specific
gene dimension. Many works in the literature have suc-
cessfully used SVMs for gene selection and classification [4,
5,16]. In this work, a linear kernel function (K(x;,x;) =
x] xj) is used by the SVMs classifier.

2.4. Microarrays and gene expression

Microarrays or gene arrays/chip [1] consist of a thin
glass substrate containing specific DNA gene samples spot-
ted in an array by a mechanical procedure. These DNA
samples are spread with fluorescently labeled m-RNA from
an experimental condition. This m-RNA hybridizes strongly
with some DNA gene samples and weakly with others, de-
pending on the inherent double helical characteristics. The
array is then scanned and the resulting image is processed
in order to detect fluorescence levels (using red and green
dyes), indicating the strength with which the sample ex-
presses each gene.

The logarithmic ratio between the two intensities of
each dye is used as the gene expression data. The rela-
tive abundance of the DNA sequences spotted in a pair of
DNA or RNA samples is assessed by evaluating the differ-
ential hybridization of the two samples compared to the
sequences on the Microarray. The gene expression levels
can be determined for samples taken either at multiple
time instants of a given biological process or under vari-
ous conditions, such as for tumor samples with different
histopathological diagnosis. Each sample corresponds to a
high-dimensional row vector of its gene expression profile.

3. Gene selection and classification by MOGA

As explained in the introduction, MOEAs are already be-
ing used for solving the gene selection and classification of
gene expression datasets [7-9]. In most of these works, the
optimized function is computed using two main objectives:
the classification accuracy and the number of genes. Our
approach here is to use a Multiobjective Genetic Algorithm,
in which the evaluation of solutions involves the sensitivity
and the specificity of the classification test, as well as the
number of genes, but without using the classification accu-
racy. In this section, we present the main elements of our
MOGA focusing on the fitness evaluation, solution encod-
ing and adapted operators. Multiobjective specific aspects
such as the preservation of the diversity and the selection
of solutions are also described.

3.1. The multiobjective approach
Formally, each gene subset belonging to two classes,

s;i = {Xi, yi} where {X;} represents the n training sam-
ples and y; € {—1, +1} their class labels, is associated with
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Fig. 1. Crowding distance operation.

a vector evaluation function F(s;) = (F1(si), F2(si), F3(si)),
each function corresponding to:

#(genes in s;)

Fi(si) = #(total genes) (minimize #genes), (8)
#TP .. .
Fy(si) = FIP+ #IN (maximize sensitivity), (9)
F3(si) = ﬂ (maximize specificity). (10)
#TN + #FP

Our MOGA evolves by optimizing simultaneously these
three fitness functions. In this scenario, a selected gene
subset can be more informative (better than), less infor-
mative (worse than), equal, but also indifferent to another
gene subset with respect to the objective values. Here, one
subset s; is said to “dominate” or be “more informative”
than another subset s; when:

Vk e {1,2,3): Fi(si) = Fk(sj) (11)
and
Ik: Fi(si) > Fi(sj). (12)

In these equations, given two subsets of genes s, and
Sp, Fr(sq) > Fi(sp) means that s, is not “less informative”
than sp, and Fy(sq) > Fix(sp) means that the subset s, is
“more informative” than s;,. The “Pareto front” is then de-
fined as the set of nondominated gene subsets which con-
stitutes the best solutions. The MOGA guides the search
towards the Pareto front, keeping the nondominated solu-
tions as diverse as possible, and preventing nondominated
solutions from being rejected, in order to delay premature
convergence.

In our approach, the reinforcement of the diversity in
the front is carried out by means of the “Crowding” dis-
tance operator (typical in NSGA-II [17]). The Crowding dis-
tance operator (Fig. 1) assigns the highest value to the
boundary solutions, and the average distance of two solu-
tions (i — 1)th and (i 4+ 1)th on either side of the solution
i in each of the objectives. The complete front (with new
and old nondominated solutions) is sorted and the Crowd-
ing distance operator is performed to get a new front with
spread solutions. The selection task is then accomplished

by a tournament Crowding strategy, in which, given two
solutions i and j, the solution i is selected if it dominates
the solution j. If neither solution dominates the other, then
the one less densely allocated in the search space (i.e.,
with less Crowding distance) is selected.

