
Soft Computing manuscript No.
(will be inserted by the editor)

Restart Particle Swarm Optimization with Velocity Modulation:
A Scalability Test
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Abstract Large scale continuous optimization problems have
more and more relevance in current benchmarks since they
are more representative of real-world problems (bioinfor-
matics, data mining, etc.). Unfortunately, the performance of
most available optimization algorithms deteriorates rapidly
as the dimensionality of the search space increases. In par-
ticular, Particle Swarm Optimization is a very simple and
effective method for continuous optimization. Nevertheless,
this algorithm usually suffers from an unsuccessful perfor-
mance on large dimension problems. In this work, we in-
corporate two new mechanisms to the Particle Swarm Op-
timization with the aim of enhancing its scalability. First,
a velocity modulation method is applied in the movement
of particles in order to guide them within the region of in-
terest. Second, a restarting mechanism avoids the early con-
vergence and redirects the particles to promising areas in the
search space. Experiments are carried out in the scope of this
Special Issue to test scalability. The results obtained show
that our proposal is scalable in all functions of the bench-
mark used, as well as numerically very competitive with re-
gards to other compared optimizers.
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1 Introduction

In the evaluation of the search capabilities of a given opti-
mization algorithm the usual approach is to choose a bench-
mark of known problems, to perform a fixed number of func-
tion evaluations, and to compare the results against the ones
of other algorithms in the state of art. However, while some
real industry problems can have hundreds and thousands of
variables, current benchmarks are normally adopted with
less than a hundred decision variables (see CEC’05 [25],
BBOB’09 [10] and BBOB’10 [11] testbeds). Large scale
continuous optimization problems have attracted more and
more interest (CEC’08 [28], ISDA’09 [15], and CEC’10 [27])
since they introduce a high complexity to the optimization
process. Issues like the exponential increment of the solu-
tion space, as well as the change that some problems suf-
fer from their own characteristics with the scale, can dete-
riorate quickly the performance of our optimization algo-
rithms [22]. This way, we can study certain mechanisms
that show the best performance in short scale optimization
problems, which is the case of the covariance matrix in G-
CMA-ES [2], but with an unsuitable behavior for high di-
mensional functions (more than 100 variables). A differ-
ent performance can be observed in simple algorithms like
MTS [30], which combines several local search strategies
using a small population. MTS was the best in the special
session of large scale optimization of CEC’08 [28], where
functions with a thousand of variables were tackled.

All this motivates us to deeply analyze the scalable ca-
pacities of optimization algorithms. In particular, Particle
Swarm Optimization (PSO) [17] is a very simple and effec-
tive method for continuous optimization. Nevertheless, this
algorithm is characterized by an early convergence behavior,
mainly produced by the overinfluenced best solution and its
relative facility to fall in local optima [19,31]. For this rea-
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son, PSO usually suffers from an unsuccessful performance
on large dimension problems.

In this work, we have incorporated two mechanisms to
the Particle Swarm Optimization with the aim of enhanc-
ing its scalability. First, a velocity modulation method is ap-
plied in the movement of particles in order to guide them
within the feasible region. Second, a restarting mechanism
avoids the early convergence and redirects the particles to
promising areas in the search space. To evaluate the scala-
bility of the resulting approach, we have followed the exper-
imental framework proposed in this Special Issue on Scala-
bility of Evolutionary Algorithms and other Metaheuristics
for Large Scale Continuous Optimization Problems (in URL
http://sci2s.ugr.es/eamhco/CFP.php). We also
studied the influence of both velocity modulation and restart-
ing mechanisms to show real insights of the improvement of
our proposal, called Restart PSO with Velocity Modulation
(RPSO-vm), regarding the basic PSO. The results obtained
confirm us that RPSO-vm is scalable in all functions of the
benchmark used, as well as highly competitive in compari-
son with PSO and other well-known efficient optimizers.

The remaining of this paper is organized as follows. Next
section presents basic preliminary concepts. In Section 3,
the RPSO-vm algorithm is introduced. Section 4 describes
the experimentation procedure with the benchmark of func-
tions and the parameter settings. In Section 5, experimental
results are reported with comparisons, analyses, and discus-
sions. Finally, concluding remarks are given in Section 6.

2 Preliminaries

Particle Swarm Optimization (PSO) [5,17] has been suc-
cessfully used in many problems of real parameter optimiza-
tion [4,8,16,19,20] since it is a well adapted algorithm for
continuous solution encoding. Basically, a continuous opti-
mization problem consists in this:

find x∗ such that ∀ x f (x∗)≤ f (x) (minimization).
Here, f (.) is a function in a real space domain that mod-

els an optimization problem, x = {x1,x2, . . . ,xDIM} is a so-
lution for such problem, and DIM is the number of variables
with xi ∈ [xlow,xupp] (1 ≤ i ≤ DIM). Finally, xlow, xupp ∈ R
correspond to lower (low) and upper (upp) limits of the vari-
able domain, respectively.

In PSO, each potential solution to the problem is given
by a particle position and the population of particles is called
swarm. In this algorithm, each particle position xi is updated
each generation t by means of the Equation 1.

xi(t +1)← xi +vi(t +1) (1)

where factor vi(t + 1) is the velocity of the particle and is
given by
vi(t +1)← vi(t)+ϕ1 ·UN(0,1) · (pi(t)−xi(t))

+ϕ2 ·UN(0,1) · (bi(t)−xi(t)) (2)

In this formula, pi(t) is the personal best solution that the
particle i has stored so far, bi(t) is the global best particle
(leader) that the entire swarm has ever generated. Finally,
ϕ1 and ϕ2 are specific parameters which control the relative
effect of the personal and global best particles, and UN(0,1)
is a uniform random value in [0,1] which is sampled anew
for each component of the velocity vector.

Velocity constriction is one of the main mechanism used
for controlling the movement of particles through the search
space and for balancing the exploration-exploitation tradeoff
of the algorithm. Therefore, an efficient movement strategy
of particles could help the PSO to find an optimum even in
large scale problems. We can find several velocity constric-
tion mechanisms in the literature. Three of the most popular
are the following ones:

• VMAX factor. The simplest method for regulating the
velocity lies in the maximum (and minimum) velocity de-
limitation. This mechanism uses a given value V max for ad-
justing the maximum velocity each particle undergoes each
generation step. According to this method, if the new veloc-
ity exceeds V max then this value is aggregated to the new
position calculation (Equation 1) instead of the correspond-
ing new velocity.

