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Abstract 

This thesis presents several applications of dynamic state estimators based on 

Kalman filtering to different fields of the electric power systems. 

First, a parameter estimation technique is proposed, applied to a generation set 

composed by the synchronous machine along with the frequency regulation (speed 

governor) and the voltage controllers (automatic voltage regulator and power 

system stabilizer). The proposed method is based on a formulation of the 

unscented Kalman filter, being this study the first attempt, to the authors’ 

knowledge, to include the full generation set in the estimator model, with the 

corresponding state variables and parameters, using just external measurements 

taken at the generator terminal bus. 

A similar estimation technique, using the cubature Kalman filter, is implemented 

subsequently for a joint estimation of the dynamic state and the model parameters 

of a variable-speed wind turbine with permanent magnet synchronous generator 

and back-to-back voltage source converter. In this case, the major contribution 

consists of the inclusion of the control parameters in the state vector to be 

estimated.  

Finally, three Kalman filter formulations (unscented Kalman filter, cubature 

Kalman filter and ensemble Kalman filter) are implemented to address the problem 

of identifying the electrical phase of single-phase consumers in distribution grids, 

using for this purpose hourly energy measurements exclusively. The accuracy and 

robustness of these estimators are compared in different case studies with 

variations in the number of loads and errors in the measurements and the 

considered model. 
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1 

1 INTRODUCTION 

 

 

 

 

his introductory chapter is aimed to establish the context embracing this 

doctoral thesis, which is split into three parts subsequently described. Along 

with the technical framework, a thorough revision of the state of the art is 

presented regarding the considered dynamic state estimator applications, allowing 

to assess the contributions of this study. 

1.1. Parameter estimation in electric power plants. Context and 
motivation 

Electric power systems (EPS) are currently experiencing a remarkable period of 

change, given the inclusion of new technologies based on power electronics, and 

the consolidation of the renewable sources of energy, which have modified the 

existing paradigm in the conventional energy production system. 

The latter aspects make more difficult the operation and control in electrical 

networks, increasing the vulnerability of the system towards the possible 

disturbances that might appear. Moreover, the mentioned tasks of operation and 

control require a deep knowledge of the dynamics associated to each of the 

elements comprising the grid, so that the response of this components can be 

predicted, and precautionary measures can be taken. 

The transient behavior is determined by a set of differential-algebraic equations, 

establishing the dynamic models for the different units. These equations involve a 

collection of characteristic parameters, for which an adequate knowledge is 

essential in order to correctly identify the state of the system and take the 

T 
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corresponding actions. 

The values of these parameters are sometimes provided by the manufacturer of the 

equipment, while in several cases this information is not available. Regardless the 

situation, a usual practice is assuming the parameters to be invariable with respect 

to the operating conditions. A particular example might be the widely studied 

dependence of some parameters, as the electrical resistivity, with the temperature 

(Figure 1-1, [1]).    

 

Figure 1-1. Variation of the resistivity with the temperature for different materials 

 

 

Besides the temperature, other factors might affect significantly the values of the 

parameters involved in the dynamic models of the components of an EPS, such as:  

 

- The operating point of the elements, determined by the voltage and the 

exchanged power in a certain moment. 
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- The degradation caused by unusual working conditions or aging. 

 

The variation of the parameters due to the latter factors is not studied as deeply as 

that caused by the temperature, given its potential complexity, and resulting in the 

previously mentioned assumption of neglecting those changes. Finally, the absence 

of information provided by the manufacturer may also lead to a lack of knowledge 

on their equipment parameters. 

In light of the above mentioned aspects, it is clear the usefulness of a method that 

allows to establish a reliable estimation of the parameters involved in the dynamics 

of the components of an EPS, given the external factors previously highlighted. 

This is the main goal of parts 1 and 2 of this thesis, which will approach the 

described issues with a parameter estimation technique for two particular elements 

of the system: the synchronous generator and the variable speed-wind turbine.  

1.2. Electrical phase assignment in distribution grids 

Focusing on distribution networks, operation and control tasks are essential in 

order to guarantee the good quality of the service provided to the consumers. In 

this context, grid operators require an unambiguous knowledge of the load 

distribution in each of the three phases of the system, so that this information 

allows to state a correct load equilibrium in those phases. The importance of this 

problem is even more remarkable when considering renewable sources of energy 

connected to the distribution grids, since the phase identification helps to establish 

a better generation-consumption balance in each phase. 

In this regard, despite the efforts undertaken by distribution companies, they 

frequently lack enough information about the phase connection of their single-

phase customers, owing, for instance, to network reconfiguration after faults, phase 

switching derived from improper maintenance, or inaccurate recording of the true 

load-to-phase connectivity. In these circumstances, a method must be developed to 

estimate as accurately as possible the actual phase to which a customer is connected 

in LV feeders, which is known as the customer-phase identification (CPI) problem. 
 

The CPI problem has been approached in several ways by previous works. In [2], a 

signal processing perspective is applied to voltage observations, which are also 
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used in [3], for a correlation-based methodology. Two techniques are highlighted in 

this section: a method proposed in [4], using Least Absolute Shrinkage and 

Selection Operator (LASSO) and a novel approach in [5] for phase idenfication 

using graph theory and principal component analysis (PCA). The latter 

methodologies will be included in a comparative study with the estimation 

technique proposed in this thesis for the CPI problem. 

1.3. Dynamic state estimators. Kalman filter 

A dynamic state estimator (DSE) is aimed to identify the state of the system which 

is unobservable through direct measurement. This state, defining the system under 

study, is considered to be time-variant, unlike the traditional static estimators. 

An example of DSE might be the Luenberger observer, [6], based on the definition 

of an equivalent system for which it is possible the direct observation of the state 

variables whose knowledge is desired. 

However, this work is focused on other DSE, the so-called Kalman filter (KF). 

Chapter 2 includes a brief historical context of this estimator and the filter 

equations, while the particular applications considered will be described in 

chapters 3-5. 

The KF has been widely used in several works related to EPS. A major división can 

be made regarding those studies related to large-scale estimation (the reader may 

refer to [7–9]), and those works focused on the characterization of single elements 

of the system, being the latter field of investigation closer to the objectives of this 

document. 

The original formulation of the KF, [10], assumes a linear dynamic of the system, 

being this condition quite uncommon in the equations of the elements in EPS. To 

approach this issue, different formulations have arised to deal with non-linear 

dynamics. Among them, the extended KF (EKF), is based on the calculation of the 

jacobian in order to linearize the state equations. This scheme has been widely used 

in several works related to EPS, as that in [11], where this estimator is used for state 

estimation with unkown inputs. Regarding synchronous machines, [12] makes use 

of the EKF to estimate the initial rotor position  of permanent magnets synchronous 

machines (PMSMs), while the flux losses are included in the estimation process of 

[13], using vector control, and in [14], where demagnetization problems are 
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considered.  

A study in [15] concludes that the EKF and another non-linear formulation, the 

unscented KF (UKF), are the most computationally efficient when the synchronous 

generator dynamic is considered. The latter formulation has been used in [16] for 

state estimation in single machines and in [17–19] for multimachine systems.  

In the particular case of synchronous generators, the joint estimation of state and 

parameters has been approached in several works using the UKF (see [20] and 

[21]). However, the application of those estimation techniques in real systems is 

hindered by the use of internal measurements. 

To avoid these difficulties, different strategies have been developed, as that in [22], 

using a set of measurements obtained from phasor measurement units (PMUs). 

The method proposed in [23] broadens the problem by including in the model the 

parameters of the speed governor (SG) and the automatic voltage regulator (AVR), 

studying the effect of a variable error (up to ±30%) in the initialization of those 

parameters. 

The power system stabilizer (PSS) is introduced in the KF model in [24], although 

the parameters of this regulator are taken as known inputs of the system. This 

assumption might not be accurate enough given the variability of these parameters 

and the possible lack of information. 

With the above-mentioned considerations, and to the author’s knowledge, the 

publication included in annex II.1 is the first attempt to consider a fully regulated 

generation set, including the synchronous machine itself along with the whole set 

of regulators (SG, AVR and PSS). Both state and parameters from these elements 

are jointly estimated using UKF and measurements obtained at the genartor 

terminal bus, which could be provided by a PMU in real applications. 

Furthermore, a recent formulation of the KF, the so-called cubature KF (CKF) has 

proven a correct performance when it is used for the dynamic state estimation in 

synchronous generators, [25]. To see the theoretical aspects of this scheme, the 

reader may refer to [26], where some limitations of other KF formulations, such as 

UKF, which are not suffered by the CKF, are highlighted. Joint state and parameter 

estimation using CKF is studied in [27], applied to a vehicle model, and in [28], to 

permanent magnet synchronous motors. 

In the second part of this thesis, the CKF is considered for the state and parameter 
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estimation of a variable-speed wind turbine, coupled to a PMSM, and connected to 

the external network through a back-to-back voltage source converter (VSC). 

In a considerable number of the works previously mentioned, the KF-based DSE is 

used for the estimation of the electrical parameters of the system. The inclusion of 

these quasi-invariant elements in the state vector has led to the consideration of this 

methodology in a static problem as the CPI, being this particular approach 

described in the third part of the thesis. 

 

1.4. Kalman filter applied to the monitorization of a virus spread 

Related to the undesirable situation derived from the appearance of the severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cause of the coronavirus 

disease 2019 (Covid-19), which has severely affected the health of millions of 

people and the global economy in 2020, the Ph.D. student and his thesis advisors 

developed a KF-based estimation technique for the monitoring and tracking of the 

evolution of this virus. 

Although this study is not related to electric power systems and therefore it is not 

incorporated into the body of this document, it has been considered appropriate to 

include a description of the proposed methodology in the annex I, jointly with the 

most relevant results obtained. Additionally, annex II.4 incorporates the latest 

version of the paper submitted to “IEEE Journal of Biomedical and Health 

Informatics”, and whose current status is minor revision.  

 

1.5. Document structure 

The structure of this document responds to the regulation considered by the 

University of Seville for Ph.D. thesis presentations in the form of a compendium of 

publications, where only the main contributions, results and conclusions are 

remarked. The reader may refer to the publications included in annex II to see the 

details of each of the three parts of the doctoral thesis, namely: 



Introduction    7 

 

- Parameter estimation in fully regulated synchronous generators using 

UKF. 

- Parameter estimation in variable-speed wind turbines using CKF. 

- Application of KF-based estimation techniques to the identification of the 

phase connection in distribution grids. 

 

For each of these fields, chapters 3-5 of this document describe: 

 

- The particular implementation of the KF-based estimator. 

- The estimation results for the different scenarios considered. 

 

The conclusions derived from the presented results are included in chapter 6, 

jointly with the possible future lines of investigation in each study field. Finally, 

chapter 6 also highlights the most relevant publications of the Ph.D. student with 

his thesis advisors. The three published papers related to the different parts of the 

thesis can also be found in the annexes II.1-II.3 to this document. 

 

1.6. Financing 

This Ph.D. thesis has been developed with the economic support of: 

 

- Ministry of Education and Professional Training of Spain (grant 

FPU17/06380). 

- Project: “Pastora: Análisis preventivo de redes inteligentes en tiempo real e 

integración de recursos renovables” (PI-1897/12/2019). 

- Competitiveness grants ENE2015-69597 and PCIN-2015-043. 
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9 

2. KALMAN FILTER CONTEXT 

 

 

 

 

he objective of this chapter is to briefly introduce the different formulations 

of the KF considered in this thesis, namely the UKF, the CKF and the EnKF. 

First, the context of the original KF estimator is included, while the particular 

equations of each formulation are subsequently analyzed.  

2.1. Context 

From the information in [29], the Kalman filter was developed in 1960 by Rudolf E. 

Kalman as a method to identify the non-observable state of a system whose 

dynamic response had to be determined by a set of linear equations, although this 

idea would be extended to a wider range of situations. 

The major advantage of the KF with respect to previous techniques, such as 

Luenberger observer, is that the system under study can be affected by an additive 

Gaussian noise, being this characteristic of great importance in the applications 

presented in this thesis, since the measurements obtained from real systems present 

random errors, whose probability distribution functions are usually modelled as 

Gaussian. 

Another distinctive aspect of this estimator is its defining recursive process, which 

is composed by prediction and correction stages (Figure 2-1). At each iteration, a 

Kalman gain is calculated to optimally correct the a priori estimation of the system 

state with the available measurements. 

 

T 
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Figure 2-1. Diagram of the recursive estimation process of the KF 

 

 

At the beginning, the interest in the KF was based on aeronautic applications, being 

really useful in craft positioning and control in the Apollo program. From this 

point, its implementation in vehicle control, guide and navigation is remarkable. 

Nevertheless, the use of KF-based techniques has been diversified to fields as 

heterogeneous as signal processing and econometric studies (even to modeling the 

spread of the Covid-19 disease).  

2.2. Original equations 

In the original implementation of the KF, the system dynamic is modelled by the 

following discrete state and measurement linear equations: 

 

𝑥𝑘 = 𝐴𝑘−1 · 𝑥𝑘−1 + 𝑤𝑘  (1) 

𝑧𝑘 = 𝐻𝑘 · 𝑥𝑘 + 𝑣𝑘 (2) 
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where 𝑥𝑘  is the state vector and 𝑧𝑘 the available measurements at instant 𝑘, being 

𝐴𝑘 and 𝐻𝑘 the model transition and measurement matrices. Regarding 𝑤𝑘 and 𝑣𝑘, 

they are the process and measurement Gaussian noises, with zero mean and 

covariance matrices 𝑄𝑘 and 𝑅𝑘 respectively.  

At instant 𝑘, the KF uses the information of the previous iteration (𝑘 − 1), 

determined by the estimated state vector, �̂�𝑘−1, and the covariance matrix of the 

estimation error, 𝑃𝑘−1. The a priori estimation of the state vector is calculated as: 

 

�̂�𝑘
− = 𝐴𝑘−1 · �̂�𝑘−1 (3) 

 

with the covariance matrix of the estimation error, 

 

𝑃𝑘
− = 𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1

𝑡 + 𝑄𝑘−1 (4) 

 

For the correction stage, the Kalman gain, 𝐾𝑘 is calculated as follows: 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑡 [𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑡 + 𝑅𝑘]−1 (5) 

 

Finally, the corrected a posteriori prediction is obtained as: 

 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘 · (𝑧𝑘 − 𝐻𝑘 · �̂�𝑘

−) (6) 
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The continuous-time counterpart of the original KF formulation, the so-called 

Kalman-Bucy filter [30], is used for continuous systems represented by the 

following state and measurement equations: 

 

�̇�(𝑡) = 𝐴 · 𝑥(𝑡) + 𝐵 · 𝑢(𝑡) + 𝑤(𝑡) (7) 

𝑧(𝑡) = 𝐶 · 𝑥(𝑡) + 𝑣(𝑡) (8) 

 

being 𝑢(𝑡) the system input. However, since the measurements are collected at 

discrete time instants in real applications of the estimator, a continuous-time, 

discrete-measurement framework is defined with the following equations: 

 

�̇�(𝑡) = 𝐴 · 𝑥(𝑡) + 𝐵 · 𝑢(𝑡) + 𝑤(𝑡) (9) 

𝑧𝑘 = 𝐶𝑘 · 𝑥𝑘 + 𝑣𝑘 (10) 

 

Where a discretization of the state equation (9) is used to calculate the a priori 

estimation of the state vector at instant 𝑘.  

Finally, in most applications related to EPS, and specifically those presented in this 

thesis, the KF is applied to discrete-time, discrete-measurement nonlinear systems. 

In the discrete-time framework, the associated equations may be expressed as,  

 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝑤𝑘 (11) 

𝑧𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘 (12) 

 

where 𝑓(·) and 𝑔(·) are nonlinear functions. 
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In order to approach the nonlinearities in the system equations, several 

formulations of the KF have been developed, from which three of them are 

presented in the next sections, with their corresponding equations. 

2.3. Unscented Kalman filter 

At instant 𝑘, a cloud of 2𝐿 + 1 vectors, the so-called σ-points, is obtained from the 

previously estimated state vector, �̂�𝑘−1 (dimension 𝐿), and the covariance matrix of 

the state estimation error, 𝑃𝑘−1, as follows [31]: 

 

𝑋𝑘−1
0 = �̂�𝑘−1 (13) 

𝑋𝑘−1
𝑖 = �̂�𝑘−1 + [√(𝐿 + 𝜆)𝑃𝑘−1]𝑖           𝑖 = 1, … , 𝐿  

𝑋𝑘−1
𝑖 = �̂�𝑘−1 + [√(𝐿 + 𝜆)𝑃𝑘−1]𝑖           𝑖 = 1, … , 𝐿 

 

 

[√(𝐿 + 𝜆)𝑃𝑘−1]𝑖 being the 𝑖𝑡ℎ column of the corresponding matrix, and λ a scaling 

factor calculated as 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿, where α and κ are two filter parameters to 

be tuned. 

These σ-points are evaluated through equation (11), yielding 2𝐿 + 1 vectors, 𝑋𝑘
𝑖−, 

from which the a priori estimations �̂�𝑘
− and 𝑃𝑘

− are obtained: 

 

�̂�𝑘
− = ∑ 𝑊𝑚𝑖𝑋𝑘

𝑖−

2𝐿

𝑖=0

 (14) 

𝑃𝑘
− = ∑ 𝑊𝑐𝑖(𝑋𝑘

𝑖−

2𝐿

𝑖=0

− �̂�𝑘
−)(𝑋𝑘

𝑖− − �̂�𝑘
−)𝑇 + 𝑄𝑘 (15) 

 

where the weighting vectors 𝑊𝑚 and 𝑊𝑐 are calculated from 
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𝑊𝑚0 =
𝜆

𝐿 + 𝜆
 

(16) 

𝑊𝑐0 =
𝜆

𝐿 + 𝜆
+ 1 − 𝛼2 + 𝛽 

 

𝑊𝑚𝑖 =
1

2(𝐿 + 𝜆)
            𝑖 = 1, … , 2𝐿 

 

 

β being another tunable parameter. 

On the basis of the a priori information, the correction stage starts with the 

calculation of a new cloud of vectors, 𝑋𝑘
𝑖 , which are evaluated with the 

measurement function 𝑔(·) in equation (12), and weighted with the vectors 𝑊𝑚, 

yielding 

 

𝛾𝑘
𝑖− =  𝑔(𝑋𝑘

𝑖 ,  𝑢𝑘)             i = 0, … , 2L (17) 

�̂�𝑘
− = ∑ 𝑊𝑚𝑖𝛾𝑘

𝑖−

2𝐿

𝑖=0

 (18) 

 

Then, the covariance matrix of the measurement estimation error, 𝑃𝑧𝑘
− , and the 

cross-covariance matrix of state and measurements, 𝑃𝑥𝑧𝑘
− , are obtained using the 

vector 𝑊𝑐 as follows: 

𝑃𝑧𝑘
− = ∑ 𝑊𝑐𝑖(𝛾𝑘

𝑖−

2𝐿

𝑖=0

− �̂�𝑘
−)(𝛾𝑘

𝑖− − �̂�𝑘
−)𝑇 + 𝑅𝑘 (19) 

𝑃𝑥𝑧𝑘
− = ∑ 𝑊𝑐𝑖(𝑋𝑘

𝑖−

2𝐿

𝑖=0

− �̂�𝑘
−)(𝛾𝑘

𝑖− − �̂�𝑘
−)𝑇 (20) 
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The correction stage concludes with the a posteriori predictions, 

 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − �̂�𝑘

−)𝑇 (21) 

𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝑃𝑧𝑘

− 𝐾𝑘
𝑇 (22) 

 

which are based on the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 predictions at instant 𝑘 and the so-called Kalman 

gain, 𝐾𝑘, calculated from 

 

𝐾𝑘 = 𝑃𝑥𝑧𝑘
− (𝑃𝑧𝑘

− )−1 (23) 

2.4. Cubature Kalman filter 

The CKF formulation, more recent than the UKF, was developed in 2010 as a 

technique to estimate the positioning in the navigation field. This estimator uses 2𝐿 

cubature points, which are calculated from the previous information, �̂�𝑘−1 and 

𝑃𝑘−1,  through the following equations, [32]: 

 

𝑆𝑘
−𝑆𝑘

−𝑇 = 𝑃𝑘
− (24) 

𝑥𝑘
𝑖− = 𝑆𝑘

−ξ𝑖  √𝐿 + �̂�𝑘
−       𝑖 = 1, . . . , 2𝐿 (25) 

 

where 𝑆 is a positive-definite square root matrix of 𝑃, and ξ𝑖 is the 𝑖𝑡ℎ cubature 

node, obtained as the intersection of the unit sphere and the ℝL axis. 