3.2. Solution encoding

In our MOGA, each individual encodes a selected subset
of genes by using a binary vector where each bit repre-
sents a gene in the dataset. If a bit is ‘1, it means that this
gene is selected for the reduced subset and ‘0’ indicates
that the gene is not selected. Therefore, the length of the
individuals is equal to the number of genes in the initial
Microarray dataset.

3.3. Adapted crossover and mutation operators

Specific crossover and mutation operators, adapted to
feature selection, are used in our MOGA as reproduction
methods. The first one, Subset Size-Oriented Common Feature
crossover (SSOCF) [18,19], is one of the most commonly
used when facing the feature selection. As proved in [18],
the SSOCF keeps useful informative patterns and produces
offspring which have the same number of features (genes)
as the parents. Here (see Fig. 2), the common features
(bits ‘17) are kept by offspring and each non-shared feature
is inherited from the ith parent (feature) with a probability
(nj — n¢/ny). Where n; is the number of selected features
of the ith parent, n. is the number of commonly selected
features from the mating parents, and n, is the number of
non-shared selected features.

The second operator, consisting of a weighted mutation,
is applied with a probability of pmu = 0.1 to the popula-
tion. When an individual is mutated, its bits are flipped
with different probabilities (pgp) in order to adjust the
number of flips from ‘1’ to ‘0", and vice versa. We car-
ried out tuning experiments with three options of flipping
a simple bit as indicated in Table 1.

In this table, if we choose one reduction bit-flip mu-
tation, if a given bit is ‘1’ then it is flipped to ‘0’ with
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Fig. 2. Operation scheme of the SSOCF crossover. The mask promotes common shared features from parents to offspring.

Table 1
Three different kinds of bit-flip mutations. The values indicate the proba-
bility of bit-flip (pgip)-

Bit-flip option 1to0 0tol
uniform 0.3 0.3
zero reduction 0.3 0.6
one reduction 0.6 0.3

a probability of pgjp = 0.6, and if this bit is ‘0’ then it
is flipped to ‘1" with pg, = 0.3. For the tuning experi-
ments, we first used a uniform bit-flip (always pgip = 0.3).
This kind of mutation led the algorithm to obtain solu-
tions with low percentages of sensitivity and specificity
(hence accuracy) close to 65% and 60%, respectively. Sec-
ondly, when we used the zero reduction mutation, the fea-
ture selection procedure never obtained subsets with less
than 30 genes which provokes the stagnation of the re-
duction process prematurely. Finally, we incorporated the
one reduction mutation to our algorithm which obtained
subsets always with less than 10 genes and percentages
of sensitivity and specificity higher than 85% and 81%, re-
spectively. Therefore, for the subsequent experimentation
we used the one reduction mutation since it showed the
best performance.

3.4. The general MOGA

The MOGA employed here generates an initial popula-
tion P of individuals randomly (uniformly) initialized. Each
individual, codifying a gene subset, is evaluated by means
of the SVMs classifier and then 10-fold cross-validation is
applied to assess the percentage of sensibility and speci-
ficity.

The population is sorted by using the dominance
Crowding criteria described in Section 3.1. From this, a
new elitist population E is generated selecting 10% of the
best individuals. This selection is accomplished using the
crowding selection operator of Section 3.1. The adapted
SSOCF crossover and mutation are applied to the elitist
population (E) to generate the offspring P’. Both, offspring
and parent populations are then combined (P’U P). Finally,
the best members replace the worst parents. When it is

not possible to accommodate all the members of a par-
ticular front, that front is sorted according to the crowding
distance. The individuals are selected on the basis of higher
crowding distance. This selection is repeated to completely
fill the new population with one of the same size the old
one. The MOGA evolves for a fixed number of generations.

4. Experiments

We have implemented the proposed MOGA for gene
selection in C++ using the ParadisEO [20] framework. As
SVMs classifier, we have used a set of object classes pro-
vided by the LIBSVM [21] library consisting of training,
testing, and validation tools. This classes were coupled
with the MOGA algorithm in the evaluation phase. In
this section, the experiments are described concerning the
datasets, the experimentation setup, the analysis of results,
and discussions.