• Inertia weight (ω) [24,26] is one of the most used
methods in PSO for controlling the velocity of particles in
their movement. This parameter controls the trade-off be-
tween global and local search. Then, a high inertia value
provides the algorithm with exploration capability and a low
inertia promotes the exploitation. The inertia weight linearly
changes during the optimization process (of the algorithm)
by using the following equation:

ω ← ωmax− (ωmax−ωmin) ·#gcurrent

#gtotal
(3)

This way, at the beginning of the process a high inertia
(ωmax) value is introduced (for exploration) which decreases
until reaching the lowest value (ωmin). The inertia value is
incorporated in the velocity calculation as follows:
vi(t +1)← ω ·vi(t)+ϕ1 ·UN(0,1) · (pi(t)−xi(t))

+ϕ2 ·UN(0,1) · (bi(t)−xi(t)) (4)

• A third velocity constriction method was introduced
in [3]. In that work, the author indicates that the use of a
constriction factor (χ) may be necessary to ensure conver-
gence of the particle swarm algorithm. A detailed discussion
of the constriction factor is beyond the scope of this work
in [3], but a simplified method of incorporating it appears in
Equation 5, where χ is a function of ϕ1 and ϕ2 as reflected
in Equation 6.
vi(t +1)← χ [vi(t)+ϕ1 ·UN(0,1) · (pi(t)−xi(t))

+ϕ2 ·UN(0,1) · (bi(t)−xi(t))] (5)

χ =
2∣∣∣2−ϕ−
√

ϕ2−4ϕ
∣∣∣
,ϕ = ϕ1 +ϕ2,ϕ > 4 (6)



3

3 The Algorithm

Our proposal, RPSO-vm, consists in running a PSO algo-
rithm in which we have incorporated two main ideas: veloc-
ity modulation and restarting mechanisms.

Using the velocity modulation, the algorithm controls
that the overall movement calculated in each evolution step
and for each particle position does not exceed the limits
(xlow, xupp) of the problem domain. First, after calculating
the new velocity value (v j

aux) RPSO-vm performs a modula-
tion procedure as showed in Algorithm 1. The velocity vec-
tor magnitude (v̂i(t)) is then bounded, which limits the given
particle to move far from the interest area. These steps are
calculated in Algorithm 2 in Lines 7 and 8. Second, once
obtained the new velocity v j

i (t + 1), the overall movement
is calculated, also controlling that the new particle position
(x j

aux) does not exceed the problem limits. If this happens,
the new position is recalculated by subtracting the new ve-
locity to the old particle position (Lines 10 to 14 in Algo-
rithm 2).

Algorithm 1 Pseudocode of velmod procedure
1: if x j

low > v j
aux then

2: v j
i (t +1)← x j

low

3: else if v j
aux ≥ x j

upp then
4: v j

i (t +1)← x j
upp

5: end if
6: Output: v j

i (t +1) /*constricted velocity*/

A second phase of RPSO-vm concerns the restarting
strategy. Similar to other known algorithms like CHC [6]
and G-CMA-ES [2], our proposal is stopped whenever one
stopping criterion described below is met, and a restart is
launched. The decision on when to restart the algorithm is
made according to two independent criteria:

1. Stop if the standard deviation of the fitness values of par-
ticles in the entire swarm is smaller than 1e− 3. In this
case, the particles are restarted by randomly initializing
their positions with a probability of 1/DIM (Lines 18 to
26 in Algorithm 2).

2. Stop if the overall change in the objective function value
is below 1e−8 for 10 ·DIM/size(S) generations. In this
case, the particles are restarted by calculating their deriva-
tives to the global best position b and dividing them into
two (Lines 27 to 33 in Algorithm 2). This way, we force
the particles to go to the best but avoiding the global
convergence.

Applying the first restarting criteria, our algorithm tries
to mitigate the early stagnation that basic PSO usually suf-
fers, specially in multimodal functions. In spite of working
with high inertia and/or high social influences (ϕ1 and ϕ2),

which moves the particles to distant positions, the PSO tends
to be easily trapped in unproductive regions. This drawback
is specially sensitive in functions with multiple local optima
such as Rastriging and its hybrids.

The second restarting criteria is based on the existence
of plateaus and quite regular regions in functions like Rosen-
brock, Schwefel, and their hybrids, that makes the PSO to
spent a number of function evaluations (with time and com-
puting resources) without an effective improvement. In this
case, particles tends to spread them in the search space avoid-
ing the influence of the best particle. Therefore, after certain
number of function evaluations without improvement, the
particles are moved to their derivatives with regard to the
best position.

Algorithm 2 Pseudocode of RPSO-vm
1: t ← 0
2: initialize(S(t)) /* Swarm S(0)*/
3: while not stop condition is met (MAXIMUM(t)) do
4: /****************** Particle Swarm ******************/
5: for each particle position xi(t) of the swarm S(t) do
6: for each variable j of the particle position xi(t) do
7: v j

aux ← ω · v j
i (t)+ϕ1 ·UN(0,1) · (p j

i (t)− x j
i (t))

+ϕ2 ·UN(0,1) · (b j(t)− x j
i (t))

8: v j
i (t +1)← velmod(v j

aux)
9: x j

aux ← x j
i (t)+ v j

i (t +1)
10: if x j

low < x j
aux ≤ x j

upp then
11: x j

i (t +1)← x j
aux

12: else
13: x j

i (t +1)← x j
i (t)− v j

i (t +1)
14: end if
15: end for
16: end for
17: /******************** Restarting ********************/
18: if std(S) < 1e−3 then
19: for each particle position xi(t) of S(t) (with xi(t) 6= b(t)) do
20: for each variable j of the particle position xi(t) do
21: if r j(t) < 1/DIM (with r j(t) ∈ [0,1]) then
22: x j

i (t +1)← x j
low +UN(0,1) · (x j

upp− x j
low)

23: end if
24: end for
25: end for
26: end if
27: if change( f it(b)) < 1e−8 for (10 ·DIM)/size(S) steps then
28: for each particle position xi(t) of S(t) (with xi(t) 6= b(t)) do
29: for each variable j of the particle position xi(t) do
30: x j

i (t +1)← (b j(t)− x j
i (t))/2

31: end for
32: end for
33: end if
34: t ← t +1
35: end while
36: Output: b /*The best solution found*/

Algorithm 2 shows the complete pseudocode of the RPSO-
vm algorithm developed for this work. First, an initialization
process of all particles in the swarm S is carried out. After
this, each evolution step the particle’s positions are updated
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following the velocity variation model of the equations pre-
viously explained (Lines 5 to 16). If stopping criterions are
reached, the algorithm restarts modifying the particles, ex-
cepting the best one (Lines 18 to 33). Finally, the algorithm
returns the best solution found during the whole process.