The state function 𝑓(·) in equation (11) is evaluated for the set of cubature points, 

yielding 2𝐿 vectors 𝑋𝑘
𝑖−,  from which the a priori estimation is computed, 
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�̂�𝑘
− =

1

2𝐿
∑ 𝑋𝑘

𝑖−

2𝐿

𝑖=1

 (26) 

𝑃𝑘
− =

1

2𝐿
∑ 𝑥𝑘

𝑖−𝑥𝑘
𝑖−𝑇

2𝐿

𝑖=1

− �̂�𝑘
−�̂�𝑘

−𝑇 + 𝑄𝑘 (27) 

 

For the correction stage, the covariance matrix is factorized in order to calculate 

both the matrix 𝑆𝑘
− 

 

𝑆𝑘
−𝑆𝑘

−𝑇 = 𝑃𝑘
− (28) 

 

and a new set of 2𝐿 cubature points, 𝑋𝑘
𝑖−, at which function 𝑔(·) is evaluated to 

obtain 𝛾𝑘
𝑖−. 

Then, the measurement estimation, �̂�𝑘
−, its covariance matrix, 𝑃𝑧𝑘

− , and the cross-

covariance matrix of state and measurement, 𝑃𝑥𝑧𝑘
− , are calculated as follows: 

 

�̂�𝑘
− =

1

2𝐿
∑ 𝛾𝑘

𝑖−

2𝐿

𝑖=1

 (29) 

𝑃𝑧𝑘
− =

1

2𝐿
∑ 𝛾𝑘

𝑖−𝛾𝑘
𝑖−𝑇

2𝐿

𝑖=1

− �̂�𝑘
−�̂�𝑘

−𝑇 + 𝑅𝑘 (30) 

𝑃𝑥𝑧𝑘
− =

1

2𝐿
∑ 𝑥𝑘

𝑖−𝛾𝑘
𝑖−𝑇

2𝐿

𝑖=1

− �̂�𝑘
−�̂�𝑘

−𝑇 (31) 
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The a posteriori predictions of the state vector, �̂�𝑘, and the covariance 𝑃𝑘 are 

calculated with the Kalman gain using the same equations (21) and (22) as in the 

UKF. 

2.5. Ensemble Kalman filter 

Finally, the EnKF formulation, [33], is a Monte Carlo approximation of the original 

KF, which has proven accurate enough in high-dimensional state-space problems. 

The ensemble is represented by a 𝐿x𝑁 matrix, 𝑁 being the number of samples 

considered. 

This ensemble is first propagated through the state and measurement functions 

[34], 

 

𝑥𝑘
𝑖− = 𝑓(𝑥𝑘−1

𝑖 , 𝑢𝑘−1) (32) 

𝑧𝑘
𝑖− = 𝑔(𝑥𝑘

𝑖 , 𝑢𝑘)  

𝑖 = 1, … , 𝑁  

 

and then the mean values are calculated: 

 

𝑥𝑘
−̅̅̅̅ =

1

𝑁
∑ 𝑥𝑘

𝑖−

𝑁

𝑖=1

 (33) 

𝑧𝑘
−̅̅ ̅ =

1

𝑁
∑ 𝑧𝑘

𝑖−

𝑁

𝑖=1

 (34) 
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The EnKF correction stage is based on the calculation of the intermediate matrices 

 

𝑃𝑘
̅̅ ̅𝐻𝑘

𝑇 =
1

𝑁
∑(𝑥𝑘

𝑖− − 𝑥𝑘
−̅̅̅̅ )(𝑧𝑘

𝑖− − 𝑧𝑘
−̅̅ ̅)

𝑇
𝑁

𝑖=1

 (35) 

𝐻𝑘𝑃𝑘
̅̅ ̅𝐻𝑘

𝑇 =
1

𝑁
∑(𝑧𝑘

𝑖− − 𝑧𝑘
−̅̅ ̅)(𝑧𝑘

𝑖− − 𝑧𝑘
−̅̅ ̅)

𝑇
𝑁

𝑖=1

 (36) 

 

which allow the Kalman gain and the updated values of each sample in the 

ensemble to be obtained: 

 

𝐾𝑘 = 𝑃𝑘
̅̅ ̅𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
̅̅ ̅𝐻𝑘

𝑇 + 𝑅)−1 (37) 

𝑥𝑘
𝑖 = 𝑥𝑘

𝑖− + 𝐾𝑘(𝑧𝑘 − 𝑧𝑘
𝑖−)         𝑖 = 1, … , 𝑁 (38) 

 

Finally, the corrected covariance matrix, 𝑃𝑘, is calculated as follows: 

 

𝑥𝑘̅̅ ̅ =
1

𝑁
∑ 𝑥𝑘

𝑖

𝑁

𝑖=1

 (39) 

𝑃𝑘 =
1

𝑁
∑(𝑥𝑘

𝑖− − 𝑥𝑘̅̅ ̅)(𝑥𝑘
𝑖− − 𝑥𝑘̅̅ ̅)𝑇

𝑁

𝑖=1

 (40) 
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3. APPLICATION 1: FULLY REGULATED 

SYNCHRONOUS GENERATOR 

 

 

 

 

his section presents the application of a KF-based technique to the estimation 

of the parameters involved in the dynamic equations of a synchronous 

generator and its regulators (SG, AVR and PSS). 

First, the proposed implementation of the UKF formulation is described, as well as 

the tuning of the estimator. The considered case studies are presented 

subsequently, showing the corresponding estimation results. 

 

3.1. Kalman filter implementation 

The UKF scheme is used in this part of the thesis for the joint estimation of the state 

and parameters of a fully regulated synchronous generator. The algorithm of this 

formulation has been coded using MATLAB. 

First attempts with a vanilla implementation of the joint estimator, directly using 

the whole set of parameters in the system equations, led to unacceptable 

convergence behavior. Therefore, as proposed in [35] for a simpler case with single-

axis generator and only frequency regulation, a new modified parameter vector has 

been considered using different combinations with their original values. 

Finally, all the convergence problems were solved using a novel two-stage 

formulation, as illustrated in Figure 3-1, so that the modified parameters from the 

synchronous machine are identified in the first stage. These results are incorporated 

T 
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to the full model in the second stage for the estimation of the parameters from the 

machine regulators. 

 

Figure 3-1. Diagram of the two-stage implementation for the UKF estimator 

 

 

The UKF tuning is determined by the following points: 

 

- Values of the UKF tuning parameters. 

- Definition of the system inputs and measurements. 

- Initial estimation. 
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- Process and measurement noise covariance matrices. 

 

First, the UKF algorithm involves a set of tuning parameters, α, β and κ. As 

proposed in [36], where the influence of these values in the performance of the 

estimator is analyzed and accordingly the values α = 10−4 y β = 2 have been taken 

in this work. Regarding the optimal tuning for κ, it is obtained using the following 

expression: 

κ + 𝐿 = 3 

being L the size of the state vector. 

With respect to the measurements taken from the system, five magnitudes can be 

easily measured at the generator terminal bus, namely: 

 

- Voltage magnitude, 𝑉 

- Voltage angle, θv 

- Angular speed, ω 

- Active power exchanged, 𝑝𝑒 

- Current magnitude, 𝐼 

 

Those magnitudes are divided, as proposed in [37], into inputs, 𝑢(𝑡), and 

measurements, 𝑧(𝑡), as it is summarized in Table 3-1. 

Table 3-1. Distribution of inputs and measurements for the synchronous generator 

Input vector, 𝑢(𝑡) Measurement vector, 𝑧(𝑡) 

𝑉 𝐼 

θ𝑉 𝑝
𝑒
 

 ω 
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The initial estimation of the UKF implementation is determined by the initial value 

of the state variables and the model parameters (i.e. the initial estimation 

augmented state vector, �̂�0), jointly with covariance matrix of the initial estimation 

error, 𝑃0. A steady-state calculation has been considered to obtain the initial values 

of the state variables, while the parameters have been randomly initialized in the 

range ±20% to ±40% of their real values in the simulation. In the second stage of 

the proposed methodology, the generator parameters are initialized with their 

estimated values from the first stage. Regarding the covariance matrix 𝑃0, it has 

been defined as a diagonal matrix, 

 

𝑃0 = 𝑑𝑖𝑎𝑔([𝑃𝑥0
𝑇 , 𝑃ψ0

𝑇 ]) 

 

where the vector 𝑃𝑥0 corresponds to the state and 𝑃ψ0 to the modified model 

parameters. The reader may refer to the paper included in the annex II.1 to consult 

the particular values taken in both stages of the proposed estimation technique. 

Finally, the covariance matrices of the process and measurement noises, 

respectively 𝑄 and 𝑅, are both considered in this work as diagonal matrices, with 

𝑄
𝑖𝑖

= 10−8 𝑦 𝑅𝑖𝑖 = 10−4. 

3.2. Results 

First, the estimation results are shown for the first stage of the proposed technique, 

including the state variables and the parameters of two-axis model considered for 

the synchronous generator, [38]. 

In the base case, the generator is connected to an infinite busbar through a tie-line 

with known impedance. The voltage at the infinite busbar is modelled with 

magnitude and angle evolving smoothly, as Gaussian random walks, with 

standard deviations 𝑅𝑤 = 10−5. Two abrupt voltaje magnitude steps (3% upwards 

and 5% downwards) are applied, as represented in Figure 3-2. 
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Figure 3-2. Voltage magnitude and angle at the generator bus 

 

 

Regarding the measurements used in the correction stage of the UKF algorithm, 

Figure 3-3 shows the evolution of those signals with the above-mentioned abrupt 

changes in the voltage magnitude. 

Please note that, as remarked in the introduction of this document, only external 

measurements are considered, so that they can be obtained using measurement 

equipment already installed in the system, as might be the PMUs, given that the 

sampling frequency has been taken as 100 Hz, a typical value for those elements. 
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Figure 3-3. Considered measurements for the estimation process 

 

 

As it can be noticed in the representations, the total simulation time is set to 60 s, 

including the voltage steps at 20 and 40 s.  
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3.2.1. First estimation stage 

Using the previously mentioned signals as inputs and measurements, together with 

the described UKF tuning, the joint state-parameter estimation was carried out for 

the synchronous generator. 

The good performance of the estimator in the first stage is proven with the 

subsequently presented results for the modified parameters of the synchronous 

machine. However, the convergence of the KF-based technique is not only defined 

by the stable value achieved by a certain parameter, but also by the covariance of 

the estimation error, given by the corresponding component 𝑃𝑖𝑖  for the considered 

variable. An accurate estimated value with high covariance results in a low 

reliability in the estimation, whereas a value of 𝑃𝑖𝑖  close to the process noise 

covariance, 𝑄𝑖𝑖 , would imply a correct performance of the proposed estimator. 

For this reason, the evolution of the estimated values of the parameters is 

represented in Figure 3-4 jointly with a deviation �̂�i ± 3σ𝑖  being σ𝑖 = √𝑃𝑖𝑖 . In such 

graphics, it can be observed that the estimated values are close to those used in the 

simulation and the corresponding deviations tend to reduce remarkably. These 

aspects give evidence of the accuracy and reliability of the first stage of the 

estimation process. 

With the obtained values for the modified parameters it is possible to easily 

calculate the estimation of the original parameters as they are used in the model 

equations. These results, with the corresponding relative errors, are summarized in 

Table 3-2. 

As it can be noted, the results in the first stage, with a maximum error lower than 

2.5%, are accurate enough to proceed with the second stage of the estimation 

technique proposed in this thesis. 
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Figure 3-4. Estimation of the modified parameters in the first stage 
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Table 3-2. Relative errors for the parameters of the synchronous generator 

Parameter Estimated value Relative error (%) 

𝑥𝑑 0.987 1.30 

𝑥𝑑
′  0.298 0.67 

𝑥𝑞 0.658 1.28 

𝑥𝑞
′  0.559 1.43 

𝐻 6.341 2.45 

𝐷 1.999 0.05 

𝑇′𝑑0 0.502 0.40 

𝑇′
𝑞0 5.117 2.34 
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3.2.2. Second estimation stage 

In the second stage of the estimation process, the modified parameters of the three 

machine regulators considered (SG, AVR and PSS) are included in the augmented 

state vector of the KF, to be estimated. In this case, the information obtained from 

the first stage is used, given that the initial values  of the parameters of the 

synchronous machine are taken as their previous estimation (Table 3-2), with a high 

confidence in the components of �̂�0, meaning low values for the corresponding 

elements of the matrix 𝑃0. 

The system inputs and the measurements considered for the UKF implementation 

remain the same as those used in the first stage, including the considered variations 

in the terminal voltage magnitude. 

For the representation of the modified parameters, the same considerations as in 

the first stage have been taken, showing the estimated value jointly with a ±3𝜎𝑖 

deviation. Figure 3-5 illustrates the evolution of the modified parameters of the 

considered regulators. The graphics corresponding to the estimation of the machine 

parameters are not included, since they suffer no significant variation with respect 

to the initial estimation and, therefore, no additional information is provided. 

In this figure it can be observed, as with the generator modified parameters, that 

those of the three regulators reach stable values close to the simulated ones, with a 

reduced covariance, giving evidence of the good performance of the proposed 

estimation methodology. 

Finally, Table 3-3 summarizes the estimated values of the original parameters of the 

regulators, with their corresponding relative errors. The fact that the maximum 

error is only slightly higher than 3% also shows that the accuracy of the estimation 

technique is more than acceptable. 

 

 

 

 

 

 



Application 1: fully regulated synchronous generator 

 

29 

Table 3-3. Relative error in the estimation of the parameters of the machine 

regulators 

Parámetro Valor estimado Error relativo (%) 

𝑅 0.1032 3.20 

𝑇𝑟 0.1006 0.64 

𝐾𝑖 49.75 0.498 

𝑇𝑎𝑣𝑟 0.988 1.186 

𝑇𝑒 0.2002 0.101 

𝐾0 2.479 0.84 

𝐾𝑤 30.78 2.596 

𝑇𝑤 10.135 1.35 

 

 

Figure 3-5. Estimation of the modified parameters in the second stage 
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3.2.3. Variations of the base case 

To asses the robustness of the UKF-based estimator proposed in this thesis, three 

additional scenarios have been considered with different values in the standard 

deviation of the random walk, 𝑅𝑤, defining the magnitude and angle of the external 

voltage. 

The comparison is based on the estimated values of the parameters and their 

corresponding relative errors. Tables 3-4 to 3-6 include these estimated values for 

𝑅𝑤 = 10−6, 10−4 and 10−3 respectively. 

To make the analysis easier, Table 3-7 summarizes the mean and maximum relative 

errors in each scenario, including the base case. 
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Table 3-4. Estimated values of the parameters and relative errors for 𝑅𝑤 = 10−6 

Parameter Estimated value Relative error (%) 

𝑥𝑑 0.985 1.50 

𝑥𝑑
′  0.298 0.67 

𝑥𝑞 0.656 0.92 

𝑥𝑞
′  0.562 2.18 

𝐻 6.345 2.38 

𝐷 1.994 0.03 

𝑇′𝑑0 0.506 1.20 

𝑇′
𝑞0 5.116 2.32 

𝑅 0.1031 3.05 

𝑇𝑟 0.1006 0.60 

𝐾𝑖 49.75 0.50 

𝑇𝑎𝑣𝑟 0.987 1.31 

𝑇𝑒 0.198 1.02 

𝐾0 2.479 0.84 

𝐾𝑤 30.65 2.17 

𝑇𝑤 10.115 1.15 
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Table 3-5. Estimated values of the parameters and relative errors for 𝑅𝑤 = 10−4 

Parameter Estimated value Relative error (%) 

𝑥𝑑 0.982 1.78 

𝑥𝑑
′  0.296 1.12 

𝑥𝑞 0.661 1.64 

𝑥𝑞
′  0.563 2.35 

𝐻 6.340 2.51 

𝐷 1.983 0.84 

𝑇′𝑑0 0.510 2.03 

𝑇′
𝑞0 5.137 2.74 

𝑅 0.1041 4.15 

𝑇𝑟 0.1011 1.11 

𝐾𝑖 49.519 0.97 

𝑇𝑎𝑣𝑟 0.984 1.59 

𝑇𝑒 0.203 1.33 

𝐾0 2.473 1.09 

𝐾𝑤 31.203 4.01 

𝑇𝑤 10.309 3.10 
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Table 3-6. Estimated values of the parameters and relative errors for 𝑅𝑤 = 10−3 

Parameter Estimated value Relative error (%) 

𝑥𝑑 0.980 2.04 

𝑥𝑑
′  0.296 1.33 

𝑥𝑞 0.661 1.74 

𝑥𝑞
′  0.567 2.89 

𝐻 6.308 3.04 

𝐷 2.023 1.14 

𝑇′𝑑0 0.511 2.20 

𝑇′
𝑞0 5.136 2.72 

𝑅 0.1048 4.84 

𝑇𝑟 0.1013 1.27 

𝐾𝑖 49.363 1.29 

𝑇𝑎𝑣𝑟 1.024 2.35 

𝑇𝑒 0.204 2.06 

𝐾0 2.453 1.88 

𝐾𝑤 31.503 5.01 

𝑇𝑤 10.407 4.07 
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Table 3-7. Mean and máximum relative errors for different values of R_w 

𝑅𝑤 10−6 10−5 10−4 10−3 

|𝐸𝑟
𝑚𝑎𝑥| (%) 3.05 3.2 4.15 5.01 

|𝐸𝑟
𝑚𝑒𝑑| (%) 1.36 1.27 2.02 2.49 

 

As it is observed, the results are similar in the first two cases, with 𝑅𝑤 = 10−6 and  

10−5, becoming the errors higher as the value of 𝑅𝑤 increases. Nevertheless, in all 

the considered scenarios, the mean and maximum errors remain within an 

acceptable range, showing the accuracy and robustness of the two-stage estimation 

technique presented in this thesis using UKF. 
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4. APPLICATION 2: VARIABLE-SPEED 

WIND TURBINE 

 

 

 

 

his section presents the application of a KF-based technique to the estimation 

of the parameters involved in the dynamic equations of a variable-speed 

PMSM wind turbine connected to the grid through a back-to-back pair of 

VSCs. 

First, the proposed implementation of the CKF formulation is described, as well as 

the tuning of the estimator. The considered case studies are presented 

subsequently, showing the corresponding estimation results. 

4.1. Kalman filter implementation 

In this part of the thesis, the CKF scheme is used for a joint estimation of the state 

and parameters involved in the dynamic equations of the wind turbine, the PMSM, 

the VSC and the pitch angle controller, [37]. The algorithm of the CKF, presented in 

chapter 2, has also been coded using MATLAB. 

As described in chapter 3 for the fully regulated synchronous generator, the 

proposed methodology is based on the modification of the original parameters in 

the equations. Regarding the CKF tuning, it consists of the same points presented 

for the UKF, except for the use of tuning parameters, which are not included in the 

CKF algorithm. 

The following signals have been taken from a simulated model, representing the 

measurements obtained from a real system: 

T 
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- Rotor angular speed, 𝜔. 

- Wind speed, 𝑣𝑤. 

- Pitch angle, 𝜃𝑝. 

- Magnitude and angle of the voltage external to the generation set, 𝑉 and 𝜃𝑉. 

- Magnitude and angle of the current external to the generation set, 𝐼 and 𝜃𝐼. 

 

These magnitudes have been split into inputs and measurements, as it is 

represented in Table 4-1, defining the vectors 𝑢(𝑡) and 𝑧(𝑡). 