4.1. Datasets

The used instances are classified into three well-known
datasets obtained from real-word Microarray experiments.
All of them were taken from the public UPITT Cancer
Gene Expression Data Set Link Database in URL http://
datam.i2r.a-star.edu.sg/datasets/krbd/index.html.

- The ALL-AML Leukemia dataset consists of 72 tissue
samples with 7129 gene expression levels. Two classes
exist in this dataset: Acute Myeloid Leukemia (AML)
and Acute Lymphoblastic Leukemia (ALL). The complete
dataset contains 25 AML and 47 ALL samples. The orig-
inal data are divided into a training set of 38 samples
and a test set of 34 samples.

- The Colon tumor dataset consists of 62 tissue samples
collected from colon-cancer patients with 2000 genes.
Among them, 40 tumor biopsies are from tumors and
22 biopsies are from healthy parts of the colons of the
same patients.

- Types of Diffuse Large B-cell Lymphoma dataset consists
of 47 tissue samples, 24 of them are from the germinal
centre B-like group while the remaining 23 are activated
B-like group. Each sample is described by 4026 genes.
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The expression levels were normalized in order to scale
the intensities, enabling thus a comparison of the different
datasets previously introduced. Each attribute was scaled
to [—1, 1] (as LIBSVM recommends) by means of:

aj(x;) — min;

aj(xi) =2 x :
max; — min;

-1, (13)
where max; and min; correspond to the maximum and
minimum gene expression values for attribute a; in all
samples.

4.2. Experimental setting

As explained in the introduction, the individuals of the
population, representing gene subsets, are evaluated by
means of the SVMs classifier and 10-fold cross-validation.
At each iteration, the dataset is divided into ten subsets,
nine of them constitute the training set and the remaining
one is the test set. The SVMs is trained using the train-
ing set and then the sensitivity and the specificity of the
classifier (once trained) are evaluated on the test set. This
evaluation is repeated ten times, alternating the test set
used each time. This method reinforces the validation pro-
cess, so that the sensitivity and specificity values are the
average of the ten validation folds. Moreover, such a strong
validation is necessary when the number of samples is low
in relation to the number of features, which is the case in
this work.

Therefore, an optimal configuration of the SVMs clas-
sifier is crucial since it influences the training effective-
ness. In these experiments, the main kernel parameters, y
and C coefficient (explained in Section 2), were systemati-
cally optimized in a preprocess phase for each dataset (by
means of the Grid Tool of LIBSVM [21]) as follows:

- Leukemia: C =8 and y = 1.220703125 x 1074,
- Colon: C =128 and y =1.220703125 x 1074
- Lymphoma: C =8 and y = 3.05175578125 x 107>.

These parameters were set using the SVMs classifier in-
dependently of the MOGA, in order to obtain accuracy as
close to 100% as possible.

For the MOGA algorithm, the population size was fixed
to 100 individuals; and 30 independent runs were per-
formed with 2000 generations each one. The crossover
and mutation operators were applied as explained in Sec-
tion 3.3.

4.3. Results

In this section, we first report the results obtained by
MOGA operating with three objectives. Following the stan-
dard methodology when comparing classification rates, the
average and standard deviation (obtained after 30 runs) of
the sensitivity, the specificity and the number of genes are
shown in Table 2. The number of solutions that constitute
the final Pareto front is reported in the last column. Since
the number of final solutions is always higher than one,
we report the best solution (in each final front) to discuss
internal details like the number of genes, to assess the av-
erage and standard deviation.

Table 2

Results obtained by our MOGA in 3 objective optimization. The columns
indicate the average and standard deviation of the number of genes (NG),
the sensitivity rate (Sen.), the specificity rate (Spe.), and the number of
solutions in the final Pareto front (NSf).

Dataset NG Sen. (%) Spe. (%) NSf
Leukemia 7.44+2.14 87.63+£5.60 81.56+10.34 9.11+£2.31
Colon 2.25+0.20 85.93+6.44 83.89+4.08 12.25+3.63

Lymphoma 5.00+1.94 91.55+7.56 86.36+3.79 5.60+3.43

As we can observe in Table 2, our algorithm obtains
subsets of between 9 (Leukemia) and 2 (Colon) genes with
rates of sensitivity and specificity higher than 85% and
81%, respectively. These results lead us to state that our
MOGA performs very efficiently, since considering a Preva-
lence with a constant value, it can obtain over 85% ac-
curacy, as explained in Section 2.2. Moreover, the num-
ber of solutions provided (between 2 and 16) reinforces
this claimed effectiveness. In this sense, as well as in the
number of solutions, we must consider the diversity in
the final Pareto front, since this informs how different
the final solutions are. Fig. 3 illustrates three representa-
tive fronts of solutions obtained in our experiments. We
can observe that solutions are sufficiently scattered be-
tween 98% and 78% of sensitivity, and between 90% and
70% of specificity, despite the low number of genes in sub-
sets.

