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Spatial Irradiance Estimation in a Thermosolar Power Plant by a Mobile
Robot Sensor Network

J. G. Martina,∗, J.M. Maestrea, E.F. Camachoa

aDepartment of Systems Engineering and Automation, University of Seville, Seville, Spain

Abstract

An algorithm for mapping Direct Normal Irradiance (DNI) in thermosolar power plants using a

Mobile Robotic Sensor Network (RSN) is presented. The algorithm selects measurements spots and

allocates the RSN accordingly to carry out the dynamic estimation of DNI. A generic thermosolar

power plant with a fleet of vehicles is used as a simulated case study to assess the performance of

the algorithm. The results show that the proposed method allows us to obtain a spatial estimation

of the DNI that improves the flow control in the loops of the plant, outperforming estimations

based on a single pyrheliometer.

Keywords: Multi-Robot System, Task planning, Sensor Networks, Direct Normal Irradiance,

Distributed Estimation, Thermosolar plant.

1. Introduction1

Thermosolar power plants are large-scale systems where solar collectors gather solar energy to2

generate electric power. In the case of Parabolic Trough Collector (PTC) solar plants, collectors3

are composed of parabolic mirrors and a tube located in the focal point of the parabola where a4

heat transfer fluid (HTF), usually thermic oil, is heated up to generate steam for a turbine (Ca-5

macho et al., 1997, Camacho and Berenguel, 2012). In these plants, there is typically a single6

pyrheliometer measuring Direct Normal Irradiance (DNI) to control the HTF flow, which is not7

efficient whenever the DNI received is not homogeneous across the solar field, e.g., due to clouds.8

In these circumstances, it is important to know the direct solar irradiance over the plant in order9

to increase or reduce the HTF flows accordingly to avoid avoid overheating in some parts of the10
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Nomenclature

Acronyms

HTF Heat Transfer Fluid.

TES Thermic Energy Storage.

UAV Unmanned Aerial Vehicle.

UGV Unmanned Ground Vehicle.

DNI Direct Normal Irradiance.

MRS Multi-Robot System.

MRTA Multi-Robot Task Allocation.

WSN Wireless Sensor Network.

RSN Robotic Sensor Network.

GIS Geographic Information System.

PTC Parabolic Though Collector.

Sets

T (k) Set of tasks in instant k.

V Set of unmanned vehicles.

G Set of UGVs.

A Set of UAVs.

C Set of values that sensors can measure.

Algorithm variables

CFR
ij Real cloud factor in cell ij.

CFE
ij Expected cloud factor in cell ij.

CFest
ij Estimated cloud factor in cell ij.

Hij Information entropy in cell ij.

CFEij Cloud factor effect in cell ij.

HEij Information entropy effect in cell ij.

WEij Wind effect in cell ij.

Jij Cost function in cell ij.

Algorithm parameters

ta Time in which algorithm erase unfin-

ished tasks and generate new ones.

λ1,2,3,4 Weights for CFE HE and WE respec-

tively.

a1,2 Parameters for CFest.

No
T Number of tasks generated each time

the algorithm generates new tasks.

F Forgetting factor.

MRTA parameters

δMRTA
j Represents the urgency of the tasks,

i.e., the penalization for the time taken

in performing a certain task j.

γiMRTA Represents the penalization for mov-

ing a certain robot i.

Other parameters

Vmean xy mean velocity of vehicles.

VZmean vertical mean velocity of vehicles.

σo Standard deviation of a measurement

taken in the same cell.

σmax Standard deviation of a measurement

taken in the farthest cell within the

range.