 

Table 4-1. Distribution of inputs and measurements for the wind turbine 

Input vector, 𝑢(𝑡) Measurement vector, 𝑧(𝑡) 

𝑣𝑤 𝜔 

𝑉 𝐼 

𝜃𝑉 𝜃𝐼 

 𝜃𝑝 

 

Regarding the initial estimation, a different treatment is considered for the state 

variables and the model parameters: 

 

- For the state variables in the model, the simulated initial values have been 

taken, given that the initialization process is independent of the dynamic 

parameters to be estimated, being these initial values a function of the 

operating steady-state point, which is supposed to be known. 

- For the model parameters, a total lack of knowledge on their values is 

supposed and they are initialized to 1. This assumption shows the 
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robustness and accuracy of the proposed estimation method, given that no 

previous information of the parameters is considered. 

 

Finally, the tuning of the matrices 𝑃0, 𝑄 and 𝑅 is similar to that presented for the 

UKF in application 1. The reader may refer to the paper in annex II.2 for the 

particular values taken. 

4.2. Results 

The estimation process considered is tested in a first scenario, denominated as base 

case, where the model parameters are estimated using exclusively the dynamic due 

to the wind variability. Then, using the obtained results as initial estimation, the 

robustness of the KF-based algorithm is proven when three disturbances are 

simulated, all of them typical in the operating conditions of a wind turbine. 

Finally, the CKF formulation is compared to other KF schemes when different noise 

levels are considered for the measurements included in the estimation techniques. 

4.2.1. Base case 

As mentioned above, in this first scenario, the variations considered in the 

operating point are exclusively caused by two reasons: 

 

- The random walk assumed for the voltage in the external network 

(magnitude and angle), with a standard deviation 𝑅𝑤 = 10−4. 

- A smooth wind variability, taken with a mean value of 16 m/s and a 

standard deviation of 1%. As an illustrative example, Figure 4-1 shows the 

evolution described for the wind speed. 
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Figure 4-1. Wind speed variation in the base case 

 

 

With the CKF tuning described and the considered inputs and measurements, a 

total simulation time of 60 s has been taken, with a sample frequency of 100 Hz.  

The proposed technique has provided accurate results in the estimation of the 

modified model parameters. As described for the synchronous generator, the 

evolution of the estimated values is represented jointly with a 99,73% confidence 

interval (�̂�i ± 3σ𝑖). Figure 4-2 shows the evolution of the modified shaft inertia, 

while the parameters from the pitch angle controller and the VSC are represented 

in Figure 4-3. 

It is observed that all the modified parameters eventually converge to the 

neighborhood of the simulated values, with a remarkable decrease in the 

confidence interval. Table 4-2 collects the estimation values of the original 

parameters, with their corresponding relative error. 

With a máximum relative error of 2.1% the accurate performance of the estimation 

technique is concluded, so that the robustness of the estimator can be tested in the 

following scenarios. 
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Figure 4-2. Modified inertia estimation. Base case 

 

 

Figure 4-3. Estimation of the modified parameters from the pitch angle controller 

and the VSC. Base case 
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Table 4-2. Relative errors in the parameter estimation. Base case 

Parámetro Valor estimado Error relativo (%) 

𝐻𝑡𝑚 4.012 0.300 

𝐾𝑞𝑐 34.426 1.640 

𝑇𝑑𝑐  0.503 0.600 

𝐾𝑑𝑐  1.513 0.867 

𝑇𝑑𝑠 0.504 0.800 

𝑇𝑞𝑠 0.511 2.100 

𝐾𝑑𝑠 1.510 0.667 

𝑇𝑝 2.991 0.300 

𝐾𝑝 2.023 1.150 

 

4.2.2. Disturbance 1: Wind gust 

The first disturbance studied in the system consists of a wind gust, which has been 

modeled with a Mexican hat wavelet [37]. Additionally, a random walk has been 

added to the signal with zero mean and a standard deviation of 10−2, yielding the 

evolution shown in Figure 4-4. 

With this wind dynamic, the complete model was simulated in order to obtain the 

system inputs and measurements to be incorporated to the CKF algorithm. The 

estimation result for the modified shaft inertia is represented in Figure 4-5, where it 

has been amplified the transient behavior caused by the considered disturbance. It 

can be noticed that, after slight variations, the estimated value returns to the same 

value obtained in the base case, used as initial estimation. 



44                            

 

Application of Kalman filter – based estimation techniques to electric 

power systems 

Figure 4-6 shows the evolution experienced by the rest of the modified parameters 

in the model. The robustness of the proposed methodology can be concluded given 

the minimum deviations presented by all the parameters from the VSC and the 

pitch angle controller. 

Figure 4-4. Representation of the wind gust modelled as a Mexican hat wavelet 

 

Figure 4-5. Estimation of the modified shaft inertia. Disturbance 1 

 



Application 2: variable-speed wind turbine 

 

45 

Figure 4-6. Estimation of the modified parameters. Disturbance 1 
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4.2.3. Disturbance 2: Voltage dip 

The second disturbance considered is an abrupt descent in the voltage magnitude 

at the connection point of the generation set with the external network, which 

emulates a possible voltage dip caused by a short-circuit close to this bus of the 

electrical grid. 

Specifically, a 70% drop in the voltage is simulated, with a duration of 1 s. The 

standard deviation of the random walk of this voltage remains at the same value as 

in the base case. The evolution of the magnitude and angle in this case is 

represented in Figure 4-7. The wind speed profile in this scenario is that used in the 

base case. 

With the simulated signals used as inputs as measurements in the CKF estimator, 

the process was carried out using the same initial estimation as in the first 

disturbance. 

As an example, Figure 4-8 includes the evolution of a modified time constant from 

the VSC. Since the rest of the parameters show no significant variations they are 

omitted in this document. 
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Figure 4-7. Voltage dip considerd in the second disturbance 

 

Figure 4-8. Example of the estimation results for the modified parameters. 

Disturbance 2 
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Once again, the transient behavior due to the disturbance is soon vanished and the 

parameter stabilizes in its initial estimation. The nature of this deviation remarks 

the robustness of the proposed technique. 

4.2.4. Disturbance 3: Topological change 

In the last disturbance considered in this part of the thesis, an abrupt and 

permanent change is simulated in the impedance modeling the tie-line connecting 

the generation set and the external network. This might represent a sudden change 

in the external grid configuration. The wind profile and the grid voltage remains as 

in the base case. 

For this scenario, the evolution of the modified time constant of the pitch angle 

controller, 1/𝑇𝑝, is represented in Figure 4-9 as an example. 

 

Figure 4-9. Example of the estimation results for the modified parameters. 

Disturbance 3 
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An important point to be highlighted is the fact that the operating point is 

permanently modified due to this disturbance, meaning that the estimated values 

of the modified parameters might be modified with respect to their initial 

estimation. This point leads in some cases to a slight improvement in the accuracy 

of the estimation. 

In light of the presented estimation results provided by the CKF-based method in 

the base case, and the proven robustness in the disturbances studied, the estimation 

technique proposed in this thesis is confirmed. 

4.2.5. Measurement error impact 

Once the accuracy of the estimator has been proven, the influence of the 

measurement error is tested in this section. The same external conditions as in the 

base case are considered in this analysis. 

With a 1% error in the base case, successive increments in this value have been 

studied (3%, 5% and 7%). Tables 4-3 to 4-5 collect the estimated values of the 

original parameters in the model along with their relative errors. To establish a 

comparison of the different noise levels, Table 4-6 summarizes the maximum 

relative error in each case. 

Note that, while low measurement errors lead to sufficiently accurate estimation 

results, when the errors in the measured signals are large enough, the CKF-based 

estimator performance deteriorates, in proportion to those errors. 
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Table 4-3. Estimation errors for the parameters with a 3% measurement error 

Parameter Estimated value Relative error (%) 

𝐻𝑡𝑚 4.015 0.369 

𝐾𝑞𝑐 34.374 1.821 

𝑇𝑑𝑐  0.503 0.699 

𝐾𝑑𝑐  1.517 1.123 

𝑇𝑑𝑠 0.505 0.885 

𝑇𝑞𝑠 0.515 2.854 

𝐾𝑑𝑠 1.514 0.900 

𝑇𝑝 2.990 0.321 

𝐾𝑝 2.025 1.237 
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Table 4-4. Estimation errors for the parameters with a 5% measurement error 

Parameter Estimated value Relative error (%) 

𝐻𝑡𝑚 4.022 0.551 

𝐾𝑞𝑐 34.13 2.547 

𝑇𝑑𝑐  0.510 2.011 

𝐾𝑑𝑐  1.589 5.926 

𝑇𝑑𝑠 0.515 3.001 

𝑇𝑞𝑠 0.526 5.224 

𝐾𝑑𝑠 1.518 1.233 

𝑇𝑝 2.941 1.987 

𝐾𝑝 2.047 2.355 
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Table 4-5. Estimation errors for the parameters with a 7% measurement error 

Parameter Estimated value Relative error (%) 

𝐻𝑡𝑚 4.059 1.466 

𝐾𝑞𝑐 33.228 5.333 

𝑇𝑑𝑐  0.520 4.021 

𝐾𝑑𝑐  1.662 10.800 

𝑇𝑑𝑠 0.538 7.698 

𝑇𝑞𝑠 0.548 9.577 

𝐾𝑑𝑠 1.560 4.000 

𝑇𝑝 2.832 5.912 

𝐾𝑝 2.121 6.041 

 

Table 4-6. Maximum relative error for increasing levels of measurement error 

Measurement error |𝐸𝑟
𝑚𝑎𝑥| (%) 

1% 2.100 

3% 2.854 

5% 5.926 

7% 10.800 
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4.2.6. Model error impact 

In the implemented model for the PMSM coupled to the wind turbine, the dq axis 

inductances of the machine, 𝐿𝑑 and 𝐿𝑞, has been taken as known. The reason is that 

these values can be obtained from different tests performed on the considered 

machine. Nevertheless, the accuracy of this information might not be adequate, 

leading to a source of errors in the estimation technique. 

In order to test the performance of the CKF-based methodology with model error, a 

total of four scenarios have been studied, with increasing levels of error (2%, 5%, 

10% and 15%) in the values of 𝐿𝑑 and 𝐿𝑞 included in the KF model with respect to 

those in the simulation model. 

Tables 4-7 to 4-10 collect the estimated values of the original parameters in the 

model with their relative errors. To establish a comparison of the different model 

error levels, Table 4-11 summarizes the maximum relative error in each case. 

Note that, while low model errors lead to sufficiently accurate estimation results, 

when the errors in the known system parameters are large enough, the CKF-based 

estimator performance deteriorates, in proportion to those errors. 
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Table 4-7. Estimation errors for the parameters with a 2% model error 

Parameter Estimated value Relative error (%) 

𝐻𝑡𝑚 4.015 0.307 

𝐾𝑞𝑐 34.42 1.651 

𝑇𝑑𝑐  0.503 0.611 

𝐾𝑑𝑐  1.514 0.902 

𝑇𝑑𝑠 0.504 0.824 

𝑇𝑞𝑠 0.512 2.407 

𝐾𝑑𝑠 1.511 0.697 

𝑇𝑝 2.989 0.352 

𝐾𝑝 2.024 1.163 
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Table 4-8. Estimation errors for the parameters with a 5% model error 

Parameter Estimated value Relative error (%) 

𝐻𝑡𝑚 4.015 0.377 

𝐾𝑞𝑐 34.360 1.863 

𝑇𝑑𝑐  0.505 0.907 

𝐾𝑑𝑐  1.519 1.244 

𝑇𝑑𝑠 0.507 1.369 

𝑇𝑞𝑠 0.515 3.011 

𝐾𝑑𝑠 1.515 1.002 

𝑇𝑝 2.979 0.715 

𝐾𝑝 2.031 1.533 
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Table 4-9. Estimation errors for the parameters with a 10% model error 

Parameter Estimated value Relative error (%) 

𝐻𝑡𝑚 4.021 0.521 

𝐾𝑞𝑐 34.309 2.014 

𝑇𝑑𝑐  0.507 1.387 

𝐾𝑑𝑐  1.535 2.354 

𝑇𝑑𝑠 0.511 2.101 

𝑇𝑞𝑠 0.533 6.667 

𝐾𝑑𝑠 1.545 2.997 

𝑇𝑝 2.942 1.984 

𝐾𝑝 2.060 3.022 
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Table 4-10. Estimation errors for the parameters with a 15% model error 

Parameter Estimated value Relative error (%) 

𝐻𝑡𝑚 4.066 1.641 

𝐾𝑞𝑐 32.881 6.443 

𝑇𝑑𝑐  0.526 5.211 

𝐾𝑑𝑐  1.545 3.028 

𝑇𝑑𝑠 0.522 4.333 

𝑇𝑞𝑠 0.560 12.002 

𝐾𝑑𝑠 1.625 8.357 

𝑇𝑝 2.932 2.314 

𝐾𝑝 2.187 9.333 

 

Table 4-11. Maximum relative error for increasing levels of model error 

Model error |𝐸𝑟
𝑚𝑎𝑥| (%) 

2% 2.407 

5% 3.011 

10% 6.667 

15% 12.002 
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4.2.7. Comparison with other formulations 

The last study made in the second part of this thesis consists in the comparison of 

the performance of the CKF formulation with that shown by other nonlinear KF 

schemes. Particularly, the UKF and the EKF are considered. 

Operating conditions of the base case are taken to establish a fair comparison for 

the mentioned formulations. As an illustrative example, Figure 4-10 presents the 

evolution of the modified shaft inertia for the three estimators. 

 

Figure 4-10. Performance comparison in the estimation of shaft inertia by CKF, UKF 

and EKF 
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The following considerations can be pointed out from the figure: 

- The EKF formulation presents accuracy problems, with an unacceptable 

value for the modified parameter. 

- On the other hand, the UKF presents convergence problems in the long 

term. 

It can be concluded that the CKF scheme is the most adequate for the joint state-

parameter estimation of the considered model for the variable-speed wind turbine, 

the back-to-back VSC and the pitch angle controller. 
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5. APPLICATION 3: CUSTOMER-PHASE 

IDENTIFICATION 

 

 

 

 

his section presents the application of KF-based estimation techniques 

applied to the identification of the electrical phase of single-phase clients in 

distribution grids, denominated as CPI problem. 

First, the proposed KF methodology is described, as well as the tuning of each of 

the three formulations. The considered case studies are presented subsequently, 

showing the corresponding estimation results. 

 

5.1. Kalman filter implementation 

For the identification of the electrical phase in distribution grids, a comparative 

analysis is made for three formulations of the KF, the UKF, the CKF and the EnKF. 

The algorithms of these schemes have been coded using MATLAB framework. 

To approach the CPI problem with the three mentioned estimators, a novel 

methodology is proposed, consisting of a sequential selection and assignment of the 

single-phase clients, using a statistical criteria based on the calculation of a set of 

coefficients from the estimated values of the state variables and the covariance of 

the error in those estimations. This methodology is illustrated in the block diagram 

presented in Figure 5-1 and described in detail in section IV of the publication in 

annex II.3. 

The use of this selective method is one of the major contributions of this work, 

T 
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avoiding the inclusion of non-convex equality constraints of the form 𝑥(𝑥 − 1) = 0 

in the estimator formulation, which can lead to convergence problems. The 

proposed technique is novel to the author’s knowledge and can be applied to other 

binary problems. 

Regarding the tuning of the KF-based estimators, the covariance matrices 𝑄 and 𝑅 

have been taken as diagonal matrices with 𝑄𝑖𝑖 = 10−4 and 𝑅𝑖𝑖 = 9 · 10−4 in the 

three formulations. For the initial estimation, zero values have been used for the 

state vector, �̂�0, in the UKF and CKF schemes, whereas in the case of EnKF, a binary 

random initialization has been considered for the samples in the ensemble. In the 

three cases, the covariance matrix 𝑃0 has been taken as diagonal with 𝑃𝑖𝑖 = 10. 

The measurements taken from the simulated distribution grid are: 

 

- The hourly active energy consumption for each client in the network 

considered as the system input vector, 𝑢(𝑡). 

- The hourly active energy consumption for each of the three phases at the 

substation level, taken as the measurement vector, 𝑧(𝑡), for the correction 

stage of the KF algorithm. 

 

Additionally, while for the simulated distribution grid a load flow has been solved 

in order to calculate the network losses accurately, a simplified loss model has been 

incorporated in the filter equations in order to improve the performance of the 

estimation. This model assumes unitary power factor and nominal voltage for each 

consumer. 
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Figure 5-1. Block diagram of the proposed methodology for the CPI problem 
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5.2. Results 

A total of four scenarios have been considered in order to test and compare the 

accuracy and robustness of the different KF formulation applied to the CPI problem 

with the methodology developed in this work. 

Finally, the performance of the KF is compared with that of other existing 

techniques approaching the electrical phase identification. 

5.2.1. Scenario 1: Original measurements 

In the first scenario, the original measurements from the simulated grid are taken, 

being the objective to compare the accuracy of the different formulation with 

increasing number of clients. The hourly energy measurements are obtained from 

[39], where real hourly data from a European distribution company, comprising 

smart meter readings for 20 days, are provided. 

Tables 5-1, 5-2 and 5-3 show the estimation results for the UKF, the CKF and the 

EnKF, respectively. 

 

Table 5-1. Estimation results for the UKF. Scenario 1 

Consumption 

curves 

Correct 

assignments 

Wrong 

assignments 

Percentage 

50 50 0 100% 

100 95 5 95% 

200 181 19 90.5% 

300 216 84 72% 

400 233 167 58.25% 
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Table 5-2. Estimation results for the CKF. Scenario 1 

Consumption 

curves 

Correct 

assignments 

Wrong 

assignments 

Percentage 

50 50 0 100% 

100 100 0 100% 

200 195 5 97.5% 

300 262 38 87.33% 

400 313 87 78.25% 

 

 

Table 5-3.Estimation results for the EnKF. Scenario 1 

Consumption 

curves 

Correct 

assignments 

Wrong 

assignments 

Percentage 

50 50 0 100% 

100 100 0 100% 

200 200 0 100% 

300 283 17 94.33% 

400 346 54 86.5% 
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In light of the performance of UKF and CKF with increasing number of loads 

shown in Tables 5-1 and 5-2, respectively, it can be noticed that, while both 

estimators correctly assign 100% of customers for a reduced number of loads (50 

clients), the behavior of the UKF deteriorates faster as the number of loads 

increases. As shown in Table 5-3, the EnKF response to increasing system sizes is 

better than that of the other formulations, which confirms the expected behavior of 

this KF scheme for high-dimensional problems. 

5.2.2. Scenario 2: Analysis of the required amount of data 

For the results shown above, hourly smart meter readings for 20 days are used, 

leading to 480 total energy measurements for each consumer. This section analyzes 

the quality of the estimation as the number of available measurements decreases. 

Tables 5-4, 5-5 and 5-6 show the estimation results for the UKF, the CKF and the 

EnKF, respectively, using 200 consumption curves in each case. 

 

Table 5-4. Estimation results for the UKF. Scenario 2 

Available hourly 

measurements 

Hit rate 

480 90.5% 

400 90.5% 

300 90% 

200 85% 

100 67% 
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Table 5-5. Estimation results for the CKF. Scenario 2 

Available hourly 

measurements 

Hit rate 

480 97.5% 

400 97.5% 

300 96% 

200 90% 

100 70% 

 

 

Table 5-6. Estimation results for the EnKF. Scenario 2 

Available hourly 

measurements 

Hit rate 

480 100% 

400 100% 

300 100% 

200 95% 

100 72% 
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Those results suggest a deterioration of the performance of the KF-based estimation 

techniques when the number of available measurements is lower than 200 (around 

8 days) in this particular scenario. Further tests with feeders comprising different 

numbers of customers show that the required number of measurement snapshots 

increases with the number of loads, as intuitively expected. For instance, for 100 

clients, the success rate of the three estimators does not deteriorate substantially, 

even when only 100 energy measurements (around 4 days) are considered for each 

load. 