4 Experimental Setup

In this section, we present the experimental methodology
and statistical procedure followed to evaluate and to com-
pare our proposal. This experimentation has been defined in
the scope of the Special Issue on Scalability of Evolution-
ary Algorithms and other Metaheuristics for Large Scale
Continuous Optimization Problems (SOCO’10), available in
URL http://sci2s.ugr.es/eamhco/CFP.php.

We have implemented our RPSO-vm in C++ using the
MALLBA library [1], a framework of metaheuristics. The
benchmark of functions was tackled including the C-code
provided in this Special Issue to our implementation of RPSO-
vm. A complete package of this software is available in the
new version release of MALLBA1. Following the specifica-
tions of the SOCO’10 experimental procedure, we have per-
formed 25 independent runs of RPSO-vm for each test func-
tion and dimension. The study has been made with dimen-
sion D = 50, 100, 200, 500, and 1000 continuous variables.
The measures provided are the Average, the Maximum, the
Minimum, and the Median of error of the best individuals
found in the 25 runs. For a solution x, the error measure is
defined as: f (x)− f ∗, where f ∗ is the optimum fitness of the
function. The maximum number of fitness evaluations has
been stated to 5000 ·D, which constitutes the stop condition
of each run.

To analyze the results we have used non-parametric [23]
tests. These tests use the mean ranking of each algorithm.
We have applied them since several times the functions might
not follow the conditions of normality and homoskedasticity
to apply parametric tests with security [7]. In particular, we
have considered the application of the Iman and Davenport’s
test, and Holm’s test as post-hoc procedure. The former is
used to know beforehand if there are statistically relevant
differences in compared algorithms. In that case, a post-hoc
procedure, the Holms test, is then employed to know which
algorithms are statistically worse than the reference algo-
rithm with the best ranking.

4.1 Benchmark Functions

The test suite elaborated for this Special Issue is composed
by 19 functions with different properties [14]: unimodal,

1 MALLBA Library http://neo.lcc.uma.es/mallba/easy-mallba/html/mallba.html.
Directory Mallba/rep/PSO/soco2010

multimodal, separable, non-separable, shifted, and hybrid
composed. Functions f1 to f6 were defined for CEC’08 [28]
and functions f7 to f11 were defined for ISDA’09 [15] (and
shifted for SOCO’10), where the previous ones were also
used. Finally, functions f12 to f19 have been created specifi-
cally for this Special Issue. Table 1 shows their names, bounds,
and optimum values. We can describe several properties of
the functions that we consider interesting.

– Functions f1 and f2 are shifted unimodal, functions f3
to f6 are shifted multimodal and functions f7 to f11 are
shifted unimodal.

– Functions f2, f3, f5, f9, and f10 are non-separable. That
is specially interesting to analyze if our proposal obtains
good results in non-separable functions since we can ob-
serve its capacity of managing correlated variables, a
typical property in real world problems.

– Functions f12 to f19 are hybrid composition functions.
They have been generated by composing (⊕) two func-
tions, one or both of them non-separable. For these com-
positions, functions f7 to f11 have been used in their
non-shifted versions (NS). A composition uses a split-
ting mechanism to graduate the proportion (in parenthe-
ses in Table 1) of non-separable variables in the com-
plete search space.

Table 1 SOCO’10 test suite of functions

Number Name Intervals f ∗

f1 Shifted Sphere [-100, 100] -450
f2 Shifted Schwefel 2.21 [-100, 100] -450
f3 Shifted Rosenbrock [-100, 100] 390
f4 Shifted Rastrigin [-5, 5] -330
f5 Shifted Griewank [-600, 600] -180
f6 Shifted Ackley [-32, 32] -140
f7 Shifted Schwefel 2.22 [-10, 10] 0
f8 Shifted Schwefel 1.2 [-65.536, 65.536] 0
f9 Shifted Extended f10 [-100, 100] 0
f10 Shifted Bohachevsky [-15, 15] 0
f11 Shifted Schaffer [-100, 100] 0
f12 Hybrid NS f9⊕f1 (0.25) [-100, 100] 0
f13 Hybrid NS f9⊕f3 (0.25) [-100, 100] 0
f14 Hybrid NS f9⊕f4 (0.25) [-5, 5] 0
f15 Hybrid NS f10⊕NS f7 (0.25) [-10, 10] 0
f16 Hybrid NS f9⊕f1 (0.50) [-100, 100] 0
f17 Hybrid NS f9⊕f3 (0.75) [-100, 100] 0
f18 Hybrid NS f9⊕f4 (0.75) [-5, 5] 0
f19 Hybrid NS f10⊕NS f7 (0.75) [-10, 10] 0

Table 2 Parameter setting used in RPSO-vm

Description Parameter Value
Swarm size size(S) 10
Inertia weight ω 0.0← 0.1
Individual coefficient ϕ1 1.5
Social coefficient ϕ2 1.5
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Table 3 Maximum, Minimum, Median, and Mean Errors obtained by RePSOVM for all dimensions

Dimension Value f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

50

Maximum 2.84E-14 1.58E-02 1.86E+04 2.84E-14 3.20E-01 1.78E-11 1.78E-14 2.13E+03 6.77E+00 0.00E+00
Median 2.68E-14 6.60E-03 1.90E+01 2.66E-14 7.36E-02 2.66E-13 0.00E+00 1.04E+03 3.12E-06 0.00E+00
Minimum 1.87E-14 4.36E-03 5.21E-02 0.00E+00 0.00E+00 1.24E-13 0.00E+00 4.37E+02 0.00E+00 0.00E+00
Mean 2.62E-14 7.54E-03 1.75E+03 2.30E-14 9.53E-02 1.49E-12 1.14E-15 1.06E+03 2.94E-01 0.00E+00

100

Maximum 2.84E-14 2.92E-01 9.65E+03 2.84E-14 3.18E-01 9.52E-11 0.00E+00 1.89E+04 2.80E+00 0.00E+00
Median 2.80E-14 2.01E-01 1.19E+02 2.77E-14 8.80E-02 6.32E-13 0.00E+00 1.05E+04 2.58E-05 0.00E+00
Minimum 1.57E-14 1.17E-01 3.57E-01 1.17E-14 1.31E-14 2.42E-13 0.00E+00 6.82E+03 5.93E-07 0.00E+00
Mean 2.66E-14 1.98E-01 1.42E+03 2.61E-14 1.07E-01 4.76E-12 0.00E+00 1.09E+04 1.85E-01 0.00E+00