RD Range of cells where a measurement af-

fects other measurements.
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plant and not hot enough HTF in other parts of the plant. HTF may reach temperatures over the11

maximum limits. and as a consequence, collectors may need to be defocused, with the undesirable12

waste of solar energy.13

To deal with this issue, some works such as (Sánchez et al., 2018, Masero et al.) propose14

using local valves for controlling the flows in different collectors, requiring a spatial estimation15

of the irradiance throughout the plant. To this end, clouds movement can be forecasted using16

images (Radovan and Ban, 2014) and weather information (Zhang et al., 2018). Here, we consider17

DNI sensors mounted on unmanned vehicles as an integral part of the control system. Particularly18

this work presents a first assessment based on simulations for the use of mobile Robotic Sensor19

Network (RSN) to estimate solar irradiance on a thermosolar power plant. Even though unmanned20

vehicles are still expensive, their price is expected to continue decreasing at the same or even at21

a faster pace in the next years. Likewise, the performance increase of the power plant can easily22

outweigh the investment required.23

Multi-Robot Systems (MRS) are formed by more than one robot and have the objective of24

performing a set of tasks in an efficient manner. These systems have been used in the last decades25

for purposes such as logistics (Farinelli et al., 2017), surveillance (Gohari et al., 2019), filming (Zema26

et al., 2017), agriculture (agr), inspection (Brusell et al., 2016), and mapping (Yang et al., 2017).27

Another relevant application of MRS is the generation of RSN, i.e., a Wireless Sensor Network28

(WSN) where sensors can move around the field (Akyildiz et al., 2002, Aydin et al., 2019). In29

particular, RSN have often been proposed for mapping and moniroting environmental variables and30

gathering information for Geographic Information System (GIS) (Bolstad, 2016). Some works using31

RSNs for spatial estimation are mentioned in (Roldán et al., 2016), where one Unmanned Ground32

Vehicles (UGV) and one Unmaneed Aerial Vehicles (UAV) are used to monitor temperature and33

humidity in a greenhouse, and in (Conesa-Muñoz et al., 2016), where aerial and ground vehicles are34

respectively used to gather environmental information and perform interventions. Also, in (Zhang35

and Leonard, 2010), a cooperative Kalman filter is used for both managing a RSN and estimating36

the state of a static planar scalar field.37

Integration of the collected information is also a relevant topic in this context. For example,38

mapping environmental variables such as temperature, pressure and other geographic data has39

been largely approached using Kriging (Williams, 1998), which has became a de facto standard for40
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many GIS, such as ArcGIS. Kriging is a technique that was first developed in (Matheron, 1963) and41

then generalized for all sort of spatial applications in (Cressie and Wikle, 2015). In particular, the42

spatio-temporal generalization is specially suitable for events with dynamic variables and shifting43

concentration over a certain area, e.g., fire, contaminating fluids in water, and DNI changes due to44

cloud coverage. Indeed, this technique has been proposed in the literature to estimate and forecast45

solar irradiance, e.g., see (Yang et al., 2013) and (Aryaputera et al., 2015). Also, spatio-temporal46

kriging has been proposed for simultaneous environmental mapping of dynamic variables and sensor47

placement in works such as (Roy et al., 2016), (Roy et al., 2018) and (Graham and Cortés, 2011).48

In this work, we study how the RSN can be managed to collect information for the control sys-49

tem in the most efficient manner. In particular, we integrate several information layers comprising50

data measured by ground and air robots, and fixed sensors such as pyrheliometers. Then, we use a51

Bayesian approach to update the probability that a certain area of the solar field is covered. In this52

way, robots are moved to positions where the information gathered is maximized. This approach is53

aligned with other works in the literature that use Bayesian Inference (BI) and information theory54

to manage RSN such as (inf). Other works that follow this approach are (Julian et al., 2012),55

(Julian et al., 2013), and (Cui et al., 2015), where mutual information is used in lockstep with56

consensus based strategies for the control of a distributed fleet of vehicles acting as a RSN and57

then BI is applied to update the state of the environment.58

The rest of this work is organized as it follows: In Section 2, the problem statement and59

assumptions regarding the thermosolar plant, the vehicle fleet, and the clouds are presented; in60

Section 3, the proposed algorithm for the spatial estimation is detailed; in Section 4, the case study61

where the algorithm is tested is described; in Section 5, the results of the simulations are shown62

and discussed. Conclusions and future investigation lines are given in Section 6.63

2. Problem Statement64

PTC plants have an structured layout where the following elements can be found (see Fig. ??):65

• Collectors that gather solar energy and warm up the thermic oil.66

• Buildings containing:67

– Steam generation plant.68
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– Turbines.69