4.4. 3-objective versus 2-objective approaches

In order to analyze the performance of our MOGA, an
additional experimentation was carried out to compare the
effectiveness when operating with 3 and 2 objectives.

The 3-objectives MOGA optimizes the sensitivity, the
specificity and the number of genes. However, the 2-ob-
jectives MOGA optimizes the accuracy and the number of
genes.

In these experiments, the subsets of genes resulting
from both approaches after 30 runs were evaluated using
the same cross validation method external to the selection
process. Initially, the datasets were divided into two sub-
sets, a training set and a test set. The selection algorithm
was applied to the training set, and when an optimized
subset of genes was obtained (either by the 3-objectives
or the 2-objectives MOGA), its accuracy was evaluated on
the external test set. This way, we were able to accurately
compare the two different approaches.

Table 3 shows the average and standard deviation (in
30 runs) of the results reported by our MOGA in both
3-objective and 2-objective mode. We have carried out a
set of statistical tests in order to find significant differ-
ences between both approaches. In each case the proce-
dure for generating the statistical information was the fol-
lowing.

First a Kolmogorov-Smirnov test was performed in or-
der to check whether the variables were normal or not and
the Levene test to check the homocedasticity of samples
(equality of variances). If they were (normal with equal
variances), an ANOVA I test was performed, otherwise we
performed a Kruskal-Wallis test. A level of significance of
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Table 3
Comparison of 3 versus 2 objective MOGA. The columns indicate the average and standard deviation of the number of selected genes (NG), and the accuracy
rate (Ac.). Ts indicates the percentage of samples of the external test set.

Dataset 3 obj. 2 obj. Ts (%) Statistical test
NG Ac. (%) NSf NG Ac. (%) NSf
Leukemia 6+2.64 98.03 £1.61 9.11£2.31 7.33+1.52 95.27+2.21 6.66£0.57 47% A
Colon 3.33+1.52 89.58 +1.80 12.25+3.63 3.66£0.57 86.45+4.77 5.66+0.57 50% +
Lymphoma 3.75+£1.50 96.05+3.04 5.60+3.43 3.33+1.52 92.97+3.03 3+1 50% A
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Fig. 4. Pareto fronts obtained by our MOGA in the classification of Leukemia, Lymphoma and Colon datasets. Two objectives are optimized: the number of

genes (#genes), and the accuracy rate.

95% (o = 0.05) is always applied in order to check if sta-
tistically significant differences exist. After that, we did a
multiple comparison test whose results are presented in
the last column of Table 3 where a plus sign means that
the difference is significant (minus sign would mean that
it was not).

This way, we can observe that the accuracy rate ob-
tained by the 3-objective approach is better than the one
obtained by a 2-objective approach for the three datasets.
Furthermore, for all the instances, the results are statis-
tically different (+), which leads us to ensure the final
higher performance of the 3-objective approach.

As a secondary observation, the 3-objective approach
obtains a larger number of solutions in the final fronts,
which is an important issue when facing the decision mak-
ing process. This property is clearly observable in Fig. 4,
where several 2-objective fronts obtained in these exper-
iments are shown in contrast with Fig. 3. Nevertheless,
the diversity and quality of solutions shown in Fig. 4 are
also suitable for gene selection, leading us recommend our
MOGA with 2 objectives for other future scenarios.

4.5. Comparison with other approaches

In this section we first compare the performance of our
MOGA (in 3-objective mode) with a base-line method for
the gene selection. This method runs a K-Mean procedure
for clustering, in which we have used the same number
of genes of the final subsets selected by MOGA as repre-
sentative centroids (K = NG). Then, each resulting subset
(gene centroids) is used to train the SVM classifier (config-
ured as explained in Section 4.2), and cross-validated with
an external test set.