200

Maximum 2.84E-14 2.49E+00 6.60E+03 2.84E-14 7.74E-01 8.20E-12 0.00E+00 7.06E+04 2.51E+01 0.00E+00
Median 2.75E-14 2.01E+00 6.80E+01 2.74E-14 1.18E-01 1.89E-12 0.00E+00 5.05E+04 1.48E-03 0.00E+00
Minimum 0.00E+00 1.65E+00 8.75E-02 0.00E+00 1.35E-14 6.96E-13 0.00E+00 3.81E+04 1.35E-06 0.00E+00
Mean 2.53E-14 2.00E+00 1.03E+03 2.43E-14 1.73E-01 2.95E-12 0.00E+00 5.23E+04 1.67E+00 0.00E+00

500

Maximum 2.84E-14 1.81E+01 1.47E+04 2.84E-14 6.01E-01 7.01E-12 1.13E-14 3.62E+05 2.28E+01 0.00E+00
Median 2.82E-14 1.71E+01 1.38E+02 2.77E-14 2.52E-01 2.59E-12 0.00E+00 3.00E+05 1.81E+00 0.00E+00
Minimum 1.73E-14 1.49E+01 2.70E-02 0.00E+00 1.42E-14 1.21E-12 0.00E+00 2.47E+05 1.90E-03 0.00E+00
Mean 2.65E-14 1.67E+01 1.13E+03 2.44E-14 2.54E-01 3.14E-12 0.00E+00 3.00E+05 4.85E+00 0.00E+00

1000

Maximum 2.84E-14 4.69E+01 2.07E+03 3.03E-13 8.68E-01 2.41E-11 1.55E-14 1.14E+06 3.17E+01 0.00E+00
Median 2.82E-14 4.29E+01 1.37E+02 2.78E-14 1.12E-01 3.75E-12 0.00E+00 9.21E+05 9.84E+00 0.00E+00
Minimum 2.07E-14 3.99E+01 1.85E+01 2.27E-14 1.22E-14 2.60E-12 0.00E+00 7.39E+05 6.45E-02 0.00E+00
Mean 2.72E-14 4.29E+01 3.21E+02 4.81E-14 2.14E-01 4.92E-12 0.00E+00 9.35E+05 1.17E+01 0.00E+00

Dimension Value f11 f12 f13 f14 f15 f16 f17 f18 f19

50

Maximum 3.07E-01 2.14E+00 1.49E+04 1.04E+00 0.00E+00 1.05E-09 9.08E+03 1.26E+00 0.00E+00
Median 3.84E-06 0.00E+00 1.43E+01 1.72E-14 0.00E+00 1.68E-11 5.06E+01 3.18E-09 0.00E+00
Minimum 0.00E+00 0.00E+00 2.67E-02 0.00E+00 0.00E+00 2.20E-12 9.41E-01 4.60E-10 0.00E+00
Mean 1.68E-02 8.58E-02 6.57E+02 6.81E-02 0.00E+00 7.88E-11 8.73E+02 5.05E-02 0.00E+00

100

Maximum 3.83E+00 2.30E-13 2.56E+04 1.20E+00 0.00E+00 1.11E-06 3.56E+04 1.61E+00 0.00E+00
Median 1.84E-05 0.00E+00 1.06E+02 4.38E-14 0.00E+00 4.64E-10 1.51E+02 5.04E-08 0.00E+00
Minimum 2.58E-08 0.00E+00 5.36E-02 0.00E+00 0.00E+00 5.17E-12 1.71E-01 1.46E-09 0.00E+00
Mean 4.61E-01 1.60E-14 2.25E+03 1.27E-01 0.00E+00 4.87E-08 1.76E+03 1.36E-01 0.00E+00

200

Maximum 3.73E+00 1.16E+00 1.23E+05 9.95E-01 0.00E+00 1.29E+01 2.40E+05 3.73E+00 0.00E+00
Median 5.47E-02 2.79E-14 1.48E+02 3.23E-12 0.00E+00 1.02E-09 2.77E+02 2.60E-08 0.00E+00
Minimum 4.37E-05 0.00E+00 7.56E-01 1.50E-14 0.00E+00 5.35E-11 1.31E-01 3.33E-09 0.00E+00
Mean 5.66E-01 4.64E-02 1.17E+04 7.96E-02 0.00E+00 5.40E-01 2.08E+04 1.50E-01 0.00E+00

500

Maximum 1.56E+01 2.98E-07 1.79E+04 1.36E+01 0.00E+00 3.04E+01 8.31E+03 1.41E+01 0.00E+00
Median 3.95E+00 2.75E-13 7.20E+01 2.50E-11 0.00E+00 3.46E-08 2.16E+01 7.80E-01 0.00E+00
Minimum 1.70E-03 0.00E+00 2.74E-01 2.05E-13 0.00E+00 6.84E-10 7.85E-01 1.44E-08 0.00E+00
Mean 4.88E+00 1.32E-08 1.33E+03 1.29E+00 0.00E+00 2.12E+00 5.72E+02 2.47E+00 0.00E+00

1000

Maximum 3.67E+01 1.16E-08 2.78E+04 2.60E+00 0.00E+00 7.53E+00 3.28E+04 6.52E+00 0.00E+00
Median 9.61E+00 2.02E-12 2.27E+02 4.07E-08 0.00E+00 2.19E-06 4.02E+01 1.33E+00 0.00E+00
Minimum 7.67E-02 2.98E-14 4.16E+01 5.39E-13 0.00E+00 6.27E-09 1.79E+00 2.93E-07 0.00E+00
Mean 1.10E+01 1.00E-09 1.93E+03 5.27E-01 0.00E+00 9.50E-01 2.82E+03 1.80E+00 0.00E+00

4.2 Parameter Settings

Table 2 shows the parameter settings used to configure our
proposal, RPSO-vm. These parameters were tuned in the
context of the ISDA’09 special session of real parameter op-
timization [15] reaching results statistically similar to the
best participant algorithm in that special session. These val-
ues of parameters were kept the same for all the experiments.
The inertia weight changes linearly by following Equation 3.

5 Analysis of Results

In this section, the results are presented and several analyses
are made as follows: first, we carry out a brief analysis of the
performance of our proposal in terms of the improvement
obtained by both, velocity modulation and restarting mech-
anisms. In this sense, an additional comparison is made con-
cerning the neighborhood topology of RPSO-vm in terms of
global best versus local best guidance of particles. Second,
the scalability analysis is tacked in comparison with pro-
vided results of other algorithms (DE, CHC, and G-CMA-
ES) for all dimensions. Finally, we present the computa-
tional effort required in terms of average running time.