5.2.3. Scenario 3: Noisy measurements 

The performance of the different KF formulations is evaluated in a realistic scenario 

where errors in the measurements are considered. As the objective of these case 

studies is to determine the robustness of the KF schemes against measurement 

errors, a relatively low number of loads is considered, namely 100 consumption 

curves.  

Gaussian noise is artificially added to each measurement after the load flow is 

computed. Tables 5-7, 5-8 and 5-9 show the estimation results for the UKF, the CKF 

and the EnKF, respectively. 

 

Table 5-7. Estimation results for the UKF. Scenario 3 

Noise level 

(%) 

Hit rate 

1 95% 

2 92% 

3 89% 

5 83% 
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Table 5-8. Estimation results for the CKF. Scenario 3 

Noise level 

(%) 

Hit rate 

1 100% 

2 96% 

3 93% 

5 89% 

 

 

Table 5-9. Estimation results for the EnKF. Scenario 3 

Noise level 

(%) 

Hit rate 

1 100% 

2 100% 

3 98% 

5 92% 
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In light of those results, it can be concluded, also as expected, that the number of 

correct assignments decreases with increasing measurement noise, for every KF 

formulation, being the robustness of the CKF and EnKF similar, superior in any 

case to that of the UKF formulation. Nevertheless, all formulations show acceptable 

results when typical noise levels are considered in the measurements. 

5.2.4. Scenario 4: Model errors 

In the proposed implementation of the KF for the CPI problem, a simplified loss 

model is considered for which the value of the conductor resistance per unit length, 

𝑟. In this scenario, the performance of the different KF formulations is evaluated 

when errors in r are considered. 

 

For the same number of customers as in Scenario 3, Tables 5-10, 5-11 and 5-12 show 

the estimation results for the UKF, the CKF and the EnKF, respectively. 

 

Table 5-10. Estimation results for the UKF. Scenario 4 

Error in 𝑟          

(%) 

Hit rate 

5 95% 

10 91% 

15 86% 

20 80% 
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Table 5-11. Estimation results for the CKF. Scenario 4 

Error in 𝑟          

(%) 

Hit rate 

5 100% 

10 95% 

15 91% 

20 84% 

 

 

 

Table 5-12. Estimation results for the EnKF. Scenario 4 

Error in 𝑟          

(%) 

Hit rate 

5 100% 

10 98% 

15 95% 

20 89% 
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It can be concluded that the results remain acceptable, at least for the EnKF, when 

the assumed resistance error does not exceed 10%. 

5.2.5. Comparison with existing methods 

Finally, the proposed methodology has been compared to other existing techniques 

which use the same information from the distribution grid to approach the CPI 

problem. Specifically, the following studies are selected: 

 

- The method presented in [4], where a LASSO-based technique is 

considered using hourly energy measurements exclusively. 

- The technique described in [5], implementing a PCA analysis with the 

same information extracted from the network. 

 

Table 5-13 summarizes the success rates for each technique with increasing number 

of clients. A 1% s.d. error has been considered for all the measurements. 

In light of the presented results, it can be concluded that: 

 

- The performance of the PCA is similar to that shown by the UKF in all the 

scenarios considered. 

- The LASSO-based technique has proven to suffer from higher sensitivity to 

the number of clients than the CKF and EnKF, being the success rates of 

the three methods similar for a number of clients lower than 200. 

- The obtained results for the CKF and EnKF formulations are substantially 

better in large networks, as it can be observed in the scenario with 400 

consumers. 
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Table 5-13. Rate of correct assignments for the PCA, the LASSO-based and the 

proposed KF-based methods 

Number of 

clients 

PCA LASSO UKF CKF EnKF 

50 100 100 100 100 100 

100 100 100 95 100 100 

200 92 100 90.5 97 100 

300 72.67 87.67 71 86.33 94 

400 60.25 71.75 57.75 78.25 86.5 

 

  



74                            

 

Application of Kalman filter – based estimation techniques to electric 

power systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

75 

6. FINAL CONCLUSIONS 

 

 

 

 

he conclusions derived from the results shown in chapters 3-5 are divided in 

accordance with the three parts of this thesis, the fully regulated 

synchronous generator, the variable speed-wind turbine and the CPI 

problem. Additionally, the possible lines of investigation are proposed for each 

study field. Finally, the most relevant publications made by the Ph.D. student with 

his thesis advisors are presented. 

 

6.1. Conclusions  

6.1.1. Regulated synchronous generator 

An estimation technique has been presented using the UKF formulation to identify 

the state and parameters of a synchronous generator with frequency and voltage 

regulation, conducted by the SG, the AVR and the PSS. In light of the results 

described in this document, it can be concluded that: 

- The two-stages implementation proposed for the UKF allows, with a 

simple tuning of the estimator, the accurate identification of the 

parameters involved in the system model, being the maximum relative 

error under 3.2%, giving evidence of the good performance of the 

algorithm. 

- The presented parameter modification methodology has successfully 

solved the convergence issues observed with the original parameters 

T 
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involved in the model equations. 

- The difference between the simulation and the estimator models, jointly 

with the use of external measurements for the UKF, enable the application 

of the proposed technique to real systems, with a set of measurements 

obtained from PMUs or a local data logger. 

- The inclusion of the PSS in the estimator model constitutes an 

improvement with respect to other related studies. 

- The estimation technique presented has not only shown good accuracy, 

but also robustness when modification in the Random Walk of the voltage 

in the external grid is considered. 

6.1.2. Wind turbine 

In the second part of this thesis, the CKF formulation is considered for the joint 

estimation of the state and parameters of a wind turbine coupled to a PMSM with 

full converter control and pitch angle regulation. 

The following conclusions are obtained from the results presented in previous 

sections: 

- As it was remarked for the synchronous generator, the parameter 

modification methodology has successfully solved the convergence 

problems observed when the original parameters were included in the 

estimator model. 

- The estimation process based on CKF has provided a high degree of 

accuracy in the identification of the model parameters considering smooth 

variations in the system for a typical operating point, with the 

corresponding wind variability. 

- Three additional case studies were included to prove the robustness of the 

algorithm, which presented a good performance with the considered 

disturbances, recovering the steady state estimation for the parameters 

after a light transient behavior. 

- It was also observed that the CKF based estimator shows acceptable results 

when the model and measurement noises are increased. 
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- Finally, the CKF formulation has shown to be superior to other KF 

schemes, such as the UKF and the EKF. 

6.1.3. Customer-phase identification 

In the third part of this thesis, a technique based on Kalman filtering has been 

presented, applied to the identification of the electrical phase which individual 

loads are connected to in distribution grids, using exclusively hourly energy 

measurements obtained from smart meters. 

A total of 4 scenarios have been considered as case studies to prove the good 

performance of the proposed methodology in different situation. Additionally, the 

obtained results for the different KF formulations have been compared to those 

from two previously published methods. 

From the results presented in the chapter 5 of this document, the following 

conclusions are drawn: 

 

- The UKF scheme is less accurate as the number of loads in the grid 

increases, showing unacceptable hit rates (<60%) when 400 customers are 

considered. 

- The performance of the CKF is better than that of the UKF, with a lower 

sensitivity to the size of the state vector and measurement and model 

errors. 

- The EnKF formulation has proven to be the best of the considered KF 

schemes for the consumer-phase identification problem, both in terms of 

success rates and sensitivity to noise. 

- As it was expected, the proposed methodology is affected by the amount 

of energy measurements available, relative to the number of clients in the 

distribution grid under study. As the number of loads in a certain feeder 

increases, the number of required measurements for a correct phase 

identification also raises. 

- Finally, from the comparative study considered it can be concluded that 

the CKF and the EnKF schemes present better results than those of the 
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methods based on PCA and LASSO, particularly when the number of 

loads is high, being the success rates similar when the grid size is small. 

 

6.2. Future lines of investigation 

6.2.1. Regulated synchronous generator 

Regarding the possible future investigations related to the parameter estimation in 

fully regulated synchronous generators, several lines are proposed: 

- A more complex model included in the UKF for the generator and its 

regulators would reflect in more detail the real behavior of the system 

under study, contributing to the correct operation and control of the grid. 

- Other promising future work would be the use of the proposed estimation 

technique with measurements obtained from real generation sets, given 

the good performance observed in the simulations. 

- The proposed estimation technique might be applied to more complex 

dynamic phenomena with unknown parameters, such as the natural 

frequency in high dimensional electric power systems. 

6.2.2. Wind turbine 

Related to the parameter estimation in variable-speed wind turbines, the possible 

future lines of investigation are similar to those presented for the synchronous 

generator, i.e. the use of more complex models for the elements of the studied 

system, and the application of the proposed technique to real wind turbines, given 

the good performance in the simulations and the direct application of the proposed 

method, which uses exclusively external measurements. 

Additionally, the proposed methodology is appropriate for the parameter 

identification in other types of systems using power electronic converters, as might 

be photovoltaic generation plants or battery energy storage systems. 
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6.2.3. Customer-phase identification 

Finally, the following point are remarked regarding the future lines of investigation 

related to the phase identification problem: 

 

- The proposed methodology based on Kalman filtering could be modified 

in order to include three-phase consumers for which only aggregated 

hourly energy measurements are available. 

- Given the potential of the existing measuremet equipments, a possible 

upgrade of the presented algorithm might be based on the addition of 

information related to the voltage or the reactive energy consumption, in 

order to improve the success rates of the implemented estimator. 

 

6.3. Publications 

First, the publications related to the three parts of this thesis are highlighted: 

• [40] M.A. González-Cagigal, J.A. Rosendo-Macías, A. Gómez-Expósito, 

“Parameter estimation of fully regulated synchronous generators using 

Unscented Kalman Filters”, in: Electric Power Systems Research, Volume 

168, 2019, Pages 210-217, November, 2018. 

• [41] M.A. González-Cagigal, J.A. Rosendo-Macías, A. Gómez-Expósito, 

“Parameter Estimation of Wind Turbines with PMSM using Cubature 

Kalman Filters,” in: IEEE Transactions on Power Systems, Volume .35, 

2020, pp. 1796-1804, May 2020. 

 

• [42] M.A. González-Cagigal, J.A. Rosendo-Macías, A. Gómez-Expósito, 

“Application of nonlinear Kalman filters to the identification of customer 

phase connection in distribution grids,” in: International Journal of 

Electrical Power and Energy Systems, Volume 125, 2021. 
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Related to publications [40] and [41], the following presentation at a conference 

special session was made: 

 

• [43] J.A. Rosendo-Macías, M.A. González-Cagigal, A. Gómez-Expósito, 

“PMU-Based Estimation of Renewable Power Plants Parameters.” In: IEEE 

Powertech Conference. Milán (Italia). 2019 

 

Finally, as mentioned in the introduction of this document, an additional 

contribution was made outside the field of power systems, by applying estimation 

techniques based on KF for the monitorization and possible prediction of the 

evolution of the Covid-19. We believe some of the novel ideas proposed in this 

work to model and estimate slowly changing parameters, could be as well of 

application in the future to related power system problems. 

 A daily report of the situation of the pandemic in Spain was published in the 

repository idUS, property of the University of Seville: 

 

• [44] A. Gómez-Expósito, J.A. Rosendo-Macías and M.A. González-

Cagigal, “Modelo y análisis de la evolucion de una pandemia vírica 

mediante filtros de Kalman: el caso del Covid-19 en España”, In: 

https://idus.us.es/handle/11441/94508 

 

 

Additionally, a preliminary version of the paper was submitted to the repository 

Medrxiv: 

 

 

 

 

 

 

 

 

https://idus.us.es/handle/11441/94508
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• [45] A. Gómez-Expósito, J.A. Rosendo-Macías and M.A. González-

Cagigal, “Monitoring and tracking the evolution of a viral epidemic 

through nonlinear Kalman filtering: Application to the Covid-19 case”, In: 

https://www.medrxiv.org/content/10.1101/2020.05.11.20098087v1 

 

While the final version, included in annex II.4, and which has been submitted to 

“IEEE Journal of Biomedical and Health Informatics” is currently under minor 

revision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.medrxiv.org/content/10.1101/2020.05.11.20098087v1
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ANNEX I. KALMAN FILTER APPLIED TO THE 

MONITORIZATION OF A VIRUS SPREAD 

 

 

 

n this annex, the motivation and the most relevant results are presented for the estimation 

technique proposed by the Ph. D. student and his thesis advisors for the monitorization and 

tracking of the evolution of a viral epidemic. Finally, the conclusions derived from the obtained 

results are mentioned. 

 

I.1 Motivation 

Despite the spectacular medical advances of the 20th century, and the practical eradication of viral 

diseases that in the past caused great mortality (e.g., smallpox), modern societies are still very 

vulnerable to the sudden appearance of new viruses, such as the SARS-CoV-2, cause of the Covid-19, 

for which, in the summer of 2020, there is still no vaccine. In addition, once a viral outbreak originates 

in a region of a country (in the case of the Covid-19, the Chinese region of Hubei, where the first 

reported case was dated on December 2019), the globalization of the economy and mass tourism 

spread it almost inevitably and quickly to the rest of the world. 

 

In the absence of effective treatments, once a certain threshold has been passed, the main and almost 

sole remedy against the spread of the disease to the entire population is social distancing, the objective 

of which is to minimize the contact between people, and therefore morbidity [46]. In extreme cases, 

when the speed of propagation of the outbreak is very high, massive lockdowns of entire countries 

may be needed, which cannot last indefinitely owing to their drastic impact on the economic activity. 

 

For this reason, all the agents involved (governments, international organizations, institutions, 

companies and individuals) have the greatest interest in knowing how the number of affected and 

deceased people will evolve over time, with a view, on the one hand, on verifying the beneficial effects 

of social distancing, and on the other to scheduling the already saturated health resources and taking 

the economic measures intended to mitigate as far as possible the devastating effects of an epidemic 

like that of Covid-19. 

 

Scientists, engineers, economists, etc. are acquainted with several mathematical and statistical toolkits 

(recently renamed collectively as "data analytics") for the treatment and filtering of time series, with a 

view on extracting useful information from the available data, uncertain by definition, such as trends, 

patterns, average values, expected variances, etc. In the specific case of a viral epidemic, such as that 

of Covid-19, there are basically two categories of models for processing the information: 

 

- Models that try to characterize the "physical" reality explaining the observed data., as those 

in [47] and [48]. 

I 
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- Models that try to determine explanatory parameters or variables from a purely 

mathematical point of view, the so-called “black box” approach, used in [49] and [50]. 

 

The methodology proposed, which belongs to the second category, uses KF to process both the 

assumed dynamic model and the information available throughout the outbreak. Reference [51] 

applies the KF for the estimation of the evolution of AIDS, while several recent studies related to the 

Covid-19 have arisen. In [52] the KF is used to deal with the estimation of the reproductive number of 

the virus. A short-term prediction model is proposed in [53], where the time update equations of the 

estimator are used for future forecasts of the pandemic spread. ARIMA models are combined with a 

KF in [54] to track the evolution of the Covid-19 in Pakistan. Unlike in those references, where the 

parameters involved in the state estimation process are supposed to be known, in this work such 

assumptions are not required. This is the major distinguishing feature of the proposed methodology, 

compared to the state of the art, and the main contribution of the paper included in annex II.4. 

 

I.2 Main results 

In this section, the most relevant results are presented. The reader may refer to the last version of the 

paper in annex II.4 for the detailed description of the proposed KF-based estimation technique. 

 

II.2.1 Simulation results 

First, a set of simulated scenarios, where the SIRD model [55-57] is considered, are used to test the 

performance of the proposed implementation of the KF. Figure I-1 represents the time evolution of 

the estimated geometric ratio, 𝑟(𝑛), along with the raw noisy measurements provided by the 

simulation and the actual value of 𝑟(𝑛). 

 

Figure I-1. Estimation of r(n) in the simulated scenario

 

 

It can be noticed that the simulated value of 𝑟(𝑛) remains always within the 5-95% CI, giving evidence 

of the good performance of the proposed technique. From the estimated 𝑟(𝑛) and the initial testing 
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ratio considered, 𝑡(0), an estimation is obtained for the evolution of the infectious people, 𝐼(𝑛), 

compared in Figure I-2 with the simulated value. 

 

Figure I-2. Estimation of I(n) in the simulated scenario 

 

 

It is observed how the maximum estimation error (around 4.5%) takes place, as expected, at the peak 

of the epidemic.  

Additionally, the effect of two error sources is studied: 

- An abrupt change in the testing ratio, t(n). 

- An error in the initial guess of the testing ratio, t(0). 

Both analysis confirmed the robustness of the estimation technique, which is subsequently applied to 

real data from different countries. 

 

II.2.2 Case studies 

The case studies are divided in two subsections: 1) the time period when massive lockdowns occurred 

in most countries, denoted in the media as the “first wave” of the pandemic [58], and 2) the subsequent 

transient period, once the lockdowns are relaxed, usually through several de-escalation phases, 

towards the so-called “new normality”. 

 

1. Lockdown period (first wave) 

 

A total of four countries have been considered in this period: China, South Korea, Spain and the UK. 

At the early stage of the pandemic, the information provided by these countries was sufficient to allow 

the application of the proposed methodology. 
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As an example, Figures. I-3 and I-4 represent for the Spanish territory the estimated sequence of the 

geometric ratio, 𝑟(𝑛), and the number of infected people, 𝐼(𝑛), respectively. In this particular case, 

and regarding the parameter 𝑡(0), it has been taken into account the results of a massive 

seroprevalence test performed by the government in the first half of May [59], from which it was 

concluded that the total number of infected people was around 5.2% of the population (approximately 

2.3 million people). In view of this valuable information, the initial value 𝑡(0) has been adjusted so 

that the cumulative number of infected people matches the result of the survey on the date it was 

released (May 13), leading to 𝑡(0)=0.12. This provides the estimation of 𝐼(𝑛) shown in Fig. I-4, where 

a maximum value of the active infectious people of around 1.3 million can be noticed by mid-April.  

 

 

Figure I-3. Estimation of r(n) in Spain 

 

 

Figure I-4. Estimation of I(n) in Spain
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2. Post-lockdown period (second wave) 

 

As the pandemic evolves, it becomes more difficult to properly report on a regular basis all the 

information involved in the estimation of active positives. Many countries (notably Spain) stopped 

reporting the number of recovered people, probably owing to the remarkable increase in the number 

of asymptomatic positive cases, which never entered a hospital and hence never counted as recovered 

or dead. For this reason, it is not possible to accurately update the estimations of the geometric ratios 

of active positives, 𝑟(𝑛), for some of the countries considered in the early stages. Instead, four 

countries (USA, Italy, India and Brazil), all of them specially affected by the pandemic and still 

reporting the information required by the proposed estimation technique, are considered for the 

estimation of the geometric ratio 𝑟(𝑛) and the number of infectious people, 𝐼(𝑛). As an example of the 

obtained results, Figures I-5 and I-6 represent the case of USA. 

 

It is observed how the number of infectious people in this country briefly reached a peak by the end 

of May (𝑟(𝑛) ≈ 1). However, Figure I-5 also shows that, afterwards, 𝑟(𝑛) has remained somewhat 

around or above one, which means that the outbreak is not still under full control, and that additional 

actions should be taken in this country in order to substantially reduce the number of infectious 

people. 

 

I.3 Conclusion 

The proposed methodology has been satisfactorily tested on a simulated case, in the presence of 

Gaussian noise and other sources of uncertainty, the main one being the number of infectious people 

at the onset of the outbreak. The estimation technique has also been applied to a set of countries, and 

the results obtained are divided in two periods: 

 

o A first period, when most of the countries imposed a lockdown. Four territories are reported in 

this scenario, namely: China, South Korea, Spain, and the UK. The evolution of 𝑟(𝑛) reflects in all 

cases the severity of the lockdown, allowing the first peak of the epidemic to be forecasted well in 
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advance. In some cases, a slightly increasing trend is apparent in the evolution of this ratio once 

the lockdown is removed, suggesting that additional mobility restrictions might be necessary.  