For this purpose, we used the K-Means procedure
available in Weka tools for data mining [23]. A number
of 30 independent runs were performed with 2000 itera-
tions of each one in order to obtain as accurate a result as
possible. Table 4 shows the results obtained by K-Means
and MOGA in terms of mean and standard deviation of the
accuracy percentage.

We can observe in this table that MOGA clearly outper-
forms the K-Means procedure in all the datasets. Specif-
ically, the difference regarding the accuracy percentage in
the lymphoma dataset (57.89 £+ 1.11 of K-Means in con-



Table 4

Comparison with base-line method: K-Means clustering. The columns in-
dicate the average and standard deviation of the number of selected genes
(NG), and accuracy rate (Ac.). Ts indicates the percentage of samples of
the external test set.

Dataset NG K-Means MOGA 3 obj. Ts (%)
Ac. (%) Ac. (%)

Leukemia 6+2.64 85.29+1.02 98.03+1.61 47%

Colon 3.33+1.52 78.12+2.70 89.58+1.80 50%

Lymphoma 3.75+1.50 57.89+1.11 96.05+3.04 50%

trast with 96.05 £ 3.04 of MOGA 3 obj.) gives us some
insights into the power of our proposal. We would ex-
pect these differences in results, since K-Means is a naive
method without any information about the problem in its
procedure. For this reason, we have carried out further
comparisons with two related metaheuristic approaches
found in the literature.

The first work, Liu and Iba (2002) [8], consists of a
multiobjective evolutionary algorithm which optimizes si-
multaneously 3-objectives: the misclassification rate, the
difference in the error rate among the classes, and the
number of selected genes. In the second approach, Her-
nandez et al. (2007) [22], a genetic algorithm embedded
with a pre-filtering criteria is used, which optimizes an ag-
gregative function using the accuracy rate and the number
of genes.

Table 5 summarizes our results together with those re-
ported in [8] and [22] on the same three datasets. As
shown in bold face, the accuracy rate reported by our
MOGA is the best in all the datasets, although it is clear
that the number of genes selected by [22] in the Leukemia
dataset is smaller. In addition, our results are competitive
with respect to those reported in a third work [7]. For this

Table 5

reason, we can claim that our approach shows an efficient
and better performance in comparison with existing state
of the art algorithms.

4.6. Biological analysis

Finally, in this section we provide a biological analy-
sis of the computed gene subsets. Although this biological
study is very important, only a few papers considered it in
the past [24,25]. Most articles addressed just the machine
learning problem regardless of the actual meaning of the
datasets. We will show here the much broader impact of
our technique, capable of computing real biological ensem-
bles of genes that have been suggested in the domain only
(e.g., Science [26]).

In Fig. 5, a graphical distribution of the most frequently
obtained genes in 30 independent executions of the MOGA
(in 3-objective mode) are reported. We have used the
Leukemia dataset, since it is the one commonly studied
by other related works in the literature. In this figure, we
highlight in bold face the genes also reported in the list
of the 30 most important genes (selected from 7129 in
Leukemia) suggested in Golub et al. [26]. In Table 6, we
arrange these genes by means of the rank assigned in the
Golub et al. list (column 1 in the referenced table).

The genes reported in Table 6 were also selected as
the most informative genes in recent specialized works.
Specifically, Draminski et al. [24] used a Monte Carlo
method for feature selection and supervised classifica-
tion on Leukemia and Lymphoma datasets. Wang and Zhu
[25] proposed a Nearest Shrunken Centroid (NSC) clas-
sifier on the Leukemia dataset. Both works assign the
gene M31166_at great importance, which matches with our
main results. In addition, in Table 7 we present a list of

Comparison with other authors. The columns indicate the average and standard deviation of the number of selected genes (NG), the accuracy rate (Ac.), and
the number of solutions in the final Pareto front (NSf). Ts indicates the percentage of samples of the external test set.