5.1 RPSO-vm Performance Results

As specified in benchmarking requirements of this Special
Issue, we show in Table 3 the Average, the Maximum, the
Minimum, and the Median of the best error values found
in 25 independent runs of our RPSO-vm, for each function
and for each dimension. In this table, we have marked in
bold face the average error values since they will be used in
advance for comparisons (as recommended in this testbed).
Nevertheless, we can notice that median values are frequently
better than average values, especially in shifted Extended f10
(f9) and several hybrid functions (f14, f16 and f17) where
the distribution of results are scattered.

A first analysis consists of studying the improvement ob-
tained by RPSO-vm with regards to basic PSO algorithm.
Table 4 shows the mean errors (in 25 runs) obtained by RPSO-
vm in comparison with the ones of PSO only with restarting
(RPSO), PSO only with velocity modulation (PSO-vm), and
the basic PSO. Additionally, we have included to this com-
parison the standard version of PSO (SPSO 2007) consist-
ing on the lbest PSO. This version uses a variable random
topology for selecting the best neighbor (b) for each parti-
cle [9]. The resulting algorithm (lb)RPSO-vm incorporates
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both, modulation velocity and restart mechanisms in order
to obtain an as fair as possible comparison. For this specific
analysis, we have only focused on 1000 variables dimension
since it allows the most interesting analysis.

As we can see in Table 4, RPSO-vm obtains the higher
number of best error values (15 out of 19 in bold), and fol-
lowed by RPSO. The other versions are clearly worse than
the formers. In addition, after applying Iman-Davenport test
to see whether there are significant differences between them
we obtained a test value of 166.07 with a critical value of
3.77 (with α = 0.05), which proves that there is an evident
improvement of RPSO-vm over PSO.

Table 4 Mean Errors obtained by RPSO-vm, RPSO, PSO-vm, and
PSO for dimension 1000

F/D RPSO-vm RPSO PSO-vm PSO (lb)RPSO-vm
f1 2.72E-14 2.69E-14 5.61E+06 5.55E+06 6.31E+06
f2 4.29E+01 4.38E+01 1.72E+02 1.72E+02 1.89E+02
f3 3.21E+02 1.26E+04 5.43E+12 5.54E+12 7.65E+12
f4 4.81E-14 3.98E-02 2.32E+04 2.32E+04 2.56E+04
f5 2.14E-01 1.77E-01 4.98E+04 5.05E+04 5.65E+04
f6 4.92E-12 5.13E-12 2.14E+01 2.14E+01 2.15E+01
f7 0.00E+00 2.00E-14 4.93E+03 4.98E+03 3.34E+27
f8 9.35E+05 9.38E+05 2.03E+07 2.53E+07 8.33E+07
f9 1.17E+01 1.34E+01 1.20E+04 1.20E+04 1.28E+04
f10 0.00E+00 0.00E+00 2.16E+05 2.16E+05 2.57E+05
f11 1.10E+01 1.33E+01 1.20E+04 1.20E+04 1.28E+04
f12 1.00E-09 1.15E-01 4.20E+06 4.18E+06 4.73E+06
f13 1.93E+03 7.38E+02 4.13E+12 4.01E+12 5.86E+12
f14 5.27E-01 6.28E-01 1.76E+04 1.78E+04 1.96E+04
f15 0.00E+00 0.00E+00 3.81E+04 3.67E+04 5.37E+18
f16 9.50E-01 7.39E-01 2.67E+06 2.70E+06 3.14E+06
f17 2.82E+03 1.42E+04 9.53E+11 9.33E+11 1.64E+12
f18 1.80E+00 3.35E+00 7.20E+03 7.20E+03 8.29E+03
f19 0.00E+00 0.00E+00 1.14E+05 1.11E+05 6.59E+12

More precisely, Table 5 contains the results of a multi-
comparison Holm test where we can see that RPSO-vm is
statistically better than all PSO versions, excepting RPSO.
In this case, RPSO-vm obtained a better ranking than RPSO
but without significant differences. Therefore, the main con-
sequence is that velocity modulation (PSO-vm) can improve
the performance of basic PSO, although it is in the case of
PSO with restarting method (RPSO) where a significant im-
provement is obtained. In the case of (lb)RPSO-vm, we sus-
pect that the fact of using the same parameter setting specif-
ically fine-tuned for RPSO-vm (global best) could lead this
version of PSO to perform inadequately in our experiments.

Table 5 Comparison of RPSO-vm versus (lb)RPSO-vm, RPSO, PSO-
vm, and PSO according to Holm’s multicompare test (α = 0.05)

i algorithm z p-value α/i Sig.dif?
4 (lb)RPSO-vm 7.02 2.09E-12 0.012 Yes
3 PSO 4.10 4.06E-05 0.016 Yes
2 PSO-vm 4.10 4.06E-05 0.025 Yes
1 RPSO 0.41 6.81E-01 0.050 No

These preliminary results lead us to definitively use both,
the velocity modulation and the restarting method to design
our proposed PSO for large scale optimization (RPSO-vm).

5.2 Scalability Analysis

This section is focused on analyzing the capability of our
RPSO-vm to scale with the dimension of the search space
of each function. As proposed in this Special Issue, the scal-
ability study is made in comparison with other well-known
algorithms in the state of the art. These algorithms are a ver-
sion of DE (DE/1/exp) [21], CHC [6], and G-CMA-ES [2].
The descriptions and the parameter settings of these algo-
rithms can be found in [13]. Therefore, we first analyze the
results of RPSO-vm dimension by dimension, and secondly,
we made a brief study from a general point of view of the
scalability behavior of RPSO-vm regarding several selected
functions (f2, f9, f14, and f19) of the SOCO’10 benchmark.

An initial study with all these results consists of apply-
ing an Iman-Davenport test to see if there exist significant
differences between them for all considered dimensions. Ta-
ble 6 shows the results of this test, where we can effectively
notice that there are statistical differences in compared re-
sults. In fact, for almost all cases the test values (I.D. value)
increase with the dimension, which means that there are
higher differences between compared algorithms in large
scales (500 and 1000) than in small dimensions (50, 100
and 200). Hence, we can known beforehand that there is an
algorithm with poor scalability behavior, at least.
Table 6 Results of the Iman-Davenport’s (I.D.) test of RPSO-vm and
all compared algorithms for each dimension (α = 0.05)

Dimension I.D. value Critical value Sig. differences?
50 13.80 2.53 Yes

100 13.43 2.53 Yes
200 12.76 2.53 Yes
500 14.37 2.53 Yes

1000 30.04 2.84 Yes

Following this general point of view, Table 7 shows the
results of applying a multicomparison Holm test to all mean
fitness values obtained by each algorithm for each dimen-
sion. We must notice that G-CMA-ES could not obtained
any result for dimension 1000 (Table 12), hence it has not
been considered for comparisons regarding the largest scale.