 

o For the countries that have continued reporting the required information, the estimation of 𝑟(𝑛) is 

extended up to the moment of writing this manuscript, reflecting the panoply of post-lockdown 

measures taken by most of them. In this case, four countries are reported: the USA, Italy, India and 

Brazil. The results show how the geometric ratio 𝑟(𝑛) keeps rather close to 1, or slightly above, 

which explains the onset of the second wave many countries were facing in early November 2020. 

 

In light of the presented results, it can be concluded that the proposed methodology can effectively 

characterize, by means of the ratio 𝑟(𝑛), the evolution of the virus spread, when adequate information 

of active positives, recovered and deceased people is available. This information on the state and 

dynamics of the epidemic can be used by the governing authorities in order to take the corresponding 

actions: 

 

o An increasing trend of the geometric ratio represents a virus spread which might turn out of 

control, especially when 𝑟(𝑛) > 1, leading to more restrictive policies. 

 

 

Figure I-5. Estimation of r(n) in USA 

 
 

Figure I-5. Estimation of I(n) in USA
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o On the contrary, values of 𝑟(𝑛) < 1 with decreasing trend indicate a situation where the 

severity of the social distancing measures can be alleviated. 

 

As shown in the simulated scenario, the proposed methodology is not only suitable for the Covid-19, 

but also for other pandemics that can be characterized using the SIRD model, and for which the 

required information is available. Future work is aimed to the application of KF-based estimators to 

new models that can arise with less informative scenarios. 
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n this annex, the most relevant publications of the Ph. D. students and his thesis advisors are 

included. While annex II.1-II.3 comprise the publications approached in the body of the document, 

the last version of the paper on the methodology for the monitoring of the Covid-19 evolution, 

described in annex I, is included in annex II.4. 
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A B S T R A C T

This paper presents a parameter estimation technique for generation sets including the synchronous machine-
turbine pair, along with the customary controllers: speed governor, automatic voltage regulator and power
system stabilizer. The proposed technique is based on the Unscented Kalman Filter for the joint estimation of the
system dynamic state and a modified set of parameters from which the actual model parameters and constants
can be computed. To the authors’ knowledge, this work is the first attempt to estimate such a full set of dynamic
state variables and parameters, using just external measurements taken at the generator terminal bus.

1. Introduction

The operation and control of electric power systems require a
complete understanding of their associated dynamics, described by a set
of equations. Gaining accurate knowledge of the parameters involved in
those equations is essential in order to identify the system state and
make adequate control decisions for the power system.

Usually, those parameters are assumed to be constant, i.e., in-
dependent of factors such as exchanged power, terminal voltage, etc.,
characterizing the operating point. However, this assumption may not
be accurate enough, owing to nonlinearities and time dependence
(aging), and a method must be established to determine the updated
values of system parameters taking the mentioned factors into con-
sideration.

A feasibility study is made in [1], which proves the accuracy of
dynamic state estimators (DSEs) based on Kalman Filters (KFs) in power
systems with nonlinear dynamics. Studies such as [2] use KFs to esti-
mate the state of a synchronous machine, showing inaccurate estima-
tion results in the presence of model uncertainties. Also in this context,
[3] presents a comparison of different DSEs based on KFs, concluding
that Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF)
are computationally the most efficient for the synchronous machine
dynamics. In [4], the EKF is used for state estimation in power systems
with unknown inputs, but no parameter estimation is included.

Particularly, among the different KF formulations, UKF has been
used in [5] for state estimation of single synchronous machines, and in
[6–8] for multi-machine power systems. Parameter estimation is ad-
dressed in [9,10], using a set of internal measurements which are

difficult to obtain in practice. The dependence of the available mea-
surements and the generator parameters to be estimated using UKF is
studied in [11].

To avoid these difficulties, [12] proposes a method, using phasor
measurement units (PMUs), for the estimation of the parameters of a
synchronous machine. The most significant internal parameters of these
machines are also estimated in [13], whereas [14] considers the ma-
chine under saturation conditions. The method proposed in [15]
broadens the problem by including in the model the parameters of the
Speed Governor (SG) and Automatic Voltage Regulator (AVR), studying
the effect of a variable error (up to± 30%) in the initialization of the
parameters.

The Power System Stabilizer (PSS) model is considered in [16].
Based on measurements from PMUs, the parameters associated with the
generator, SG and AVR are estimated, while PSS parameters are sup-
posed to be known in the proposed UKF implementation.

To our knowledge, this work is the first attempt to consider a fully
regulated generation set, including the synchronous machine itself
along with the whole set of regulators (SG, AVR and PSS). Both state
and parameters from these elements are jointly estimated using UKF
and measurements obtained at the generator terminal bus.

This work is organized as follows: Section 2 formulates the equa-
tions used in the proposed UKF algorithm. Section 3 presents the
modeling of the overall generation set. The implementation of the UKF
is described in Section 4. Section 5 presents a case study to test the
accuracy of the proposed estimation technique. Finally, the conclusions
obtained from the estimation results are presented in Section 6.

https://doi.org/10.1016/j.epsr.2018.11.018
Received 17 July 2018; Received in revised form 23 October 2018; Accepted 28 November 2018

⁎ Corresponding author.
E-mail address: rosendo@us.es (J.A. Rosendo-Macías).

Electric Power Systems Research 168 (2019) 210–217

0378-7796/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2018.11.018
https://doi.org/10.1016/j.epsr.2018.11.018
mailto:rosendo@us.es
https://doi.org/10.1016/j.epsr.2018.11.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2018.11.018&domain=pdf


2. Unscented Kalman Filter

Kalman Filter implementations involve a set of state equations, in-
cluding the dynamic and the measurement equations. In the case of
continuous-time, discrete-measurement, non-linear systems, these
equations can be expressed as

= +x t f x t u t w t˙ ( ) ( ( ), ( )) ( ) (1)

= +z t g x t u t v t( ) ( ( ), ( )) ( )k k k k (2)

where x(t) is the state vector, u(t) the system input, and z(tk) the
available measurements at instant tk. The model and measurement
noises, w t( ) and v t( )k , are assumed Gaussian processes with covariance
matrices Q and R, respectively.

Considering a time step Δt, the above equations have the following
discrete counterparts:

= + +− − −x x t f x u wΔ · ( , )k k k k k1 1 1 (3)

= +z g x u v( , )k k k k (4)

which are more appropriate for non-linear Kalman filtering techniques,
like the EKF and UKF.

Linearizing in (3) the state function, f, has yielded poor results when
combined with the approximations made by the EKF, owing to the
nature of the equations that describe the behavior of the synchronous
machine and associated regulators. Instead, this work makes use of the
UKF, which is based on an iterative process with two different stages, as
summarized in the sequel [17].

2.1. Prediction stage

For each iteration at instant k, a cloud of 2L + 1 vectors, called σ-
points, is calculated from the estimated expected value of the state
vector, −x̂k 1 (dimension L), and the covariance matrix of the state es-
timation error, Pk−1, using the following expression:

⎧

⎨

⎪

⎩
⎪

=

= + +

= − +
= …

− −

− − −

−
+

− − +

x x

x x L λ P

x x L λ P
i L

ˆ

ˆ [ ( ) ]

ˆ [ ( ) ]
1, ,

k k

k
i

k k i

k
i L

k k i L

1
0

1

1 1 1

1 1 1

(5)

where + −L λ P[ ( ) ]k i1 is the ith column of the matrix + −L λ P( ) k 1 , and
λ is a scaling factor calculated as

= + −λ α L κ L( )2 (6)

with α and κ being two filter parameters to be tuned.
Those σ-points are evaluated in (3) obtaining 2L + 1 resultant

vectors, −xk
i , from which to obtain the a priori estimations −x̂k and −Pk :

∑=−

=

−x W xˆk
i

L

k
i

0

2

mi
(7)

∑= − − +−

=

− − − −P W x x x x Q( ˆ )( ˆ )k
i

L

k
i

k k
i

k
T

k
0

2

ci
(8)

where the weighting vectors Wm and Wc are calculated as follows:
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and β is another tunable parameter.

2.2. Correction stage

On the basis of the a priori estimations, a new cloud of vectors is
calculated,

⎧

⎨

⎪

⎩
⎪

=

= + +

= − +
= …

− −
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+ − − −
+

x x
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(10)

and evaluated with the measurement function g in (4), yielding

= = …− −γ g x u i L( , ) 0, ,2k
i

k
i

k (11)

Those values are weighted using the vector Wm defined in (9),

∑=−

=

−z W γˆk
i

L

k
i

0

2

mi
(12)

Then, the covariance matrix of the measurement estimation error,
−Pzk, and the cross-covariance matrix of state and measurements, −Pxzk,

are obtained using the vector Wc, as follows:

∑= − − +−

=

− − − −P W γ z γ z R( ˆ )( ˆ )
i

L
i

k k
i

k
T

kzk
0

2

ci
(13)

∑= − −−

=

− − − −P W x x γ z( ˆ )( ˆ )
i

L

k
i

k k
i

k
T

xzk
0

2

ci
(14)

By using the a priori predictions at instant k, from (7), (8) and (13),
(14), both the Kalman gain,

= − − −K P P( )k xzk zk
1 (15)

and the respective a posteriori predictions can be obtained,

= + −− −x x K z zˆ ˆ ( ˆ )k k k k k
T (16)

= −− −P P K P Kk k k k
T

zk (17)

which are needed for the next algorithm iteration.

3. System dynamic modeling

The joint estimation of parameters and state variables requires the
knowledge of the dynamic equations modeling the behavior of the
synchronous machine and associated regulators.

3.1. Dynamic model of the rotating machine

A number of models can be used to represent the dynamics of a
synchronous generator. Some of them are excessively complex for the
purpose of this work while others do not allow the implementation of
voltage control. The two-axis model in [18] is widely used in transient
stability studies and has proven to be suitable for this application. After
neglecting the rotor resistance, the model equations yield:

= −δ ω ω˙ Ω ( )b s (18)

= − − −ω
H

p p D ω ω˙ 1
2

( ( ))m e s (19)

′ =
′

− ′ − − ′ +e
T

e x x i v˙ 1 ( ( ) )q
d

q d d d f
0 (20)

′ =
′

− ′ − − ′e
T

e x x i˙ 1 ( ( ) )d
q

d q q q
0 (21)

where Ωb is the base frequency of the system and the state variables
related to the generator are:

δ: rotor angle.
ω: rotor angular speed.
′ėd: transient electromotive force (emf) in d-axis.
′ėq: transient emf in q-axis.

The electric power, pe, in (19) is calculated as follows:
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= +p v i v ie d d q q (22)

= −v δ θVsin( )d (23)

= −v δ θVcos( )q (24)

V and θ being the magnitude and phase angle of the voltage at the
generator bus.

Note that Eqs. (18)–(21) include a number of parameters, listed in
Table 1, to be estimated. The goal of this work is to estimate as many of
them as possible, using UKF and resorting to the existing knowledge
about their values.

3.2. Speed governor

This paper considers primary and secondary controls for the me-
chanical power produced by the generator turbine, characterized by

[19],

= − − − −p
T

p p p
R

ω ω˙ 1 ( 1 ( ))m
r

c m sref (25)

= −p K ω ω˙ ( )c i s (26)

where the turbine actuation delay has been neglected. The parameters
involved in these equations, listed in Table 2, will be also included in
the UKF model. After integration, updated values of pm are used in (19).

3.3. Automatic voltage regulator

The type-III model, providing a reasonable tradeoff between

Table 1
Synchronous machine parameters.

Symbol Parameter

D Damping coefficient
H Inertia constant
xq q-axis synchronous reactance
xd d-axis synchronous reactance

′xq q-axis transient reactance

′xd d-axis transient reactance

′Tq0 q-axis transient time constant

′Td0 d-axis transient time constant

Table 2
Speed Governor parameters.

Symbol Parameter

R Governor droop
Tr Primary control time constant
Ki Secondary control gain

Table 3
Automatic voltage regulator parameters.

Symbol Parameter

Tavr Controller time constant
Te Exciter time constant
K0 AVR gain

Table 4
Power system stabilizer parameters.

Symbol Parameter

Tw PSS time constant
Kw PSS gain

Fig. 1. Representation of the simplified system under study.

Fig. 2. Evolution of the grid voltage in the base case.

Fig. 3. Evolution of the angular speed and terminal voltage.
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accuracy and complexity [20], has been used for the AVR, as follows:

= + − −v
T

K V v V v˙ 1 ( ( ) )r s r
avr

0 ref (27)

= + −v
T

v v v˙ 1 ( )f
e

r f f0 (28)

being vf the AVR excitement signal, to be used in the emf equation (20),
and vf 0 its initial value. Table 3 collects the AVR parameters, also to be
estimated using the UKF.

3.4. Power system stabilizer

For this regulator, which modifies the AVR reference signal, Vref, a
simplified type-II model has been implemented, [20]:

= − − +v
T

K ω ω v˙ 1 ( ( ) )
w

w s1 1 (29)

= − +v K ω ω v( )s w s 1 (30)

Table 4 collects the parameters of this regulator, also to be esti-
mated using UKF.

4. Implementation of UKF

State estimation requires the previous knowledge of the parameters
involved in the above equations. However when these parameters are
not known, dynamic estimation techniques such as UKF can be used for
a joint estimation of state variables and parameters using and aug-
mented state vector [21].

First attempts with a vanilla implementation of the joint estimator,
directly using the whole set of parameters listed above, led to un-
acceptable convergence behavior. Therefore, as proposed in [22] for a

simpler case with single-axis generator and only frequency regulation, a
new modified parameter vector ψ, to be embedded in the augmented
state vector, xa was adopted. This way, =x x ψ[ , ]a

T T T , where x contains
the state variables,

= ′ ′x δ ω e e p p v v v v[ , , , , , , , , , ]T
q d m c f r s1

and

= ′ ′ ′ ′ψ x x D H T

T

[dx , dx , , , , , , ,

, , , , , , , ]

T
d q d q d T

R T K
T
K T T K w

0
1

1 1 100 1 1 100
q

r i e w

0

avr
0 avr

where = − ′x xdxd d d and = − ′x xdxq q q. So, the size of the augmented
state vector is L = 26, and the dynamic system model, replacing (3) and
(4), is

⎡
⎣

⎤
⎦

= ⎡
⎣⎢

+ ⎤
⎦⎥

+− − −

−

x
ψ

x t f x u
ψ w

Δ · ( , )k

k

k k k

k
k

1 1 1

1 (31)

= +z g x u v( , )k k kak (32)

where wk is now the augmented-model noise vector, including not only
the state variable components, but also the parameter components.

Five magnitudes can be easily measured at the generator terminal
bus, namely: V, θ, ω, I and pe, where θ is always measured with respect
to the synchronous reference frame (for instance, with the help of a
PMU) an I is the stator current leaving the generator. Please, note that
balanced operating conditions are assumed and, hence, those magni-
tudes refer to the positive sequence (single-phase model). In the pro-
posed formulation, the five magnitudes are divided into inputs, u = [V,
θ], and measurements, z = [ω, I, pe], [23].

The vector z needs to be formulated as a function of the augmented
state and input vectors, i.e., the function g(xa, u) in (32). The first z
component, the rotor speed ω, is already a state variable. For the rms
value of the stator current, I, and the electric power, pe, the following
expressions are used:

= +I i id q
2 2

(33)

= +p v i v ie d d q q (34)

where

= −v δ θVsin( )d (35)

= −v δ θVcos( )q (36)

=
′ −

′
i

e v
xd

q q

d (37)

=
− ′ +

′
i

e v
xq

d d

q (38)

As explained above, the first estimator model, based on the regular
set of state variables and parameters, was prone to convergence pro-
blems during the initial tests. Trying to circumvent this problem, this
work proposes a two-stage estimation technique. In the first stage, the
generator parameters are estimated using a simpler model, that con-
siders only the synchronous machine, with no regulators. In other
words, the initial estimator comprises the following reduced model,

= ′ ′x δ ω e e[ , , , ]T
q d

and

= ′ ′ ′
′

ψ x x D H T
T

[dx , dx , , , , , , 1 ]T
d q d q d

q
0

0

Then, in the second stage, the generador parameters provided by the
simpler model are reintroduced in the fully regulated model above, as
an initial estimation.

Table 5
Parameter simulation values.

Parameter Unit Simulated value

xd pu 1
xq pu 0.65

′xd pu 0.3
′xq pu 0.55

D pu 2
H s 6.5

′Tq0 s 0.5

′Td0 s 5
R pu 0.1
Tr s 0.1
Ki pu 50
Tavr s 1
Te s 0.2
K0 pu 2.5
Tw s 10
Kw pu 30

Table 6
Initial values of the state variables.

Variable Initial value

δ 0.427
ω 1
′eq 1.2

′ed 0
pm 0.8
pc 0
vf 1.68
vr 0
v1 0
vs 0
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Fig. 4. Estimated parameters for the synchronous generator at the first stage.
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Fig. 5. Estimated parameters for SG, AVR and PSS.
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5. Case study

In this section, the performance of the proposed method is tested
with the reduced power system shown in Fig. 1. The simulation has
been carried out using Matlab Simulink. The model considered for the
generation of measurements, including the rotor resistance, the turbine
actuation delay and a set of control parameters in the PSS model, is
more accurate than that adopted by the UKF algorithm [20].

In this case study, the generator is connected to an infinite busbar
through a tie-line with impedance zL = 0.01 + j0.1 pu. The voltage at
the infinite busbar is modeled with magnitude and angle evolving
smoothly, as Gaussian random walks with standard deviations

= −R 10w
5. Two abrupt voltage magnitude steps (0.03 pu upwards and

0.05 downwards) are also applied, as shown in Fig. 2. Moreover, initial
values of active and reactive power contributions to the infinite busbar
are assumed, with complex power s = 0.8 + j0.4 pu, so that pref and
Vref can be accordingly obtained.

As an example, the evolution of ω and V under these abrupt voltage
magnitude variations is represented in Fig. 3.

The system base frequency is 50 Hz, so Ωb = 100π rad/s and
ωs = 1. The parameters adopted in the simulation models are listed in
Table 5, and the time step for simulation and UKF is Δt= 0.01 s.

The UKF requires an initial state for xa. The initial values for the
state variables, x, are obtained by solving the steady-state case, which is
given in Table 6.

For the modified parameter vector adopted, ψ, random initial values
are considered in the range± 20% to±40% of their real values. In the
second stage of the proposed two-stage estimation technique, the gen-
erator parameters are initialized with their estimated value from the
first stage.

The covariance of the initial estimation error is defined by a diag-
onal matrix =P P Pdiag([ , ])x

T
ψ
T

0 0 0 , where the vector Px0 corresponds to
the state and Pψ0 to the parameters. For the elements of Px0, increasing
values are adopted, from the generator variables to those of the PSS,
resulting the vector:

= − − − −

− − − −
P [10 , 10 , 10 , 10 ,

10 , 10 , 10 , 10 , 1, 1]
x
T
0

4 4 4 4

3 3 2 2

The elements of vector Pψ0 for the parameters of the machine and its

regulators are tuned in order to achieve a better estimation, obtaining
the following result:

= − − − − − − −

−

P [10 , 10 , 10 , 10 , 10 , 10 , 10 ,
10 , 5, 5, 5, 1, 1, 1, 10, 10]

ψ
T

0
6 6 6 6 6 6 6

6

In this work, the UKF has been implemented with α= 10−4, κ= 0,
β = 2, following the values commonly found in works such as [24],
where an analysis of the influence of these scaling parameters in the
estimation process is made. The covariance matrix R has been taken as
a diagonal matrix with Rii = 10−4, corresponding to an error with 1%
s.d. (lower accuracy than that typically provided by PMUs).