Dataset Liu and Iba (2002) [8] Hernandez et al. (2007) [22] MOGA 3 obj.
NG Ac. (%) Ts (%) NG Ac. (%) Ts (%) NG Ac. (%) Ts (%)

Leukemia 15.2+4.54 90.00+7.00 30% 3.17+1.16 91.5+5.9 47% 6+2.64 98.03 +1.61 47%
Colon 11.4+4.27 80.00+8.3 30% 7.05+1.07 84.6+6.6 50% 3.33£1.52 89.58+1.80 50%
Lymphoma 12.9+4.40 90.00+3.4 30% 529+1.31 93.3+3.1 50% 3.75+1.50 96.05+3.04 50%
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Fig. 5. Distribution of the most frequently obtained genes (in 30 independent executions) by our MOGA in Leukemia dataset.



Table 6

Top 7 genes ranked with MOGA (3-objectives) also reported in the list of the 30 most important genes suggested by Golub et al. on the Leukemia dataset.

Rank Index Accession Gene description
2 1926 M31166_at “PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta”
5 760 D88422_at CYSTATIN A

13 2233 M77142_at NUCLEOLYSIN TIA-1

17 3256 U46499_at “GLUTATHIONE S-TRANSFERASE, MICROSOMAL”

18 6379 M83652_s_at “PFC Properdin P factor, complement”

22 249 D14874_at ADM Adrenomedullin

29 5772 U22376_cds2_s_at “C-myb gene extracted from Human (c-myb) gene”

Table 7

New genes suggested in this work for the Leukemia dataset.

Index Accession Gene description
5975 J03778_s_at MICROTUBULE-ASSOCIATED PROTEIN TAU
1584 L40410_at Thyroid receptor interactor (TRIP8) mRNA, 3’ end of cds
865 HG270-HT270_at Lymphocyte Chemoattractant Factor
1494 L34820_at NAD+-dependent succinate-semialdehyde dehydrogenase (SSADH) mRNA, 3’ end
4780 X90858_at Uridine phosphorylase
5021 Y10812_at GB DEF = Fructose-1,6-bisphosphatase
442 D45370 at ApM2 mRNA for GS2374 (unknown product specific to adipose tissue)
1295 L12350_at THBS2 Thrombospondin 2
5731 HG1827-HT1856_s_at Cytochrome P450, Subfamily lic, Alt. Splice Form 2
3635 U70323_at SCA2 Spinocerebellar ataxia 2
4835 X95191_at GB DEF = Delta-sarcoglycan

new genes that we consider to be important, since they
were the ones that overlapped most in the resulting sub-
sets (together with the ones shown in Table 6) in our
experiments.

5. Conclusions

In this paper, we propose the use of the sensitivity and
the specificity rates, in addition to the number of selected
genes, as three main objectives to optimize when facing
the gene selection and classification of DNA Microarrays.
We have used a NSGA-II based MOGA algorithm which
evolves optimizing simultaneously these three objectives.
In this algorithm, the classification task is accomplished
by SVMs, and 10-fold cross-validation is applied to the re-
sulting subsets to evaluate the solutions. The effectiveness
of this approach is proved on public Microarray datasets
(Leukemia, Lymphoma, and Colon).

The first statistical analysis confirms that breaking up
the accuracy factor among the sensitivity and the speci-
ficity factors can increase, in terms of quality and diversity,
the number of good solutions. The comparisons presented
in Table 2 show the difference in the accuracy percentage
and number of solutions of both strategies: 2 and 3 objec-
tives.

The accuracy percentages of 98.03 + 1.61 obtained by
MOGA 3 obj., in contrast with the ones of 95.27 +2.21 ob-
tained by MOGA 2 obj. for Leukemia guarantee the useful-
ness of our proposal. In a second analysis, we compare our
approach with a naive method based on K-Means cluster-
ing, and with two related multiobjective approaches. Our
results suggest that the MOGA 3 obj. is highly appropriate
for solving the gene selection, outperforming the compared
techniques for all the datasets.

A final biological analysis reports a list of the most rep-
resentative genes selected by our approach. We can notice

that seven of these genes were also reported as the most
relevant ones in the original work of Golub et al. con-
cerning the Leukemia dataset. Specifically, the M31166_at
gene was also considered very important in related works,
which is consistent with our results.

As to future work, we are interested in evaluating our
algorithm in new Microarray datasets, and plan to test and
compare different MOGA approaches (IBEA, SPEA, etc.) in
order to offer fresh points of view to this problem.
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