– Control rooms.70

– Workshops and storage buildings.71

– Offices.72

• Cooling towers.73

• HTF tanks.74

• Thermic Energy Storage (TES) tanks (in some cases).75

• Manifolds, which distribute (receive) the HTF to (from) the collectors.76

• Parking lots.77

In most cases, the buildings, the parking lots and the TES tanks are located in a central area78

for human operators. All the manifolds that distribute and collect oil come in and out of this area79

and the collectors are placed in rows to maximize the use of available area.80

A grid of DNI measurement spots or cells located in the space between collectors is considered.81

We assume that information from previous measurements and wind vectors in cells is available (e.g.,82

obtained from a numeric model like Harmonie Arome in Spain (Kalnay, 2003, AEMET)). Moreover,83

it could be considered that there are other sources of wind information such as anemometers in84

the plant and sensors in the UAVs.85

Clouds are assumed to be composed of a cluster of ellipsoids contained in a larger ellipsoid with86

random dimensions following a Gaussian distribution according to (Kulemin, 2003), with velocity87

interpolated from the wind field in each time iteration. An example of the clouds considered can88

be seen in Fig. 1. Note that Spencer equations (Spencer, 1971) can be used to obtain solar rays at89

each measurement spot and calculate their interference with clouds.90
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Figure 1: Example of clouds above the power plant.

Since nominal clear-sky irradiance can be computed with clear sky models, irradiance losses91

can be modelled by a cloud factor (CF) in the range 0 − 1 in each measurement spot, creating92

the CF grid of Fig. 2a. If CFij = 0, spot ij receives nominal DNI, whereas CFij = 1 implies that93

spot ij receives 0 DNI. Our aim is to estimate the CF grid as precisely as possible. Discretized94

real values are denoted as CFR
ij and are approached via a discrete probability distribution for each95

cell, forming the so-called PC field, which is depicted in Fig. 2b. When there is no information96

regarding the field, a uniform distribution for each cell is assumed.97
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(a) CFR grid. (b) PC grid.

Figure 2: Grids

To perform the estimation, an heterogeneous set of unmanned vehicles, V, is considered, which98

is composed of a set G of UGVs and a set A of UAVs, i.e., V = G ∪ A. Each vehicle has a DNI99

sensor integrated and can perform measurements at the cell where it is located by using sensors100

such as that in Fig. 3. Task consist of moving a sensing vehicle to a different cell and our aim is101

to generate at each time instant a set of tasks T to improve DNI estimations, i.e., T = T (k).102

Figure 3: ISS Solar-MEMS sun sensor (Solar MEMS Webpage).

Vehicles are assumed to have low level controllers and move always at cruise velocity with some103
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constraints:104

• Unmanned vehicles must not enter the buildings area. Consequently, there are no measure-105

ment spots inside this area.106

• Manifolds can only be crossed by UGVs using the bridges designed for this purpose.107

• Flying over collectors is not allowed for security.108

Furthermore, each vehicle is assumed to consume and charge its battery in a linear way, with109

rates depending on its features. Likewise, there are different charging stations available for UGVs110

and UAVs.111

Also, some considerations have been assumed regarding the sensors:112

• Sensors have a predefined resolution and range, i.e., they can only take values from an alphabet113

C, and not intermediate values.114

• The probability function of the sensor p(z|c) is known and modelled using truncated normal115

distributions, where z is the value of the measurement and c denotes the discretized value116

of the field. A subscript ij can be used to denote the value at a given cell (see Table 1).117

Hence, given the prior probability contained in PC field and the conditional sensor probability118

contained in PZ, the posterior probability (probability after a measure is taken) can be easily119

calculated using BI as120

P (crij |zij) =
P (crij)·P (zij |crij)∑

crij∈C
P (ckij) · P (zij |ckij)

crij ∈ C.
(1)

• Measurements taken while vehicles are moving are less reliable than when they are still for a121

certain time, tcm. Also, measurements taken by UAVs are less reliable than those taken by122

UGVs.123

• Measurements taken by fixed pyrheliometers are the most reliable ones.124

• Measurements in a certain location will affect the beliefs of nearby locations and during a time125

window, i.e., it is assumed that there is a spatio-temporal correlation in the DNI. Therefore,126
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to take nearby cells into account, BI becomes127

P (crij |zmn, zop) =
P (crij)·P (zmn|crij)·P (zop|crij)

P (zmn)·P (zop)
crij ∈ C, (2)

with zop and zmn being measurements taken in cells inside the influence area of cell ij.128

Table 1: PZ.