The covariance matrix Q is assumed to be of the form
=Q Q Qdiag([ , ])x

T
ψ
T , where the vector Qx corresponds to the state and

Qψ to the parameters. For the elements of Qx, a common value of 10−6

is considered, while Qψ is proposed to have increasing values, from the
generator parameters to those of the PSS, resulting the vector:

= − − − − − −

− − − − − −

− − − −

Q [10 , 10 , 10 , 10 , 10 , 10 ,
10 , 10 , 10 , 10 , 10 , 10 ,
10 , 10 , 10 , 10 ]

ψ
T 6 6 6 6 6 6

6 6 5 5 5 5

5 5 4 4

The proposed algorithm presents a consistent performance in its
ability to properly estimate the model modified parameters. Fig. 4
shows the estimation results for the generator modified parameters, as
obtained from the first stage of the proposed technique. The graphics
include the evolution of the estimation error covariance. For each
parameter, the estimated value, x̂i, is represented jointly with a de-
viation ±x Pˆ 3i ii . Note that the covariances tend to Qii, showing the
accuracy of the converged estimation.

In the second stage, the synchronous generator parameters show no
significant evolution from their initial values, obtained at the first stage,
but the model modified parameters corresponding to the SG, the AVR
and the PSS evolve successfully to the real values, as shown in Fig. 5.

Hence, the method achieves a correct estimation of the modified
parameters, allowing the final computation of the original parameters
in (18)–(30).

The relative estimation error of the original parameters is sum-
marized in Table 7.

The robustness of the proposed technique for parameter estimation
has been tested with different standard deviations of the Gaussian
random walks on the grid voltage, Rw. For each case, the maximum
relative error in the estimated parameters, E| |r

max , is shown in Table 8.

6. Conclusions

In this paper, an UKF implementation is proposed to perform the
joint estimation of the state variables and parameters of a fully regu-
lated two-axis synchronous machine, including SG for the frequency
control and AVR and PSS for voltage control.

Although many techniques, including UKF, have already been used
for the estimation of generator parameters, the contribution of this
work lies in the use of a modified set of parameters, comprising up to 16
parameters, which are estimated using only 5 external measurements
taken at the generator terminal bus. Also, the use of a two-stage cas-
caded estimation process has made it possible to deal with bad con-
vergence behavior affecting some generator parameters.

A case study has shown that the proposed estimator yields accurate
enough results when using different initialization strategies. Four per-
formance tests with different standard deviations of the random walks
in the grid voltage show similar relative errors on the estimated values.
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Table 7
Relative error in parameter estimation.

Parameter Estimated value Relative error (%)

xd 0.987 1.30
xq 0.6583 1.28

′xd 0.298 0.67
′xq 0.559 1.43

D 1.999 0.05
H 6.341 2.45

′Tq0 0.502 0.40

′Td0 5.117 2.34
R 0.1032 3.20
Tr 0.1006 0.64
Ki 49.75 0.498
Tavr 0.988 1.186
Te 0.2002 0.101
K0 2.479 0.84
Tw 10.135 1.35
Kw 30.78 2.596

Table 8
Maximum relative error for each standard deviation Rw .

Rw 10−6 10−5 10−4 10−3

E| |(%)r
max 3.05 3.20 4.15 5.01
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Parameter Estimation of Wind Turbines With PMSM
Using Cubature Kalman Filters

M. A. González-Cagigal, José A. Rosendo-Macías , Senior Member, IEEE,
and A. Gómez-Expósito , Fellow, IEEE

Abstract—This paper presents a parameter estimation technique
for a variable-speed wind turbine with permanent magnet syn-
chronous generator and back-to-back voltage source converter.
The proposed technique applies the cubature Kalman filter for
the joint estimation of the system dynamic state and a modified
set of parameters from which the original model parameters can
be algebraically recovered. To the authors knowledge, this work is
the first attempt to apply such an innovative technique to a PMSM
detailed estimation model including the control parameters of the
voltage source converter.

Index Terms—Cubature Kalman filter, variable-speed wind
turbine, direct-drive synchronous generator, back-to-back voltage
source converter, parameter estimation.

I. INTRODUCTION

IN a decarbonized and more electrified future, power systems
must be able to cope with increasing amounts of intermittent

renewable energy. Excluding hydro, wind energy is so far the
dominant renewable source worldwide, both in terms of produc-
tion share (5.6%) and cumulative installed power (550 GW), of
which only about 20 GW (less than 4%) correspond to offshore
farms. This means that there exists a huge growth potential for
offshore wind technology, still in its infancy, while the best
places for onshore farms are being quickly occupied. The aver-
age offshore turbine size in Europe (5.9 MW) has nearly doubled
in the last decade and some vendors are already announcing
machine designs of over 12 MW rated power [1]. The most
promising topology for offshore wind energy is the direct-driven,
multi-pole Permanent Magnet Synchronous Machine (PMSM)
with fully-rated back-to-back Voltage Source Converters (VSC),
a turbine concept which lacks the gearbox.

Among the upcoming technical challenges raised by the
massive integration of renewables, the need for wind and PV
sources to contribute to ancillary services stands out. These
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include voltage and frequency regulation, according to increas-
ingly demanding grid codes, provision of synthetic inertia to
keep current stability margins, fast response (flexibility) in the
presence of more frequent and deeper net demand gradients, etc.

In this context, it is most important for grid operators to adopt
accurate enough PMSG-based wind turbine models, including
the fast acting VSC, in order to evaluate their dynamic behavior.
This involves a detailed knowledge of the associated components
and their defining equations. Ultimately, the system state evolu-
tion is determined by the parameters involved in those equations,
which are therefore crucial for the correct operation and control
of a power system with a high penetration of wind power plants.

System parameters are customarily considered constant, even
under changing operating conditions. However, when this as-
sumption is not accurate enough, or when the control parameters
provided by the manufacturer are suspected to be inaccurate or
outdated, a model validation is needed to obtain their values
considering the actual operating point. This need has been rec-
ognized, for instance, in the US, where the NERC has released
reliability guidelines [2] regarding the validation of generator
models, including synchronous machines and other inverter-
based ones exceeding a certain rated power. NERC suggests two
ways for generator model validation and calibration: 1) taking
the generator out of service and performing specific tests; 2)
measurement-based methods based on disturbance recordings
from synchrophasors (PMUs), data loggers, fault recorders, etc.
This work lies in the second category.

Dynamic state estimators (DSEs) based on Kalman filters
(KFs) have been used for state estimation of power systems
with nonlinear dynamics, as proposed in [3], which includes a
comparison study. A particular formulation of KF, the so-called
unscented KF (UKF) has proven to be reliable and accurate for
this particular application [4]. For instance, in [5] a method to
deal with disturbances in the system is proposed, whereas [6]
includes the system parameters in the estimation process.

The UKF technique has also been applied in state estimation
of synchronous generators, [7], and joint state and parameter
estimation of these machines, [8]. Regarding wind turbines, [9]
studies the application of UKF in fault diagnosis. For this type
of machines, [10] uses extended KF (EKF) in the estimation
of the electrical parameters of doubly-fed induction generators
(DFIGs), while [11] proves that the performance of the UKF is
superior to that of the EKF in the parameter estimation of DFIGs.

EKF is also used in different studies on permanent magnets
synchronous motors. Rotor initial position is estimated in [12]

0885-8950 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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for a sensorless direct torque controlled machine. Flux-linkage
is included in the estimation process in [13] for a vector control
and in [14] when demagnetization situations are considered.
On these machines, fault detection is necessary for a correct
operation of the power system. A method using EKF is estab-
lished in [15] and [16] for stator winding inter-turn short circuit
identification.

A real implementation of the studied estimation techniques
requires noninvasive measurements taken from the system con-
sidered. In this respect, [17] proposes a temperature estimation
for PMSMs using noninvasive Kalman filters.

PMSGs are considered in a number of studies dealing with
EKF. For instance, in [18] an estimation of the rotor speed is per-
formed within a sensorless maximum power point tracker. Con-
trol systems without encoder are also considered in [19], where
EKF is used to estimate the state variables of a back-to-back
converter. Measurements obtained from PMUs are introduced
in the EKF algorithm in [20].

A recent formulation of KFs, the so-called cubature Kalman
filter (CKF), has shown good performance in problems such
as state estimation of synchronous generators [21]. Theoretical
aspects of this formulation are addressed in [22], where some
limitations of other KF schemes, such as UKF, which are not
suffered by the CKF, are highlighted. Joint state and parameter
estimation using CKF is studied in [23], applied to a vehicle
model, and in [24], with permanent magnet synchronous motors.

This work considers a variable-speed PMSM wind turbine,
connected to the grid through a back-to-back pair of VSCs,
which is capable of controlling its active and reactive power
within specified limits. Based on measurement snapshots taken
at the point of connection, the state and parameters of the wind
turbine and the VSC are jointly estimated using CKF.

This work is organized as follows. Section II formulates the
equations used in the proposed CKF algorithm. Section III
analyzes the modeling system under study, with the wind tur-
bine, the synchronous generator and the back-to-back voltage
source converter (VSC). The implementation of the CKF is
described in Section IV. Section V presents simulation results
corresponding to the base case and several scenarios facing
different disturbances. Section VI includes a comparison of
the performance presented by the CKF estimation technique
when increasing measurement and model errors are considered.
Finally, the conclusions obtained are presented in Section VII.

II. CUBATURE KALMAN FILTER

Kalman Filter implementations require a set of state equa-
tions, including the dynamic and the measurement equations. In
the case of continuous-time, discrete-measurement non-linear
systems, these equations can be expressed as

ẋ(t) = f(x(t), u(t)) + w(t) (1)

z(tk) = g(x(tk), u(tk)) + v(tk) (2)

where x(t) is the state vector, u(t) the system input, and z(tk)
the available measurements at instant tk. The model and mea-
surement noises, w(t) and v(tk), are assumed to be Gaussian
processes with covariance matrices Q and R, respectively.

Considering a time step Δt, the above equations have the
following discrete counterparts:

xk = xk−1 +Δt · f(xk−1, uk−1) + wk (3)

zk = g(xk, uk) + vk (4)

which are more appropriate for non-linear Kalman filtering
techniques, such as the CKF. This involves an iterative process
composed of two different stages, as follows [25].

A. Time Update

At each time k, an estimated state vector x̂k−1 of size L,
along with the covariance matrix associated to its estimation
error, Pk−1, are available from the previous step. On the basis
of these values, a set of 2L cubature points are calculated as
follows:

Sk−1S
T
k−1 = Pk−1 (5)

xik−1 = Sk−1ξi
√
L+ x̂k−1 i = 1, . . ., 2L (6)

where S is a positive-definite square root of matrix P (in this
paper the Cholesky factorization of matrix P will be used), and
ξi is the ith cubature node, obtained as the intersection of the unit
sphere and the RL axis. Compared to other KF formulations, the
cubature points are less prone than the σ-points calculated in the
UKF to numerical inaccuracy or filter instability, [22]. This issue
is further discussed in Section V.

The state function f(·) in (3) is evaluated at these cubature
points, yielding a set of 2L vectors xi−k , from which an a priori
estimation of x̂−k and P−

k is in turn computed as follows:

x̂−k =
1

2L

2L∑

i=1

xi−k (7)

P−
k =

1

2L

2L∑

i=1

xi−k x
i−T
k − x̂−k x̂

−T
k +Qk (8)

B. Measurement Update

Once the a priori estimation is obtained, the covariance matrix
P−
k is factorized in order to calculate the matrix S−

k ,

S−
k S

−T
k−1 = P−

k (9)

and a new set of 2L cubature points,

xi−k = S−
k ξi

√
L+ x̂−k i = 1, . . ., 2L (10)

at which function g(·) in (4) is evaluated, yielding:

γi−k = g(xi−k , uk) i = 1, . . ., 2L (11)

Then the measurement estimation, ẑ−k , its covariance matrix,
P−
zk, and the cross-covariance matrix of state and measurements,
P−
xzk, are calculated as follows:

ẑ−k =
1

2L

2L∑

i=1

γi−k (12)

P−
zk =

1

2L

2L∑

i=1

γi−k γ
i−T
k − ẑ−k ẑ

−T
k +Rk (13)
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Fig. 1. Components of the simplified system under study.

P−
xzk =

1

2L

2L∑

i=1

xi−k γ
i−T
k − x̂−k ẑ

−T
k (14)

allowing the cubature Kalman gain to be obtained from,

Kk = P−
xzk(P

−
zk)

−1 (15)

Finally, the a posteriori predictions of the state vector, x̂k,
and the covariance Pk are obtained as

x̂k = x̂−k +Kk(zk − ẑk) (16)

Pk = P−
k −KkP

−
zkK

T
k (17)

which enter the next iteration of the algorithm.

III. SYSTEM MODELING

This section presents the equations describing the dynamics of
the system under study, composed of the wind turbine with pitch
angle control, the synchronous generator and the back-to-back
VSC (Fig. 1).

A. Wind Turbine

The mechanical power produced by the turbine at wind speed
vw is given by, [26]:

pw =
1

2Sn
cp(λ)πR

2v3w (18)

whereR is the rotor radius,Sn the system rated power and cp(λ)
the performance coefficient. For a turbine model with control of
the pitch angle, θp, and a given tip speed ratio, λ, this coefficient
is obtained from,

cp(λ) = 0.22

(
116

λi
− 0.04θp − 5

)
e
− 12.5

λi (19)

1

λi
=

1

λ + 0.08θp
− 0.035

θ3p + 1
(20)

λ =
2ωR

npolevw
(21)

ω is the shaft angular speed and npole is the number of poles of
the generator.

The pitch angle control is aimed at maximizing the power
production for a specified angular speed. In this work, the fol-
lowing optimal power, poptw , characteristic for each wind turbine,

TABLE I
WIND TURBINE PARAMETERS

is considered,

poptw =

⎧
⎪⎨

⎪⎩

0 if ω < 0

2ω − 1 if 0 ≤ ω ≤ 1

1 if ω > 1

(22)

while the control of θp is represented with first order dynamics:

θ̇p =
1

Tp

(
Kp(ω − ωref )− θp

)
(23)

ωref being the reference angular speed.
To connect the turbine and the generator, a rigid shaft is

considered, so that the equation describing the angular speed
dynamics can be expressed as follows:

ω̇ =
1

2Htm

(
pm − pe

ω

)
(24)

where pe is the electric power comsumption.
Equations (23)–(24) include a set of dynamic parameters,

listed in Table I, whose values are unknown. The goal of this
work is to estimate those parameters using a CKF.

B. Synchronous Generator

In this work, a permanent magnet synchronous generator
is considered, where the voltage (vs), and current (is), at the
machine terminals are related through the electromagnetic equa-
tions in dq axis, [26],

vsd = ωLqisq (25)

vsq = −ω(Ldisd − ψp) (26)

Ld and Lq being the generator inductances in dq axis, and ψp
the rotor permanent field flux.

These magnitudes are used to calculate the active and reactive
power delivered by the synchronous generator,

ps = vsdisd + vsqisq (27)
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TABLE II
BACK-TO-BACK VSC PARAMETERS

qs = vsqisd − vsdisq (28)

As the machine is supposed to be rigidly connected to the
turbine, ps replaces pe in equation (24).

In this work, the value of the generator inductances, Ld and
Lq , which can be obtained with different factory tests, are
assumed to be known and therefore are not included in the
parameter estimation problem.

C. Back-to-back VSC

The converter allows controlling the active power and either
the reactive power produced by the generator or the voltage at
the VSC external bus. The control variables are the currents on
the VSC generator and grid sides, is and ic, respectively, in d−q
axis. The dynamic equations are represented as follows [26]:

disq
dt

=
1

Tqs

(
poptw

ω(ψp − Ldisd)
− isq

)
(29)

disd
dt

=
1

Tds
(Kds(qs0 − qs)− isd) (30)

dicq
dt

= Kqc(ps − pc) (31)

dicd
dt

=
1

Tdc

(
Kdc(v

ref − vh)− icd
)

(32)

Table II collects the parameters of the converter to be esti-
mated using CKF.

Equations (29)–(32) represent the VSC model as implemented
by the CKF algorithm, which constitutes a simplification of
the simulation model adopted for the sole purpose of obtaining
measured magnitudes, [28]. This latter model includes other
components which are present in real wind power plants, such
as the AC filter and the DC-link voltage controller, so that the
measurements used in the estimation process are as close as
possible to those that would be captured from the actual system.

IV. IMPLEMENTATION OF THE CKF

In the previous section, the parameters involved in the dy-
namic model (18)–(32) have been presented. As most of those
parameters are not precisely known, or are simply unknown,
they should be included in an augmented state vector for a joint
state-parameter estimation using CKF.

An initial attempt to estimate the original raw parameters
was unsuccessful, owing to convergence problems. Therefore,
a parameter modification technique is proposed, similar to the
one adopted in [27] for synchronous machine parameter estima-
tion. With this technique, the augmented state vector becomes

xTa = [xT , ψT ], where the state vector, x, contains the following
state variables,

xT = [isd, isq, ω, θp, icd, icq]

andψ is the modified parameter vector, as proposed in this work,

ψT =

[
10

Htm
,
Kqc

10
,

1

Tdc
,Kdc,

1

Tds
,

1

Tqs
,Kds,

1

Tp
,Kp

]

Therefore, the size of the augmented vector is L = 15.
Equations (3) and (4) can be rewritten in terms of xa and

an augmented-model noise vector, wk, involving the state and
parameter components, yielding:

[
xk
ψk

]
=

[
xk−1 +Δt · f(xk−1, uk−1)

ψk−1

]
+ wk (33)

zk = g(xak, uk) + vk (34)

Regarding the measurement update stage in the CKF algo-
rithm, seven easily measurable magnitudes are considered: the
magnitude and phase angle of the voltage (V, θV ) and current
(I, θI ) at the VSC external bus, which can be provided by a PMU
unit, the shaft angular speed ω, the pitch angle θp and the wind
speed vw. In turn, it is customary to divide this set into inputs,
uT = [vw, V, θV ], and measurements, zT = [ω, I, θI , θp], [29].

Then, the function g(xak, uk) in (34) reduces in this case to,

I =
√
i2cd + i2cq (35)

θI = arctan

(
icd
icq

)
(36)

Note that ω and θp lead to trivial expressions, as they are state
variables.

V. CASE STUDIES

In this section, the results of three performance tests are
presented to confirm the accuracy and robustness of the proposed
estimation method, when the reduced power system shown in
Fig. 1 faces different disturbances. The magnitudes defining
the steady-state starting point (vref and ωref ) are obtained by
assuming an initial complex power injection at the connection
point (Sc = 0.7 + j0.5 pu), the base power being equal to the
rated power of the wind turbine (SB =; 2 MW). The simulations
have been carried out using Matlab Simulink. Note that the simu-
lation model considered for the generation of exact magnitudes,
[26], is more detailed and accurate than that adopted by the CKF
algorithm. Specifically, the stator resistance and a set of control
parameters involved in the VSC and the pitch angle control, are
neglected in the CKF system model described in Section III.
This is intentionally done in order to consider the more realistic
situation in which the model assumed by the CKF does not
necessarily reflect the exact model, but a simplified one.

The exact parameter values adopted in the simulation are
listed in Table III, excluding those that are not considered in
the estimation process, such as the stator resistance. The time
step for the simulations and the CKF process is Δt = 0.01 s.

The CKF estimator requires an initial state for xa. For the
state variables, x, an initialization process is used, based on the
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TABLE III
EXACT PARAMETER VALUES

TABLE IV
INITIAL VALUES FOR THE STATE VARIABLES

steady-state point [30], leading to the initial values shown in
Table IV.

In order to test worst case conditions, regarding the accuracy
of the available parameter values (from manufacturer data, sim-
ilar machines or other sources), the proposed modified param-
eter vector, ψ, is initialized with a random value in the range
±30% ÷±50% of their real values. This way, the proposed
estimation technique becomes a method for the validation of
the parameter values.

The initial covariance of the state estimation error is defined
as a diagonal matrix,

P0 = diag([PTx0, P
T
ψ0])

where

PTx0 = [10−4, 10−4, 10−4, 10−4, 10−4, 10−4]

corresponds to the state variables, and

PTψ0 = [1, 1, 1, 1, 1, 1, 1, 1, 1]

to the modified parameters.
The covariance matrix Q has been assumed as a diagonal

matrix withQii = 10−8, while the covariance matrixR has been
taken as a diagonal matrix withRii = 10−4, corresponding to an
error with 1% s.d. (lower accuracy than that typically provided
by PMUs).