The main observation we can draw from Table 7 is that
there are two algorithms: DE, and RPSO-vm that clearly
show a better average distribution than the remaining ones.
In addition, these ranks are kept for all dimensions. Con-
cretely, DE reached the best rank and for this reason it has
been considered as the reference algorithm for this statistical
test. Nevertheless, our RPSO-vm is the only algorithm that
does not shown significant statistical differences (Sig.dif)
with regard to DE (the reference), and resulting the lower
difference precisely in the largest dimension (1000 variables).
This is an important indicator that confirms us the successful
performance of our proposal in terms of scalability.

The following Tables 8, 9, 10, 11 and 12 contain the re-
sults of all compared algorithms for dimensions, 50, 100,
200, 500, and 1000, respectively. The last column in these
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Table 7 Comparison of DE versus RPSO-vm, CHC, and G-CMA-ES
according to Holm’s multicompare test (α = 0.05)

DIM i algorithm z p− value α/i Sig.dif?
3 CHC 4.77 1.79E-06 0.016 Yes

50 2 G-CMA-ES 2.95 3.14E-03 0.025 Yes
1 RPSO-vm 1.57 1.16E-01 0.050 No
3 CHC 4.71 2.45E-06 0.016 Yes

100 2 G-CMA-ES 2.89 3.85E-03 0.025 Yes
1 RPSO-vm 1.44 1.48E-01 0.050 No
3 CHC 4.649 3.33E-06 0.016 Yes

200 2 G-CMA-ES 2.76 5.70E-03 0.025 Yes
1 RPSO-vm 1.38 1.66E-01 0.050 No
3 CHC 4.52 6.07E-06 0.016 Yes

500 2 G-CMA-ES 3.70 2.09E-04 0.025 Yes
1 RPSO-vm 1.57 1.16E-01 0.050 No

1000 2 CHC 4.62 3.77E-06 0.025 Yes
1 RPSO-vm 0.97 3.30E-01 0.050 No

Table 8 Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-
vm for dimension 50

f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 1.67E-11 0.00E+00 2.62E-14
f2 3.60E-01 6.19E+01 2.75E-11 7.54E-03
f3 2.89E+01 1.25E+06 7.97E-01 1.75E+03
f4 3.98E-02 7.43E+01 1.05E+02 2.30E-14
f5 0.00E+00 1.67E-03 2.96E-04 9.53E-02
f6 1.43E-13 6.15E-07 2.09E+01 1.49E-12
f7 0.00E+00 2.66E-09 1.01E-10 0.00E+00
f8 3.44E+00 2.24E+02 0.00E+00 1.06E+03
f9 2.73E+02 3.10E+02 1.66E+01 2.94E-01
f10 0.00E+00 7.30E+00 6.81E+00 0.00E+00
f11 6.23E-05 2.16E+00 3.01E+01 1.68E-02
f12 5.35E-13 9.57E-01 1.88E+02 8.58E-02
f13 2.45E+01 2.08E+06 1.97E+02 6.57E+02
f14 4.16E-08 6.17E+01 1.09E+02 6.81E-02
f15 0.00E+00 3.98E-01 9.79E-04 0.00E+00
f16 1.56E-09 2.95E-09 4.27E+02 7.88E-11
f17 7.98E-01 2.26E+04 6.89E+02 8.73E+02
f18 1.22E-04 1.58E+01 1.31E+02 5.05E-02
f19 0.00E+00 3.59E+02 4.76E+00 0.00E+00

Table 9 Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-
vm for dimension 100

f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 3.56E-11 0.00E+00 2.66E-14
f2 4.45E+00 8.58E+01 1.51E-10 1.98E-01
f3 8.01E+01 4.19E+06 3.88E+00 1.42E+03
f4 7.96E-02 2.19E+02 2.50E+02 2.61E-14
f5 0.00E+00 3.83E-03 1.58E-03 1.07E-01
f6 3.10E-13 4.10E-07 2.12E+01 4.76E-12
f7 0.00E+00 1.40E-02 4.22E-04 0.00E+00
f8 3.69E+02 1.69E+03 0.00E+00 1.09E+04
f9 5.06E+02 5.86E+02 1.02E+02 1.85E-01
f10 0.00E+00 3.30E+01 1.66E+01 0.00E+00
f11 1.28E-04 7.32E+01 1.64E+02 4.61E-01
f12 5.99E-11 1.03E+01 4.17E+02 1.60E-14
f13 6.17E+01 2.70E+06 4.21E+02 2.25E+03
f14 4.79E-02 1.66E+02 2.55E+02 1.27E-01
f15 0.00E+00 8.13E+00 6.30E-01 0.00E+00
f16 3.58E-09 2.23E+01 8.59E+02 4.87E-08
f17 1.23E+01 1.47E+05 1.51E+03 1.76E+03
f18 2.98E-04 7.00E+01 3.07E+02 1.36E-01
f19 0.00E+00 5.45E+02 2.02E+01 0.00E+00

tables shows the results of RPSO-vm, indicating in bold face
such values for which the mean error is the best found. A
detailed study leads us to analyze the results dimension by
dimension in the following.

Table 10 Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-
vm for dimension 200

f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 8.34E-01 0.00E+00 2.53E-14
f2 1.92E+01 1.03E+02 1.16E-09 2.00E+00
f3 1.78E+02 2.01E+07 8.91E+01 1.03E+03
f4 1.27E-01 5.40E+02 6.48E+02 2.43E-14
f5 0.00E+00 8.76E-03 0.00E+00 1.73E-01
f6 6.54E-13 1.23E+00 2.14E+01 2.95E-12
f7 0.00E+00 2.59E-01 1.17E-01 0.00E+00
f8 5.53E+03 9.38E+03 0.00E+00 5.23E+04
f9 1.01E+03 1.19E+03 3.75E+02 1.67E+00
f10 0.00E+00 7.13E+01 4.43E+01 0.00E+00
f11 2.62E-04 3.85E+02 8.03E+02 5.66E-01
f12 9.76E-10 7.44E+01 9.06E+02 4.64E-02
f13 1.36E+02 5.75E+06 9.43E+02 1.17E+04
f14 1.38E-01 4.29E+02 6.09E+02 7.96E-02
f15 0.00E+00 2.14E+01 1.75E+00 0.00E+00
f16 7.46E-09 1.60E+02 1.92E+03 5.40E-01
f17 3.70E+01 1.75E+05 3.36E+03 2.08E+04
f18 4.73E-04 2.12E+02 6.89E+02 1.50E-01
f19 0.00E+00 2.06E+03 7.52E+02 0.00E+00