PZ zij = c1 · · · zij = cr · · · zij = c|C|

cij = c1 P (zij = c1|cij = c1) · · · P (zij = cr|cij = c1) · · · P (zij = c|C||cij = c1)

...
...

. . .
... . .

. ...

cij = cr P (zij = c1|cij = cr) · · · P (zij = cr|cij = cr) · · · P (zij = c|C||cij = cr)

...
... . .

. ...
. . .

...

cij = c|C| P (zij = c1|cij = c|C|) · · · P (zij = cr|cij = c|C|) · · · P (zij = c|C||cij = c|C|)

Finally, a regulation factor F is considered to make the probability return to maximum uncer-129

tainty if no new information is gathered during several time steps by using the update filter130

P (crij(k + 1)|crij(k)) = P (crij(k)) + ( 1
|C| − P (crij(k))) · F, crij ∈ C. (3)

2.1. Information Sources and Processing131

In this subsection, we review the considered information sources and the corresponding pro-132

cessing to obtain the PC field.133

2.1.1. Wind Effect134

The aim of this layer is to take into account the appearance of new clouds above the plant.135

Averaging the measurements of anemometers, a homogeneous wind in the plant is considered to136

find out where a cloud is more likely to enter the field. These cells will be assigned a value of137

WEij = 1. The value of the rest of the cells will be determined so that the previously mentioned138

value is WEij = 0 and that the value of WEij decays as a function of distance to the area where139

clouds get to the plant and the intensity of the wind.140
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2.1.2. CF Effect141

The expected value of the cell probability distributions, i.e., CFE
ij = E(PCij), is updated142

applying a mask or kernel hCF , generated using the average velocity of the clouds, taking into143

account cells from where a cloud might come from according to wind direction and intensity.144

This kernel is generated taking into account the already calculated layer WE. The size of the145

kernel depends on the intensity of the wind, since the key idea here is to modify CF according to146

the movements of clouds, so that new tasks can anticipate this movement.147

Once this kernel has been applied to CF , a new layer CFE is obtained. Notice that in layer148

CFE, the value of each cell ij depends not only on the value of CFE
ij , but also on the values of149

upwind cells.150

2.1.3. H Effect151

This layer identifies points where a measure can provide more information to the system. In152

information theory, Shannon Entropy (inf), H, measures the uncertainty of an information source,153

being 0 if the result is certain and 1 if there is total uncertainty on the result. From this viewpoint,154

it is clear that taking a measurement in a cell of the grid will reduce the information entropy on155

that cell, Hij , and also the cells nearby. The kernel hH can be computed by adding up all the156

entropy values in a circle around the measurement spot and normalizing to keep the value between157

0 and 1. Once this kernel has been applied to H, a new layer called HE is obtained.158

2.1.4. Shadow Detection159

Cloud shadows can alternatively be found using cameras on top of towers as in Kuhn et al.160

(2017), UAVs and even a hot-air balloon. Either way, we consider a Shadow Effect (SE) layer,161

with SEij = 1 if there is shadow in the cell and SEij = 0 otherwise. This camera provides us with162

very relevant information, discriminating in advance those points where there may be a fall of DNI163

due to a cloud passing by.164

2.2. Outcomes165

The outcomes obtained after processing the information gathered by the information sources166

are detailed next.167
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2.2.1. Computation of J168

Layer J allows us to generate new tasks and is calculated as the convex sum of the four layers:169

Jij = λ1 · CFEij + λ2 ·HEij + λ3 ·WEij + λ4 · SEij , (4)

s.t.
∑4

i=1 λi = 1.