A. Base Case: Smooth Operating Point Variations

In this scenario, the impedance of the line connecting the
PMSM generator to the infinite busbar is zL = 0.01 + j0.1 pu.
The magnitude and angle of the busbar voltage evolve as
Gaussian random walks with standard deviation Rw = 10−4,
as represented in Fig. 2.

The system under study is supposed to be in normal operating
conditions. The evolution considered for the wind speed, vw, is
taken at a mean value of 16 m/s with a standard deviation of

Fig. 2. Gaussian random walks applied to the connection point bus voltage.

Fig. 3. Wind speed evolution for the base case scenario.

Fig. 4. Estimation result for the turbine-motor inertia constant.

10−2 simulating the real variability, [31]. This signal (Fig. 3), is
used as an input for the CKF algorithm.

The estimation technique proposed in this work has proven to
be accurate when small and random variations of the operating
point are considered. Fig. 4 shows the results of the CKF
estimation process throughout 60 s for the modified parameter
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Fig. 5. Estimated parameters for VSC and pitch angle control with smooth variations.
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TABLE V
RELATIVE ERROR IN PARAMETER ESTIMATION WITH SMOOTH VARIATIONS

Fig. 6. Performance comparison in the estimation of shaft inertia by CKF,
UKF and EKF.

representing the turbine-motor inertia constant Htm, while the
VSC and the pitch angle control parameters are represented in
Fig. 5. For each parameter, the estimated value, x̂i, is represented
along with the x̂i ± 3Sii bounds. Note that the covariances tend
to Qii, showing the accuracy of the converged estimation.

As can be seen, the method eventually converges to the neigh-
borhood of the correct modified parameters, from which the
original parameters can be recovered, as per equations (18)–(32).
The estimated value of the original parameters and the relative
estimation error are summarized in Table V. Note that the largest
relative error is 2.1%.

The performance of the proposed estimation technique, based
on CKF, has been compared with that shown by other KF filter
schemes, such as UKF and EKF, as illustrated in Fig. 6, where
the estimation of the shaft inertia under soft variations in the
system is shown. Note that the EKF provides an unacceptable
estimated value for the modified parameter and that the UKF
presents convergence problems in the long term.

Once the accuracy of the parameter estimation process has
been shown under mild operating conditions, the robustness
of the proposed estimation technique is tested with three large
disturbances separately arising in the system under study.

B. Disturbance 1: Wind Gust

This test considers an abrupt change in the wind speed, which
is modeled as a Mexican Hat Wavelet [31], as shown in Fig. 7.

The evolution of the voltage at the point of connection is the
same as in the base case.

Fig. 7. Representation of the Mexican Hat Wavelet.

Fig. 8. Estimation result for 10/Htm with wind gust.

In this case, the parameters are initialized with their estimated
values, as provided by the base case. As the initial estimation
is more accurate, the elements of Pψ0 are reduced to 10−4. The
value of Qii has also been modified to 10−6.

The estimated parameters showed no significant variations
during the wind gust, reaching the same values as in the base
case after a small transient, once the disturbance vanishes. As an
example, the evolution of 10/Htm is provided in Fig. 8, where a
zoomed view is added to better visualize the transient behavior.

C. Disturbance 2: Voltage Dip

The second disturbance considered is a 70% voltage dip at
the point of connection that elapses for 1 s (Fig. 9). The tie-line
impedance and the standard deviation of the Gaussian random
walks are the same as in the previous case. The wind speed is
assumed to remain as in the base case.

The initial estimation for the parameters and the elements of
Pψ0 andQ remain the same as in the previous case (Disturbance
1).

Except for a small transient arising during the disturbance,
the modified parameters showed no significant variations in the
presence of the voltage dip, reaching the same estimated values
as in the base case. As an example, the evolution of 1/Tdc in
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Fig. 9. Voltage dip at the point of connection.

Fig. 10. Estimation result for 1/Tdc with voltage dip.

shown in Fig. 10, where the transient behavior can be noticed in
the zoomed view.

D. Disturbance 3: Topological Change

In the last case study considered in this work, an abrupt
variation in the tie-line impedance is assumed, representing
a sudden topological change in the external system. For this
purpose, at instant t = 20 s, the value of zL is modified to
zL = 0.01 + j0.5 pu permanently. The value of the voltage at
the connection point and the wind speed remain the same as in
the base case.

The initial estimation for the parameters and the elements of
the matrices Pψ0 and Q remain the same as in the disturbances
1 and 2.

As the disturbance considered in this case is permanent,
the estimated values are slightly different to those prior to the
disturbance. See the evolution of 1/Tp in Fig. 11 as an example,
where the scale of the transient period is augmented. Note that
the accuracy of the estimated parameter in this case has improved
minimally.

Fig. 11. Estimation result for Kp with topological change.

TABLE VI
MAXIMUM RELATIVE PARAMETER ERROR FOR INCREASING

MEASUREMENT ERRORS

TABLE VII
MAXIMUM RELATIVE PARAMETER ERROR FOR INCREASING

ERRORS IN Ld AND Lq VALUES

VI. MEASUREMENT AND MODEL ERROR IMPACT

Once the accuracy of the proposed estimation technique has
been proved, the influence of the measurement error on the
CKF performance is tested. For this purpose, the smooth system
perturbations considered in the base case are repeated by grad-
ually increasing the s.d. of the measurement errors. Table VI
summarizes the results obtained in terms of maximum relative
error in the parameter estimation. As expected, the lower the
measurement accuracy the poorer the estimation results. Note
that, if PMUs are used as the source of measurements, with errors
typically lower than 1%, then the maximum parameter error will
be less than 2%.

On the other hand, the synchronous generator model presented
in Section III, as given by (25) and (26), includes the generator
inductances in dq axis, Ld and Lq , which are considered to be
known for the CKF implementation. The performance of the
estimator with increasing error in those parameters is compared
in Table VII, where the variation of the maximum relative error
is shown.

Note that, while low model errors lead to sufficiently accurate
estimation results, when the errors in the known system param-
eters are large enough, the CKF-based estimator performance
deteriorates, in proportion to those errors.
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VII. CONCLUSION

In this paper, a CKF is used to perform a joint estimation of the
state variables and parameters of a variable-speed wind turbine
with a direct-drive synchronous generator and a back-to-back
VSC.

The proposed method includes a set of modified parameters,
providing accurate estimation results (2.1% maximum relative
error) under normal small variations in the operating point. A
comparison of three KF schemes (CKF, UKF and EKF) has
shown that the CKF is the most suitable for the parameter
estimation of the system under study.

The robustness of the technique has been successfully proven
with three different performance tests, simulating typical large
disturbances that can occur in real life. Finally, the results
provided by the CKF, for increasing values of measurement
errors, show that the estimator performance is acceptable as
long as the quality of the measurements remains within a range
typically achieved by existing synchrophasors.
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A B S T R A C T

This paper presents a state estimation approach to address the problem of identifying the phase to which single-
phase customers are connected in three-phase distribution grids. The proposed method performs Kalman fil-
tering on the information provided simultaneously by the smart meter of every customer and the aggregated
energy consumption measured at each phase of the secondary substation feeding the set of customers. Different
nonlinear formulations of the Kalman filter are tested and their performance compared, showing that the en-
semble Kalman filter provides better estimation results when the system size increases. The accuracy, robustness
and limitations of the estimator are also tested when measurement errors are considered.

1. Introduction

Correct operation monitoring and control in distribution systems are
essential in order to assure a good quality of the service provided to the
customers. In this context, it is most important for grid operators to
unambiguously know which loads are connected to each of the three
phases of the system (the European feeder topology is assumed in this
work). An accurate connectivity information is a prerequisite to pro-
mote the correct phase balance of LV consumers, alleviating in this way
the problems derived from feeder unbalances, such as sharper voltage
drops, which can even violate the grid codes, and increasing power
losses which also affect the lifespan of the equipment due to tempera-
ture rise. Moreover, the penetration of renewable energy resources at
the distribution level also benefits from the phase identification, since it
helps to establish a better production-consumption balance for each
phase of the grid.

In this regard, despite the efforts undertaken by distribution com-
panies, they frequently lack enough information about the phase con-
nection of their single-phase customers, owing for instance to network
reconfiguration after faults, phase switching derived from improper
maintenance, or inaccurate recording of the true load-to-phase con-
nectivity. In these circumstances, a method must be developed to esti-
mate as accurately as possible the actual phase to which a customer is
connected in LV feeders, which is known as the customer-phase iden-
tification (CPI) problem.

The CPI problem has been approached in several ways by previous
works. In [1], a signal processing perspective is applied to voltage ob-
servations, which are also used both in [2], for a correlation-based
methodology, and in [3], where a spectral clustering technique is
proposed. The connecting phase of underground distribution transfor-
mers is determined in [4] through phase voltage measurements. Smart

meters have improved the communication between the loads and the
substations and can be also used for the CPI problem [5,6]. A method
based on Least Absolute Shrinkage and Selection Operator (LASSO) is
proposed in [7], also using smart meter data from a LV distribution
network. In [8], a novel approach for phase identification using graph
theory and principal component analysis (PCA) is tested. The possible
missing information in smart meter data is dealt with in [9] through a
correlation analysis.

In this work, the CPI is addressed by applying a Kalman filtering
(KF) state estimation technique to a set of hourly consumption curves
obtained from real loads, along with hourly energy measurements taken
at each phase of the secondary substation. The proposed method con-
servatively assumes that other electrical magnitudes potentially pro-
vided by smart meters, such as voltage readings or reactive power
consumed by each load, are not available. Moreover, a simplified loss
model is adopted, allowing the impact of each load on the energy de-
livered by each phase of the transformer to be estimated for a given
topology.

The KF is a dynamic state estimator (DSE) widely used in electric
power systems in any of its diverse forms [10–12]. Particularly, the
application of KF to parameter estimation in power systems has been
successfully tested, e.g. in [13–15], providing evidence of the DSE po-
tential for the CPI problem.

In this work, three nonlinear KF schemes are tested and compared,
namely the so-called unscented Kalman filter (UKF), the cubature
Kalman filter (CKF), and the ensemble Kalman filter (EnKF). The pro-
posed technique takes advantage of the hourly information provided by
smart meters to sequentially assign customers to the most likely phase.
The proposed KF implementation does not explicitly enforce, before-
hand, binary constraints for the state variables, but rather adopts a
novel, statistically-based inference logic successively rounding state
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variables to their nearest binary value. As the input information con-
sidered in this work is similar to that assumed in [7,8], the KF-based
estimation is also compared to those competing techniques for different
scenarios.

The paper is organized as follows: Section 2 provides a brief back-
ground on the different KF schemes considered. Next, the feeder used
for testing and the simplified loss model adopted are presented in
Section 3. The implementation details of the KF based estimation
techniques, as applied to the CPI problem, are given in Section 4. In
Section 5, the results obtained in two different scenarios are presented
and discussed, while the proposed KF technique is compared in Section
6 with other published works dealing with CPI. The conclusions derived
from the case studies considered are drawn in Section 7.

2. Kalman filter background

In this section, three different Kalman filter formulations are suc-
cinctly reviewed, as applied to continuous-time, discrete-measurement
nonlinear systems. In the discrete-time framework, the associated
equations may be expressed as follows,

= +− −x f x u w( , )k k k k1 1 (1)

= +z g x u v( , )k k k k (2)

where xk is the state vector at instant k u, k the system input, and zk the
vector of available measurements. Gaussian processes are considered
for the model and measurement noises, wk and vk, with covariance
matrices Q and R, respectively.

The iterative processes of the Kalman filter schemes considered in
this work, all of them involving prediction and correction stages, are
described below.

2.1. Unscented Kalman Filter

At instant k, a cloud of +L2 1 vectors, the so-called σ -points, is
obtained from the previously estimated state vector, ̂ −xk 1 (dimension L),
and the covariance matrix of the state estimation error, −Pk 1, as follows
[16]:
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+ −L λ P[ ( ) ]k i1 being the ith column of the corresponding matrix, and λ
a scaling factor calculated as follows:

= + −λ α L κ L( )2 (4)

where α and κ are two filter parameters to be tuned.
These σ -points are evaluated through Eq. (1), yielding +L2 1 vec-

tors, −xk
i , from which the a priori estimations −̂xk and −Pk are obtained:
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where the weighting vectors Wm and Wc are calculated from:
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β being another tunable parameter.
On the basis of the a priori information, the correction stage starts

with the calculation of a new cloud of vectors, −xk , which are evaluated
with the measurement function g (·) in Eq. (2), and weighted with the
vectors Wm, yielding

= = …− −γ g x u i L( , ) 0, ,2k
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k
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Then, the covariance matrix of the measurement estimation error, −Pzk,
and the cross-covariance matrix of state and measurements, −Pxzk, are
obtained using the vector Wc as follows:
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The correction stage concludes with the a posteriori predictions,

̂ ̂ ̂= + −− −x x K z z( )k k k k k
T (12)

= −− −P P K P Kk k k zk k
T (13)

which are based on the a priori predictions at instant k and the so-called
Kalman gain, Kk, calculated from

= − − −K P P( )k xzk zk
1 (14)

2.2. Cubature Kalman Filter

This KF formulation uses a set of L2 cubature points calculated from
̂ −xk 1 and −Pk 1 through the following expressions [17]:

=− − −S S Pk k
T

k1 1 1 (15)

̂= + = …− − −x S ξ L x i L1, ,2k
i

k i k1 1 1 (16)

where S is a positive-definite square root of matrix P (the Cholesky
factorization of matrix P is customarily used), and ξi is the ith cubature
node, obtained as the intersection of the unit sphere and the L� axis.

The state function f (·) in (1) is evaluated for the set of cubature
points, yielding a set of L2 vectors −xk

i , from which the a priori esti-
mation is computed,
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For the correction stage, the covariance matrix −Pk is factorized in order
to calculate both the matrix −Sk ,

=− − −S S Pk k
T

k (19)

and a new set of L2 cubature points, −xk , at which function g (·) in (2) is
evaluated to obtain −γk .

Then the measurement estimation, −̂zk , its covariance matrix, −Pzk,
and the cross-covariance matrix of state and measurements, −Pxzk, are
calculated as follows:
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The a posteriori predictions of the state vector, ̂xk, and the covariance Pk
are calculated with the Kalman gain using the same Eqs. (14) and (13)
as in the UKF algorithm.

2.3. Ensemble Kalman Filter

The EnKF [18], is a Monte Carlo approximation of the original KF
which has proven accurate enough in high-dimensional state-space
problems. The ensemble is represented by an LxN matrix, N being the
number of samples considered.

The ensemble is first propagated through the state and measurement
functions,
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and then the mean values are calculated:
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The EnKF correction stage is based on the calculation of the inter-
mediate matrices
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which allow the Kalman gain and the updated values of each sample in
the ensemble to be obtained:
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Finally, the corrected covariance matrix, Pk, is calculated as follows:
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3. Problem statement and modeling

In order to assess the ability of the KF-based methodology to address
the CPI problem, a typical distribution grid is considered comprising Ns
single-phase and Nt three-phase customers, not necessarily balanced,
resulting in = +N N N3c s t total consumption curves in the network. In
this work, it is assumed that the number of three-phase customers is 20%
of the total. The proposed methodology, as presented in Section 4, is
easily extensible to other load connection arrangements, such as two-
phase loads, still found in some areas. Fig. 1 shows an example of a
distribution network with 100 loads, used in the sequel to test the es-
timation techniques.

The energy consumption of each load i at a certain hour k, denoted
by Ei k, , is obtained from [19], where real hourly data from a European
distribution company, comprising smart meters readings for 20 days,
are provided, leading to a total of 480 energy measurements for each

customer. In case of three-phase loads, a single-phase consumption is
assigned to each phase. As customers with null consumption cannot be
identified (they provide no information), the corresponding curves are
removed from the raw data.

To fully characterize the energy consumption of the customers, the
reactive energy is also obtained from the raw data in [19]. Finally, the
resulting hourly curves are randomly associated to a certain phase (a, b
or c).

Along with the previous customer information, a typical distribution
feeder topology is considered, each customer being associated to one of
the grid nodes. Then, a load flow can be solved at each hour k in order
to obtain the energy delivered by each phase of the MV/LV secondary
substation, E E,SS k

a
SS k
b

, , and ESS k
c

, , which is used by the proposed KF-based
estimation technique as a measurement. This fully defines the dis-
tribution grid model involved in the estimation process.

4. Kalman Filter Implementation

The application of the different KF schemes described in Section 2 to
the CPI problem is illustrated in the flowchart represented in Fig. 2, as
summarized in the sequel.

4.1. Parallel filtering

For every iteration of each tested technique, three independent KF-
based estimators run in parallel, one for each phase p of the distribution
grid, being the state vector composed of Nc variables, xi

p, with
=p a b c, , , so that =L Nc. Any three-phase customer is characterized

by a set of three consecutive state variables, + +x x x{ , , }i
p

i
p

i
p

1 2 , for each
phase. Those variables indicate if the consumption i is associated to the
corresponding phase p. For these static variables, the state function,
f (·), in Eq. (1), is taken as a random walk, independent of the system
input, uk, yielding the following expression:

= +−x x wk
p

k
p

k
p

1 (32)

where the model noise, wk
p, is considered to have the same covariance

matrix, Q, for each phase.
The system input, uk, used in the measurement function g (·) in Eq.

(2), is determined by the hourly energy consumption of each customer,
= …u E E E, , ,k

T
N k1 2 c . Regarding the network losses, as no measurements

about the voltage and power factor of each load are available, a

Fig. 1. Single-line diagram of one of the test networks.
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simplified loss model is adopted by the KF estimators, for which a given
rated voltage and power factor =φcos 1i k, are assumed for all loads
points. With these assumptions, an average hourly current, Ii k, is cal-
culated for each consumer i from the corresponding hourly energy
consumption, Ei k, :

=I
E

T U·i k
i k

,
,

(33)

where U is the voltage magnitude, and T is the energy integration
period. In this work, as the energy measurements are supposed to be
obtained hourly, =T h1 .

Accordingly, the energy loss attributable to customer i is given by:

=E I T r l· · ·i k
loss

i k i, ,
2 (34)

where r is the conductor resistance per unit length and li is the electrical
distance from each consumer to the secondary substation, both as-
sumed to be known ( =r 0.223 Ω/km, has been adopted in this paper).

The vector uk also includes the variables xi
p corresponding to cus-

tomers which have been previously assigned to a phase, as described
below.

The measurement of each filter, zk
p, is taken as the energy delivered

at each hour by the corresponding phase of the secondary substation,
=z Ek

p
SS k
p

, , so the measurement function g (·) in Eq. (2) reduces to:

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟ +

=

z x E E v·k
p

i

N

i k
p

i k i k
loss

k
p

1
, , ,

c

(35)

where the measurement noise, vk
p, is considered to have the same

covariance matrix, R, for each phase.

4.2. Initialization and tuning

As explained formerly, before the KFs are applied, a set of input data
are gathered, including the hourly consumption of each customer and
the energy delivered by the MV/LV transformer for the time window
available. A separation is made between single-phase and three-phase
loads. For the last ones, it is assumed that three energy measurements
are available, one per phase, but the phase labels (a, b or c) are un-
known. At the end of the estimation processes, the actual distribution of
customers among the three phases is used to evaluate the performance
of each estimation procedure.

The KF formulations require that an initial estimation is adopted,
which is determined by the state vector ̂x0 and the covariance matrix of
the initial estimation error, P0. For the UKF and CKF implementations,
all state variables in the three phases are initialized as 0, assuming a
complete lack of knowledge about their real values. In the case of EnKF,
the samples are given random binary values as initial estimation, which
enhances the convergence of the estimation algorithm. The covariance
matrix, P0 is considered as a diagonal matrix with =P 10ii in the three
KF schemes.

The covariance matrices Q and R are defined as diagonal matrices,
considering typical values of = −Q 10ii

4 and = −R 9·10ii
4 respectively,

the last one being equivalent to assuming a s.d. of 3% for the mea-
surement errors.