Table 11 Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-
vm for dimension 500

f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 2.84E-12 0.00E+00 2.65E-14
f2 5.35E+01 1.29E+02 3.48E-04 1.67E+01
f3 4.76E+02 1.14E+06 3.58E+02 1.13E+03
f4 3.20E-01 1.91E+03 2.10E+03 2.44E-14
f5 0.00E+00 6.98E-03 2.96E-04 2.54E-01
f6 1.65E-12 5.16E+00 2.15E+01 3.14E-12
f7 0.00E+00 1.27E-01 7.21E+153 0.00E+00
f8 6.09E+04 7.22E+04 2.36E-06 3.00E+05
f9 2.52E+03 3.00E+03 1.74E+03 4.85E+00
f10 0.00E+00 1.86E+02 1.27E+02 0.00E+00
f11 6.76E-04 1.81E+03 4.16E+03 4.88E+00
f12 7.07E-09 4.48E+02 2.58E+03 1.32E-08
f13 3.59E+02 3.22E+07 2.87E+03 1.33E+03
f14 1.35E-01 1.46E+03 1.95E+03 1.29E+00
f15 0.00E+00 6.01E+01 2.82E+262 0.00E+00
f16 2.04E-08 9.55E+02 5.45E+03 2.12E+00
f17 1.11E+02 8.40E+05 9.59E+03 5.72E+02
f18 1.22E-03 7.32E+02 2.05E+03 2.47E+00
f19 0.00E+00 1.76E+03 2.44E+06 0.00E+00

Table 12 Mean Errors obtained by DE, CHC, and RPSO-vm for di-
mension 1000

f/Alg. DE CHC RPSO-vm
f1 0.00E+00 1.36E-11 2.72E-14
f2 8.46E+01 1.44E+02 4.29E+01
f3 9.69E+02 8.75E+03 3.21E+02
f4 1.44E+00 4.76E+03 4.81E-14
f5 0.00E+00 7.02E-03 2.14E-01
f6 3.29E-12 1.38E+01 4.92E-12
f7 0.00E+00 3.52E-01 0.00E+00
f8 2.46E+05 3.11E+05 9.35E+05
f9 5.13E+03 6.11E+03 1.17E+01
f10 0.00E+00 3.83E+02 0.00E+00
f11 1.35E-03 4.82E+03 1.10E+01
f12 1.68E-08 1.05E+03 1.00E-09
f13 7.30E+02 6.66E+07 1.93E+03
f14 6.90E-01 3.62E+03 5.27E-01
f15 0.00E+00 8.37E+01 0.00E+00
f16 4.18E-08 2.32E+03 9.50E-01
f17 2.36E+02 2.04E+07 2.82E+03
f18 2.37E-03 1.72E+03 1.80E+00
f19 0.00E+00 4.20E+03 0.00E+00

5.2.1 Dimension 50

Table 8 shows mean errors (of 25 runs) obtained by DE,
CHC, G-CMA-ES, and RPSO-vm for dimension 50. In this
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case, DE obtained the best results in 13 functions, 7 of them
in hybrid composition functions.

RPSO-vm obtained the best results in 7 functions, and
G-CMA-ES obtained the best results in 3 functions.

The Holm’s test with α = 0.05 (Table 7) showed that
DE, the algorithm with best ranking is statistically better
than all algorithms, excepting RPSO-vm with p-value= 0.05.

5.2.2 Dimension 100

In this case, in spite of reaching DE the best mean error
in more functions than RPSO-vm and G-CMA-ES (see Ta-
ble 9), both Friedman’s and Holm’s test showed similar re-
sults to dimension 50. That is, RPSO-vm and DE are statis-
tically similar to themselves, but better than CHC, and G-
CMA-ES.

5.2.3 Dimension 200

As shown in Table 10, the results are quite similar to the pre-
vious ones of dimension 100. In fact, the same algorithms
(RPSO-vm, DE, and G-CMA-ES) obtained the best mean
errors practically in the same functions. Holm’s test also
obtained that DE is statistically similar to RPSO-vm (p-
value= 0.05), and better than the rest of algorithms.

5.2.4 Dimension 500

Table 11 contains the mean errors of all algorithms in di-
mension 500. We can see the set functions for which RPSO-
vm always obtained the best mean fitness: f4, f7, f9, f10,
f15, and f19. In particular Shifted Schwefel 2.22 (f7) and
its hybrids (f15 and f19) are optimized for all dimensions.
These functions are unimodal separable (f7) and unimodal
non-separable (f9, f10, f15, and 19) which could led us to
think that RPSO-vm only has successful performance with
unimodal functions, but we can easily check that our pro-
posal obtained the best results for f4 (multimodal), and for
all dimensions. In addition, RPSO-vm obtained the second
best mean fitness for the remaining of hybrid functions (di-
mension 500). Statistically, Holm’s test confirms our ini-
tial hypothesis since it showed (Table 7) that the results of
RPSO-vm are not significantly different to the ones of DE
(p-value= 0.05), and they are statistically better than the re-
sults of the rest of algorithms.

5.2.5 Dimension 1000

For the largest scale, Table 12 shows the mean errors where
RPSO-vm obtained the best results in 10 out of 19 func-
tions. As aforementioned, G-CMA-ES did not obtained any
value for dimension 1000. Regarding dimension 500, the set
of functions for which RPSO-vm obtained the best mean
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Fig. 1 Scalable results of DE, CHC, G-CMA-ES, and RPSO-vm for
functions f2, f9, f14, and f19. Y axis shows the results in logarithmic
scale. X axis shows the problem dimensions

fitness has been increased with f2, f3, f12, and f14, having
these functions different properties of modality and separa-
bility. As happened in all dimensions, in spite of having DE
the best average ranking, the Holm’s test (Table 7) showed
RPSO-vm is statistically similar to DE. In comparison with
CHC, our proposal is statistically the best algorithm.

From a graphical point of view, Fig. 1 illustrates the
tendency of results of the compared algorithms and RPSO-
vm for functions f2, f9, f14, and f19 through the differ-
ent dimensions. We have chosen these functions since they
showed a representative behavior in terms of scalability.
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Thus, we can observe in Fig. 1 that the performance of
all algorithms deteriorates with the increment of the dimen-
sion. Nevertheless, this degradation is slight in almost all
cases, and even nonexistent in others, as happened in func-
tions f2 and f19 for algorithms RPSO-vm and DE. A dif-
ferent and anomalous behavior is observed in G-CMA-ES
for functions f2 and f19, where it diminishes quickly. We
suspect that the use of covariance matrix mechanism of G-
CMA-ES is unsuitable for large dimensions due to the great
amount of resources it requires [12,18].