Since the four layers are normalized, it holds that Jij ∈ [0, 1].170

The values of these weights change the behavior of the algorithm. The higher λ1 is, the more171

important the already known shadows become; exploring unknown areas is adjusted via λ2; λ3172

deals with surveilling the borders of the plant, where new shadows can appear; finally, λ4 ensures173

that non-shadowed cells have low value of J and it can be set to 0 if no shadows are detected.174

2.2.2. Cloud Factor Estimation175

To generate a spatial estimation of DNI at any time instant, it is necessary to consider the176

information available from the measurements taken previously, i.e., the information contained in177

PC. As stated previously, both the expected value CFE
ij and the entropy value Hij can be obtained178

from PCij , ∀i, j. Since the most likely value of a cell is zero when no other information is available,179

the following filter function is used:180

CF est
ij =

CFE
ij

1+ea1·(Hij−a2)
, (5)

where a1 and a2 are tuning parameters. In this way, if the entropy in a cell is high, the estimation181

will be nearer to 0 and if the entropy is low, the estimation will be corrected towards the value182

CFE
ij . Notice that equation (5) is an inverted logistic function that assign CF est

ij the value of CFE
ij183

if there is little uncertainty, and value 0 otherwise.184

Remark 1. Note that equation (5) is based on the activation function of a neuron. Implementing185

a complete neural network to taking into account not only the probability distribution in each cell186

but also that of the nearby cells its a matter of current research.187

Furthermore, when cameras are available we can assume that in all the cells where the cameras188

are not detecting any shadows CF est
ij = 0 disregarding the value of (5).189
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Finally, in Fig. 4, a summary of the different information sources considered and the processing190

flow is shown.191

Figure 4: Data gathered from information sources and processing flow. The WE block is explained in Subsub-

section 2.1.1. Both CF and CFE blocks are detailed in Subsubsection 2.1.2. H and HE are both described in

Subsubsection 2.1.3. Information gathered by cameras and the corresponding processing can be found in Subsubsec-

tion 2.1.4. Finally, the computation of layer J and of the estimated CF appear in Subsubsections 2.2.1 and 2.2.2,

respectively.

3. Tasks Generation192

In this section, an algorithm is proposed to generate new tasks for the vehicle fleet, so that a193

spatial estimation of the DNI in the field can be obtained. The proposed algorithm follows the194

block diagram of Fig. 5, where the first stage is to update the previously introduced layers.195
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Figure 5: Proposed Algorithm. Note that performing a step include all type of actions regarding the robots, the

sensors and the environment (moving to allocated tasks, taking new measures, updating the clouds and the sun

position, etc.)

Then, every time that timer ta ends, incomplete tasks are erased and new tasks are generated196

using layer J and Algorithm 1:197
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Algorithm 1: New Tasks Generation

Let No
T be the number of tasks to be generated;

NT = 1;

while NT ≤ No
T do

Find the cell with the maximum value of J ;

Update field H considering that a measurement has been taken in that cell by

subtracting to field Ha a conic surface centered in the chosen cell with a base radius

of RD;

Compute HEa from Ha;

Compute Ja by means of (4) replacing HE for HEa;

NT = NT + 1;

end

198

Once there is a new set of tasks, new assignments for the vehicles can be obtained using a199

MRTA algorithm based on (MRT), which solves200

min
U

JMRTA(U) =
|T |∑
j=1

δMRTA
j · tj(U) +

|V|∑
i=1

γMRTA
i · di(U) + Ω(U) (6)

s.t. ui(n) ∈ T ∪ {0} ∀ i, n

using a genetic algorithm (i.e., the allocations obtained may be suboptimal but feasible), where201

U =
[
u1 · · · uV

]
aggregate vectors ui ∈ R1×M representing the allocation of robot i, i.e., each202

element in ui represents a task and in a given allocation robot i will perform the tasks in ui203

sequentially (not considering zeros); δMRTA
j are weights corresponding to the priority given to task204

j; tj(U) is the time that it takes to complete the task j in a given allocation; γMRTA
i corresponds205

to the penalty of using robot i; and di(U) corresponds to the distance traveled by robot i, and206

function Ω(U) implements soft restrictions related to power feasibility of the allocation and no207

repetition of tasks. In the approach presented in this work, we will consider layer J to set δMRTA
j208

values for the tasks.209

Finally, this MRTA algorithm does not ensure fulfillment of all tasks before the next allocation,210

ta, but note that tasks may lose relevance as new information comes in. Hence, only truly relevant211

tasks will be generated again by the algorithm.212
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4. Case-Study213

In this section, we first present the simulated thermosolar plant layout and vehicles considered.214

Then, the proposed algorithm is tested.215

4.1. Thermosolar Plant Layout216

The thermosolar power plant is based on a section of the plant Solacor I in El Carpio,217

Spain (Abengoa) and can be seen in Fig. 6.218
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Figure 6: Section of the real Thermosolar power plant of El Carpio (Spain) and layout considered in this Case-Study

This 30 MW thermosolar plant covers 63 ha (1180 × 540 m), containing its operation zone,219

where the buildings, parking lots, TES and electric station are placed, in the upper centre of the220

plant. Likewise, cold and warm HTF manifolds run paralell from the southern part of the operation221

zone to the extremes of the plant, dividing the plant into three sectors. There are 18 loops in the222
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south sector of the plant and 8 loops in each one of the north sectors and a bridge for the ground223

vehicles to go from the south to the north at each side of the operation zone. Each loop has 4224

collectors in “U” shape, because loops start and end at the manifolds.225

4.2. Unmanned vehicles parameters226

The parameters of ground and aerial vehicles are given in Table 2 and are based on commercial227

models 1, with Vmean being the velocity in the horizontal plane, VZmean the vertical velocity, and228

λi the weight that each agent has in the MRTA step.229

Table 2: Value of the vehicle parameters based on commercial models.

Parameter UGV UAV

Vmean 1.5 m/s 10 m/s

VZmean 0 m/s 3 m/s

Discharge rate 0.005 0.1

Charge rate 0.0025 0.03

γMRTA
i 1.5 1

The initial positions of the vehicles can be seen in Fig. 6 and have been randomly generated.230

As for the pyrheliometer, it is fixed and located next to the plant.231

4.3. Bayesian estimation parameters232

It has been considered that the precision of the DNI sensors equipped in the vehicles is 10% so233

that cr can take 11 values from 0 to 1. The measurements follow normal distributions depending234

on the equipment and on how they are takenwith relevant features are presented in Table 3. The235

standard deviation σ is assumed to vary for adjacent cells as236

σ = σmax−σo

R3
D
·D3 + σo, (7)

1UAVs are based on DJI Matrice 200 and UGVs on Summit-XL.
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where σo is the standard deviation in the cell where the measurement has been taken, RD is the237

maximum distance from which a cell is affected by a measurement in another cell, and σmax is the238

value of σ at the farthest affected cell.239

Table 3: Measurement parameters

σo σmax tm(s) RD(cells)

Ground Vehicle 0.05 3 1 4

Moving Ground Vehicle in march 1 5 0.5 4

Aerial Vehicle 0.05 3 1 4

Moving Aerial Vehicle 1.5 6.5 0.5 4

Pyrheliometer 0 3 0.3 2

The algorithm is run every 60 s (ta) and the weights used are λ1 = 0.2, λ2 = 0.7 and λ3 = 0.1.240

4.4. Wind and clouds241

For the case study, wind velocity has been introduced as a vectorial field extracted from a242

numerical model, as stated in Section 2. In particular, the field is defined for a square area243

encompassing the plant and its surrounding area with different values at different heights. The244

mean value of this field is given by the vector
[
0.554 0.318 0

]T
m/s.245

In order to simulate dynamically a shadow field in the power plant, cumulus clouds have been246

randomly simulated above the thermosolar plant field between 500 m and 2000 m, which is the247

altitude where this type of clouds usually appear.248

5. Results249

In this section, the results of applying the algorithm proposed for task generation and spatial250

estimation to the case study are presented.251

A set of 30 minute simulations have been run with 3 different CF inputs chosen to test the252

algorithm (multiple cloud shadows with different intensities). Since the proposed algorithm solves253

the MRTA problem heuristically, simulations has been run multiple times. Also, results have been254

compared with the same estimation method but with random generation of the tasks.255
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Figure 7: The real cloud factor value, CFR, appears on the upper left corner. We can see that a cloud is covering a

big area of the field and the expected CF is extracted from the real map through the sensors (here we can see that

there is a strong belief of a big cloud shadowing the southwest of the plant). The H field shows the areas of the

field with greater uncertainty in yellow. Even though there is a strong certainty of the presence of a cloud, there are

other places where more clouds could be discovered. In addition, anemometers measure wind direction and intensity,

which will be used to process the expected CF field (using the kernel hCF ) and to update field WE. In this case,

since wind is coming from the lower left corner, this area has higher priority, which decreases linearly with distance.