5.3 Computational Effort

Finally, we present in this section some remarks about the
computational effort. To execute these experiments, we have
used the computers of the laboratories of the Departament
of Computer Science of the University of Málaga (Spain).
Most of them are equipped with modern dual core proces-
sors, 1GB RAM, and Linux so, having into account that
there are more than 180 computers, that means that up to 360
cores have been available. To run all the programs, we have
used the Condor [29] middleware that acts as a distributed
task scheduler (each task dealing with one independent run
of RPSO-vm).

In Table 13, we present the average running time (sec-
onds) in which RPSO-vm has found the best mean error for
all functions and for all dimensions. As expected, the run-
ning time increases with the number of variables, specially
in non-separable functions. Specifically, f1 (Shifted Sphere)
required the lowest time to be optimized for all dimensions,
and f17 (Hybrid NS f9⊕f3) toke the longest time. In general,
hybrid composition functions required more time to reach
their best value than simple functions.

Table 13 Average running time (ART), in seconds, of the 25 runs of
RPSO-vm for all functions and for all dimensions D

ART/D 50 100 200 500 1000
f1 7.91E-01 3.33E+00 1.36E+01 8.42E+01 3.60E+02
f2 2.72E+00 9.67E+00 4.10E+01 2.55E+02 9.37E+02
f3 6.30E+00 2.66E+01 9.85E+01 5.71E+02 2.50E+03
f4 2.82E+00 1.26E+01 5.50E+01 3.81E+02 1.52E+03
f5 2.19E+00 8.06E+00 3.82E+01 2.24E+02 8.60E+02
f6 4.82E+00 1.65E+01 7.43E+01 4.14E+02 1.76E+03
f7 2.42E+00 8.62E+00 3.58E+01 2.11E+02 8.72E+02
f8 2.27E+00 9.49E+00 3.41E+01 2.24E+02 8.02E+02
f9 9.05E+00 3.28E+01 1.32E+02 1.11E+03 3.19E+03
f10 4.14E+00 1.79E+01 6.40E+01 4.12E+02 1.74E+03
f11 9.23E+00 3.61E+01 1.43E+02 9.64E+02 3.92E+03
f12 4.17E+00 1.59E+01 6.63E+01 4.04E+02 1.33E+03
f13 7.44E+00 2.76E+01 9.97E+01 7.62E+02 3.03E+03
f14 5.91E+00 2.50E+01 9.30E+01 5.34E+02 2.20E+03
f15 2.78E+00 1.16E+01 4.43E+01 2.67E+02 8.90E+02
f16* 5.49E+00 2.20E+01 9.45E+01 6.09E+02 2.25E+03
f17* 8.48E+00 3.13E+01 1.41E+02 7.00E+02 3.24E+03
f18* 7.18E+00 3.05E+01 1.23E+02 7.47E+02 2.93E+03
f19* 4.01E+00 1.38E+01 6.15E+01 3.61E+02 1.43E+03

In this sense, an interesting observation consists in com-
paring the increment of both, the processing time and the

optimum mean error found, through the different scales of
the search space. This way, we can obtain insights about the
computational effort required with regards to the quality of
solutions obtained. Fig. 2 shows a representative case ob-
served in function f2, where the increment of the processing
time as well as the mean error is practically linear. If we take
into account that the search space grows exponentially with
the dimension [xlow,xupp]DIM in all functions, we can claim
that our proposal scales successfully. Concerning the qual-
ity of solutions, the deterioration that the mean error suffers
is higher in comparison with the processing time. Specifi-
cally, from dimension 200 to 500, the mean error increases
in 2 orders of magnitude while the time required takes less
than 1 order of magnitude. Curiously, the difference in the
mean error between 500 and 1000 dimensions is not bigger
than one order of magnitude which leads us to suspect that
our proposal performs relatively better in larger dimensions
than in smaller ones.

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E+02

50 100 500 1000

f2

TIME (seconds)

MEAN ERROR

Fig. 2 Differences in times versus mean error magnitudes of f2 for
each dimension. Y axis contains values in logarithmic scale and X axis
contains dimensions

6 Conclusions

In this work, we have incorporated both velocity modulation
and restarting mechanisms to the Particle Swarm Optimiza-
tion with the aim of enhancing its scalability. Our hypothesis
is that these two new mechanisms can help the PSO to avoid
the early convergence and redirects the particles to promis-
ing areas in the search space. The experimentation phase has
been carried out in the scope of this Special Issue to test the
ability of being scalable. The results obtained show that our
proposal is scalable in all functions of the benchmark used,
as well as highly competitive with regard to other compared
optimizers. In concrete, we can remark the following:

– the new proposal, called Restarting PSO with Velocity
Modulation (RPSO-vm), outperforms the basic PSO, as
well as PSO with each new mechanism separately, for all
dimensions. Additionally, the RPSO-vm algorithm with
global best neighborhood topology outperforms (lb)RPSO-
vm: they two are the same algorithm but one has a global
best (gbest) topology while the other has a variable neigh-
borhood (lbest) topology.
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– RPSO-vm shows a competitive performance in terms of
its scalability. In fact, it is the second best algorithm for
all dimensions and statistically similar to the best one
in comparison with provided algorithms in this Special
Issue. These algorithms: DE, CHC, and G-CMA-ES, are
well-known optimizers traditionally used for continuous
optimization and showing an excellent performance in
other bechmarks (CEC’05, CEC’08, BBOB’09, etc.).

– RPSO-vm obtained the best results in functions f4, f7,
f9, f10, f15, and f19 for all the dimensions. These func-
tions are all shifted and they have different properties of
modality, separability and composition. For the largest
dimension (1000), the set of functions in which our al-
gorithm obtained the best results is increased with f2, f3,
f12, and f14.

– In terms of computational effort, the running time in-
creases with the number of variables, specially in non-
separable and hybrid composition functions. Addition-
ally, we observed that from dimension 200 to 500 the
mean error increased in 2 orders of magnitude while the
time required takes less than 1 order of magnitude. The
difference in the mean error between 500 and 1000 di-
mensions is not bigger than one order of magnitude. This
leads us to suspect that our proposal performs relatively
better in larger dimensions than in smaller ones.

In general, we can conclude that modifying PSO, a sim-
ple well known algorithm, we have reached a highly accu-
rate performance even in large scale environments. In light
of these results, we are encouraged to follow betting on PSO
based algorithms in future works.
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