The HE layer is obtained from correcting H using kernel hH . By adding the weighed CFE, HFE and WE layers

we can obtain J (cells with red crosses represent active tasks). Finally, the current estimation can be seen in the

lower right corner.

An example of the simulations, extracted from the video that can be checked here, can be seen256

in the following figure: In Fig. 9, the real value of the cloud factor in each cell is represented. The257

information gathered until that moment in the PC grid can be seen seen in the two fields obtained258

directly from it, namely, the expected CF field and the H field. From the information contained259

in these fields, the CFE and HE layers are obtained. Likewise, the WE layer is obtained from260

the wind direction and intensity. Then, using the previous layers, J is obtained. Besides, the261

estimation for the time instant is extracted from CF by means of (5). These active tasks and the262

locations of the vehicles in the plant can be seen in Fig. 8.263

Considering the heuristic nature of the algorithm proposed for solving the MRTA step, the264

same simulations have been run again for the same and different CF inputs. The complete set of265

simulations can be consulted here.266

In case a camera is available as an information source to detect cloud shadows, the algorithm267

can improve its performance. This information provides an extra layer that assigns 1 to shadowed268

cells and 0 to cloudless cells. This way, cloudy areas receive higher priority. The results can be269
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https://youtu.be/kSgmN2CasYg
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Figure 8: Location of the vehicles and the active tasks (second 1620)

verified here.270

For the sake of assessment, the error has been computed as the sum of the absolute difference271

between the estimated and the real cloud factor in every cell during the simulation. Fig. 10272

compares the proposed method with and without cameras to the random tasks generation approach273

and to the case where it is assumed that there are no clouds. Although the error made with the274

proposed approach without cameras can be greater at some points, when there is a cloud it improves275

its performance. Also, the proposed method with cameras outperforms all other methods during all276

the simulation length. Likewise, the random tasks approach can be worse than simply considering277

zeros in all cells.278

On the other hand, in Fig. 11, the proposed method (without cameras) is compared to using279

a single pyrheliometer to estimate the irradiance in the whole plant. Notice that whenever the280

pyrheliometer is shadowed, its error explodes. Likewise, the error using only the pyrheliometer and281

the error considering the complete grid zero are the same except for the cases previously mentioned.282

As can be seen, in most cases, once a cloud is detected, vehicles make a good estimation and283

follow it correctly. However, in some cases, particularly when a shadow is too light or the size of284

the cloud is not big enough, they may lose its track. Also, in other cases, clouds are only detected285

when they are already over the plant and not as they start covering it. Likewise, it may occur that286

the allocation finally performed by the MRTA algorithm was unable to fulfill nor regenerate some287

tasks due to the forgetting factor.288
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https://youtu.be/Lep9bphbdCw
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Figure 9: Information processing at second 1620 (CF Input No 1) using cameras. Weighing parameters are λ1 = 0.09,

λ1 = 0.6, λ1 = 0.01 and λ4 = 0.6. The main difference with the case with no cameras is that, in this case, there is

an extra layer that give us information about the places where there can be a shadow.

Finally, a relatively good estimation can be performed without cameras. Even when some noise289

is introduced, it can be eliminated using a filter. Also, a heuristic considering zero all measurements290

below a certain threshold has been included. The results of this approach can be verified here.291

6. Conclusions292

In this work, an algorithm that solves both the generation of new tasks and the spatial es-293

timation of the DNI has been developed. This algorithm deals with areas where there is little294

information and with those where there is bigger probability of finding shadows according to the295

accumulated knowledge and considering the effect of the wind. The proposed framework is mod-296

ular an can also include additional information sources as cameras capable of detecting shadows297

due to clouds. Likewise, note that this MSN is not designed to be operating at all times, but only298

during cloudy periods. It is in these moments when the control system can make the most from299

the information provided by the proposed system.300

As future development, parametric continuous probability distributions will be considered for301

sensors and for the field probability. Likewise, taking into account another measurements sources302

as the temperature sensors located in the collectors, will be considered. Another future line is303

performing nowcasting using the information gathered and processed by our algorithm. This304
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https://youtu.be/gwd0D2WPgFA
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Figure 10: Comparison of errors.

nowcast will not only be useful for controlling the thermosolar power plant but will also be able to305

refine the algorithm proposed in this work, particularly the task generation.306

Acknowledgment307

This project has received funding from the European Research Council (ERC) project OCON-308

TSOLAR (grant agreement No 789051) under the European Union Horizon 2020 Research and309

Innovation Programme.310

References311

M.312

Robots in Agriculture: State of Art and Practical Experiences, author=Roldán, Juan Jesús and del Cerro, Jaime and313
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A. Radovan and Ž. Ban. Predictions of Cloud Movements and the Sun Cover Duration. In 2014 37th International356

Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages357

1210–1215. IEEE, 2014.358

J. J. Roldán, P. Garcia-Aunon, M. Garzón, J. De León, J. Del Cerro, and A. Barrientos. Heterogeneous Multi-Robot359

System for Mapping Environmental Variables of Greenhouses. Sensors, 16(7):1018, 2016.360

V. Roy, A. Simonetto, and G. Leus. Spatio-Temporal Sensor Management for Environmental Field Estimation.361

Signal Processing, 128:369–381, 2016.362

V. Roy, A. Simonetto, and G. Leus. Spatio-Temporal Field Estimation Using Kriged Kalman Filter (KKF) with363

Sparsity-Enforcing Sensor Placement. Sensors, 18(6):1778, 2018.364

A. Sánchez, A. Gallego, J. Escaño, and E. Camacho. Temperature Homogenization of a Solar Trough Field for365

Performance Improvement. Solar Energy, 165:1–9, 2018.366

Solar MEMS Webpage. Solar-MEMS. URL https://www.solar-mems.com/solar-tracking/.367

J. Spencer. Fourier Series Reprensentation of the Position of the Sun. Search, 2(5):172, 1971.368

C. K. Williams. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond. In369

Learning in graphical models, pages 599–621. Springer, 1998.370

D. Yang, C. Gu, Z. Dong, P. Jirutitijaroen, N. Chen, and W. M. Walsh. Solar Irradiance Forecasting Using Spatial-371

Temporal Covariance Structures and Time-Forward Kriging. Renewable Energy, 60:235–245, 2013.372

J. Yang, A. Dani, S.-J. Chung, and S. Hutchinson. Vision-Based Localization and Robot-Centric Mapping in Riverine373

Environments. Journal of Field Robotics, 34(3):429–450, 2017.374

N. R. Zema, E. Natalizio, and E. Yanmaz. An Unmanned Aerial Vehicle Network for Sport Event Filming with375

Communication Constraints. 2017.376

24

https://www.solar-mems.com/solar-tracking/


F. Zhang and N. E. Leonard. Cooperative Filters and Control for Cooperative Exploration. IEEE Transactions on377

Automatic Control, 55(3):650–663, 2010.378

R. Zhang, M. Feng, W. Zhang, S. Lu, and F. Wang. Forecast of Solar Energy Production-A Deep Learning Approach.379

In 2018 IEEE International Conference on Big Knowledge (ICBK), pages 73–82. IEEE, 2018.380

25


	Introduction
	Problem Statement
	Information Sources and Processing
	Wind Effect
	CF Effect
	H Effect
	Shadow Detection

	Outcomes
	Computation of J
	Cloud Factor Estimation


	Tasks Generation
	Case-Study
	Thermosolar Plant Layout
	Unmanned vehicles parameters
	Bayesian estimation parameters
	Wind and clouds

	Results
	Conclusions