For the estimation based on UKF, it is necessary to define the tun-
able parameters of the filters introduced in Eqs. (4) and (7). A study is
made in [20] over the influence of these parameters in the estimation
process, concluding that = =−α β10 , 24 and = −κ N3 c, are reasonable
values for good estimation results.

Regarding the EnKF, the number of samples in the ensemble is taken
as =N N10· c so that it can suit the different sizes of the state vector.

4.3. Candidate selection and assignment

Once the three parallel estimators have provided a customer dis-
tribution for their corresponding phase, a single consumption is as-
signed and removed from the subsequent estimation processes. The
candidate selection at each iteration of the CPI procedure is based on
the estimated values of the state variables, ̂xi

p, and the covariance of
their estimation error, Pii.

Forcing the state variables to be only 0 or 1, as required by the
nature of the problem in hand, would involve equality constraints of the
form ̂ ̂ − =x x·( 1) 0. However, the application of the KF estimation al-
gorithms to such non-convex model is prone to convergence problems.
For this reason, the approach proposed in this work to enforce the
binary character of the state variables relies on the confidence level of a
given consumption being associated to a certain phase and not to the
others. This is quantified through the so-called phase confidence fac-
tors, Ci

p, calculated with the probability density function (PDF) of the
state variables, as follows.

First, the cumulative density function for ̂ >x 0.5i
p , denoted as Mi

p,
is calculated as follows:

̂
∫

⎧

⎨
⎪

⎩
⎪

=

=
= …

∞ −
−

M e dx

p a b c
i N

, ,
1, ,

i
p

π P

c

1
2· · 0.5ii

x xi
p

Pii

( )
2

2·

Since Mi
p provides information on the discrete value associated to the

corresponding state variable, this coefficient is called phase dis-
cretization factor. Fig. 3 includes a graphic representation of this factor,
corresponding with the shaded area in the Gaussian density function,
considering 0.5 as lower limit.

Then, for each energy consumption curve i, the phase confidence
factor combine the information derived from the three phases of the
corresponding load through the following expression:

Fig. 2. Flowchart of the CPI methodology.
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The maximum value of the phase confidence factors Ci
p is selected,

which determines the consumption i with the highest probability of
being associated to the phase p and not associated to the other phases.

Finally, once a consumption is selected using the previously defined
phase confidence factors, the three variables associated with that cus-
tomer are assigned integer values as follows:

• If the consumption is related to a single-phase client, ̂ =x 1i
p for the

phase the client is connected to, and ̂ =x 0i
p for the other two

phases.

• For three-phase clients, assume without loss of generality that the
consumption i is related to the phase a. Then, ̂ ̂= =x x1, 0i

a
i
b and

̂ =x 0i
c , as in the case of single-phase customers. Additionally, as two

energy consumptions from a certain three-phase load cannot be
associated to the same phase, the variables +̂xi

a
1 and +̂xi

a
2 are set to 0.

4.4. Update results

If all the loads have been assigned, then the estimation process ends.
Otherwise, the state variables and the system input are updated.

For each filter, the state variables of the assigned consumptions are
extracted from the state vector x and introduced as part of the system
input, so that the number of unassigned consumers Nc is reduced ac-
cordingly. The estimation process is then repeated with the remaining
consumers until =N 0c , meaning that the final estimation result has
been achieved.

5. Case studies

In this section, the proposed KF formulations are compared on
several case studies, which can be grouped into four different scenarios.

By performing a series of preliminary tests in which the percentages
of three-phase loads range from 10 to 30%, no significant differences
have been observed in the performance of the proposed methodology.
For this reason, as stated above, 20% of three-phase customers has been
assumed in all scenarios.

5.1. Scenario I: Original measurements

In this scenario, the actual consumption is used for the KF-based

estimation, assuming that all the measurements are correctly obtained.
The performance of UKF and CKF with increasing number of loads is

shown in Tables 1 and 2, respectively. Note that, while both estimators
correctly assign 100% of customers for =N 50c , the behavior of the UKF
deteriorates faster as the number of loads increases.

As shown in Table 3, the EnKF response to increasing system sizes is
better than that of the other formulations, which confirms the expected
behavior of this KF scheme for high-dimensional problems.

The convergence of the estimation processes is not only determined
by the value of ̂xi

p, but also by the covariance of the estimation error for
each state variable, Pii. An illustrative example is shown in Fig. 4, re-
presenting the PDFs obtained for the three state variables of a certain
single-phase consumer, given the values of ̂xi

p and Pii from the KF-based
estimation process. The phase discretization factors, Mi

p, corresponding
to the shaded areas in the graphics, and their numeric values are in-
cluded in the respective legends. In this particular case the computed
values of the phase confidence factors are = =C C0.014, 0.711i

a
i
b and

=C 0.001i
c , meaning a confidence of 0.711 that the consumer is asso-

ciated to phase b. This value would be compared with those of the rest
of the clients in order to obtain the selected candidate in the corre-
sponding iteration of the proposed methodology.

Finally, in order to illustrate the evolution of the phase confidence
factor, Ci

p, Fig. 5 represents this coefficient in descending order at
different stages of the estimation process for 100 loads (i.e., 300 Ci

p

factors), using the EnKF formulation. It can be noticed that the max-
imum of the confidence factors, used to select the next candidate at the
corresponding iteration, is close to 1 in all cases.

In the top graph of Fig. 5, when the whole set of 100 loads is still
unassigned, a large number of phase confidence factors remain with a
small value ( =C 0.125i

p ), in accordance to the common initial value
=M 0.5i

p adopted for the three-phase discretization factors, which
means a complete lack of information, at this early stage of the iterative
process, on the phase to which those consumption curves should be
associated. Then, as more loads are assigned, the coefficients of the
remaining loads more clearly show a trend towards 1 or 0 (about one
third tends to 1 whereas the remaining two thirds tend to 0).

Fig. 3. Representation of Mi
p.

Table 1
Estimation results for the UKF. Scenario I.

Consumption curves Correct assignments Wrong assignments Percentage

50 50 0 100%
100 95 5 95%
200 181 19 90.5%
300 216 84 72%
400 233 167 58.25%

Table 2
Estimation results for the CKF. Scenario I.

Consumption curves Correct assignments Wrong assignments Percentage

50 50 0 100%
100 100 0 100%
200 195 5 97.5%
300 262 38 87.33%
400 313 87 78.25%

Table 3
Estimation results for the EnKF. Scenario I.

Consumption curves Correct assignments Wrong assignments Percentage

50 50 0 100%
100 100 0 100%
200 200 0 100%
300 283 17 94.33%
400 346 54 86.5%
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5.2. Scenario II: Analysis of the required amount of data

For the results shown above, hourly smart meter readings for
20 days are used, leading to 480 total energy measurements for each
consumer. This section analyzes the quality of the estimation as the
number of available measurements decreases. Table 4 summarizes the
performance of the three estimators for the case in which =N 200c

consumption curves ( =N 116s single-phase and =N 28t three-phase
customers).

Those results suggest a deterioration of the performance of the KF-
based estimation techniques when the number of available measure-
ments is lower than 200 (around 8 days) in this particular scenario.
Further tests with feeders comprising different numbers of customers

show that the required number of measurement snapshots increases
with the number of loads, as intuitively expected. For instance, for

=N 100c (one half of that shown in Table 4), the success rate of the
three estimators does not deteriorate substantially, even when only 100
energy measurements (around 4 days) are considered for each load.

5.3. Scenario III: Noisy measurements

The performance of the different KF formulations is evaluated in a
realistic scenario where errors in the measurements are considered.. As
the objective of these case studies is to determine the robustness of the
KF schemes against measurement errors, a relatively low number of
loads is considered, namely =N 58s single-phase and =N 14t three-
phase clients, which leads to a total of =N 100c consumption curves.

Gaussian noise is artificially added to each measurement after the
load flow is computed. The rates of correct phase-to-customer assign-
ments for increasing measurement errors are summarized in Table 5 for
the three estimators.

In light of those results, it can be concluded, also as expected, that
the number of correct assignments decreases with increasing mea-
surement noise, for every KF formulation, being the robustness of the
CKF and EnKF similar, superior in any case to that of the UKF for-
mulation. Nevertheless, all formulations show acceptable results when
typical noise levels are considered in the measurements.

5.4. Scenario IV: Model errors

In the proposed implementation of the KF for the CPI problem, a
simplified loss model is considered for which the value of the conductor
resistance per unit length, r, is required as per Eq. (34). In this scenario,
the performance of the different KF formulations is evaluated when
errors in r are considered.

For the same number of customers as in Scenario III, Table 6 sum-
marizes the rates of correct phase-to-customer assignments for errors in
r ranging from 5 to 20%.

It can be concluded that the results remain acceptable, at least for
the EnKF, when the assumed resistance error does not exceed 10%.

6. Comparison with existing methods

Considering the nature of the information on which the proposed KF
methods are based, a comparison can be easily made with the perfor-
mance of the methods proposed in [7], where a LASSO-based technique
is applied to the CPI problem using exclusively energy consumption
curves obtained from smart meters, and in [8], where PCA is considered
for the same purpose.. Different scenarios are considered for the com-
parison, with increasing number of consumers and 1% s.d. in the

Fig. 4. Probability density functions for a sample consumer.

Fig. 5. Evolution of the phase confidence factor at different stages.

Table 4
Estimation results for different KF formulations. Scenario II.

Available data UKF Hit Rate (%) CKF Hit Rate (%) EnKF Hit Rate (%)

480 90.5 97.5 100
400 90.5 97.5 100
300 90 96 100
200 85 90 95
100 67 70 72

Table 5
Estimation results for different KF formulations. Scenario III.

Noise level UKF Hit Rate (%) CKF Hit Rate (%) EnKF Hit Rate (%)

1% 95 100 100
2% 92 96 100
3% 89 93 98
5% 83 89 92

Table 6
Estimation results for different KF formulations. Scenario IV.

Error in r UKF Hit Rate (%) CKF Hit Rate (%) EnKF Hit Rate (%)

5% 95 100 100
10% 91 95 98
15% 86 91 95
20% 80 84 89
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measurement errors for all cases.
The rate of correct assignments for each method in the different

cases studied are summarized in Table 7, where it is observed that:

• The performance of the PCA method is similar to that of the UKF in
all the studied scenarios.

• The LASSO-based method has proven to be more sensitive to the
number of loads than the CKF and the EnKF formulations, being the
success rates of the three techniques very close for ⩽N 200c .

• The results obtained by the CKF and the EnKF schemes are sub-
stantially better when the number of loads increases, as can be no-
ticed particularly for =N 400c .

7. Conclusions

In this paper, a technique based on Kalman filtering and smart
meters information is presented to identify the electrical phase which
individual loads are connected to in distribution grids. For this purpose,
the performance of three KF schemes, UKF, CKF and EnKF, is tested and
compared.

The proposed estimation algorithm iteratively selects the customer
with the highest probability to be connected to a certain phase, based
on the estimated value of the corresponding state variable and the
covariance of the estimation error. This way of handling binary vari-
ables prevents the computational problems potentially arising by the
enforcement of the customary equality constraints, and might find ap-
plication in other binary-constrained problems.

Four separate scenarios have been considered to test the accuracy
and robustness of the KF formulation for feeders with increasing
number of loads and increasing measurement and model errors. The
amount of measurements required for a good performance of the al-
gorithm is also analyzed. From the results obtained, the following
conclusions are drawn:

• The UKF shows a poor behavior as the number of loads increases,
achieving unacceptable success rates (<60%) when 400 customers
are considered. Additionally, the robustness of this formulation in
the presence of wrong measurements is weak.

• The performance of the CKF is better than that of the UKF, showing
a lower sensitivity to the state vector size and wrong data.

• The EnKF has proven to be the best of the three KF schemes con-
sidered for the CPI problem, both in terms of success rates and
sensitivity to noisy measurements.

• As expected, the performance of the KF-based schemes is affected by
the number of energy measurements available, relative to the
number of loads. The more loads in the same feeder, the more
measurements are needed to correctly ascertain the phase connec-
tion.

A comparison of the CKF and EnKF with published methods, based
on PCA and LASSO, has shown that the latter provide similar results to
those of the KF only when a reduced number of loads is considered.

Further research efforts will be devoted to redesign the proposed
KF-based procedure, so that it can take advantage of additional elec-
trical quantities, such as P Q, and V, potentially available in the context

of advanced DMS.
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Abstract— This work presents a novel methodology for 

systematically processing the time series that report the number of 

positive, recovered and deceased cases from a viral epidemic, such 

as Covid-19. The main objective is to unveil the evolution of the 

number of real infected people, and consequently to predict the 

peak of the epidemic and subsequent evolution. For this purpose, 

an original nonlinear model relating the raw data with the time-

varying geometric ratio of infected people is elaborated, and a 

Kalman Filter is used to estimate the involved state variables. A 

hypothetical simulated case is used to show the adequacy and 

limitations of the proposed method. Then, several countries, 

including China, South Korea, Italy, Spain, UK and the USA, are 

tested to illustrate its behavior when real-life data are processed. 

The results obtained clearly show the beneficial effect of the severe 

lockdowns imposed by many countries worldwide, but also that 

the softer social distancing measures adopted afterwards have 

been almost always insufficient to prevent the second virus wave. 

 
Index Terms - Nonlinear Kalman filtering, parameter 

estimation, Covid-19, geometric series. 

 

I. INTRODUCTION 

espite the spectacular medical advances of the 20th 

century, and the practical eradication of viral diseases that 

in the past caused great mortality (e.g., smallpox), modern 

societies are still very vulnerable to the sudden appearance of 

new viruses, such as the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), cause of the coronavirus disease 

2019 (Covid-19), for which there is still no vaccine. In addition, 

once a viral outbreak originates in a region of a country (in the 

case of the Covid-19, the Chinese region of Hubei, where the 

first reported case was dated on December 2019), the 

globalization of the economy and mass tourism spread it almost 

inevitably and quickly to the rest of the world. 

 

In the absence of effective treatments, once a certain threshold 

has been passed, the main and almost sole remedy against the 

spread of the disease to the entire population is social 

distancing, the objective of which is to minimize the contact 
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between people, and therefore morbidity [1]. In extreme cases, 

when the speed of propagation of the outbreak is very high, 

massive lockdowns of entire countries may be needed, which 

cannot last indefinitely owing to their drastic impact on the 

economic activity. 

 

For this reason, all the agents involved (governments, 

international organizations, institutions, companies and 

individuals) have the greatest interest in knowing how the 

number of affected and deceased people will evolve over time, 

with a view, on the one hand, to verifying the beneficial effects 

of social distancing, and on the other to scheduling the already 

saturated health resources and taking the economic measures 

intended to mitigate as far as possible the devastating effects of 

an epidemic like that of Covid-19. 

 

Scientists, engineers, economists, etc. are acquainted with 

several mathematical and statistical toolkits (recently renamed 

collectively as "data analytics") for the treatment and filtering 

of time series, with a view to extracting useful information from 

the available data, uncertain by definition, such as trends, 

patterns, average values, expected variances, etc. In the specific 

case of a viral epidemic, such as that of Covid-19, there are 

basically two categories of models for processing the 

information: 

 

1. Models that try to characterize the "physical" reality 

explaining the observed data. In the case of a viral epidemic, 

these models [2], [3] consider, for example, what fraction of 

people are at work, in teaching or travelling, how long it takes 

for an infected person to manifest symptoms, what is the 

mortality rate according to age groups, etc. This type of 

modeling is widely used in engineering, because the dynamics 

of the underlying systems or devices are generally well 

characterized, through mathematical relationships obtained 

from the physical laws that govern them (such is the case, for 

example, of electrical networks or an artificial satellite). 

 

2. Models that try to determine explanatory parameters or 
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variables from a purely mathematical point of view ("black 

box" approach), without going into the causes or interactions 

between components that explain the resulting data. Given 

uncertain data, which enter the system regularly (in our case, 

every day), the aim is to characterize its temporal evolution by 

adjusting the parameters of a mathematical model, so that the 

differences between what is observed and what is estimated are 

minimized. Two variants can be considered in this category: 

 

2.a) Mathematical models that do not assume a priori what the 

shape of the temporal evolution of the involved magnitudes will 

be, but rather use a state transition equation, which tries to 

capture the dynamics of the problem in question by relating the 

variables in an instant of time to the variables in the previous 

instant. In this case, it is a matter of determining how the 

coefficients that define this equation evolve over time. In the 

case of epidemics, among the most popular models are those 

derived from the SIR (Susceptible-Infected-Recovered) model, 

[4], such as the one used for example in [5] to analyze the 

evolution of Covid-19 in Italy. This model is also considered in 

[6], where the evolution of the epidemic is forecasted using a 

novel state filtering algorithm.  

 

2.b) Mathematical models based on the assumption that the 

evolution of infected people, deceased, etc. obeys a 

predetermined curve (based on the experience of previous 

epidemics), whose coefficients are estimated based on the time 

series of reported data. For example, the evolution of the 

accumulated number of infected people can be satisfactorily 

approximated by means of a sigmoid curve, as assumed in [7], 

where the curve proposed by Gompertz [8] is used. 

 

The methodology proposed in this work belongs to the 

second category. As explained in the next section, we depart 

from the basic SIR model, by considering that the number of 

susceptible people, being large enough and changing relatively 

slowly, does not have to be explicitly considered in the model, 

but can be rather embedded in other equally significant 

parameters, such as the time-varying ratio of the geometric 

series characterizing the progression of affected people. 

Moreover, the proposed model explicitly distinguishes between 

people who have proved positive in a test, and people actually 

infectious, who are many more and for whom there is no 

reliable information available.  

 

In this work, a Kalman filter (KF) is used to process both the 

assumed dynamic model and the information available 

throughout the outbreak. The KF, proposed for linear dynamic 

systems in the early 1960s, is considered one of the fundamental 

tools that allowed men to walk on the moon, as it was 

successfully used in guiding the Apollo program space missions 

[9]. This filter, which constitutes a generalization of the 

technique known as "recursive least squares", estimates the 

maximum likelihood evolution (that is, the most statistically 

probable, according to the assumed uncertainties and the 

observed samples) of the state of a dynamic system, and can be 

generalized to the non-linear case, including situations where 

the model parameters are also to be estimated.  

Reference [10] applies the KF for the estimation of the 

evolution of AIDS, while several recent studies related to the 

Covid-19 have arisen. In [11] the KF is used to deal with the 

estimation of the reproductive number of the virus. A short-

term prediction model is proposed in [12], where the time 

update equations of the estimator are used for future forecasts 

of the pandemic spread. ARIMA models are combined with a 

KF in [13] to track the evolution of the Covid-19 in Pakistan. 

Unlike in those references, where the parameters involved in 

the state estimation process are supposed to be known, in this 

work such assumptions are not required. This is the major 

distinguishing feature of the proposed methodology, compared 

to the state of the art, and the main contribution of the paper. 

II. PROPOSED MODEL 

We start from the well-known and simple SIR model [4], 

mathematically described by: 

 

�̇�𝑐(𝑡) = −𝛽 ∙ 𝑆𝑐(𝑡)𝐼(𝑡)/𝑁         

𝐼(̇𝑡) = 𝛽 ∙ 𝑆𝑐(𝑡)𝐼(𝑡)/𝑁 − 𝛾 ∙ 𝐼(𝑡)     

�̇�𝑐(𝑡) = 𝛾 ∙ 𝐼(𝑡)           
 

where 𝑆𝑐(𝑡) and 𝑅𝑐(𝑡) are, respectively, the cumulative or total 

susceptible and recovered people, 𝐼(𝑡) represents the active 

infectious (not to be confused with cumulative infectious), β 

and γ are the transmission and recovery rates, and 𝑁 is the total 

population of the studied region, satisfying 𝑁 = 𝑆𝑐(𝑡) +
𝐼(𝑡) + 𝑅𝑐(𝑡). Note that, in this compact model, the deceased 

cases are paradoxically included in 𝑅𝑐(𝑡) (alternatively, they 

could be subtracted from 𝑁). 

 

For practical purposes, the discrete counterparts obtained by 

numerical integration (forward Euler) are rather of interest. 

Moreover, as dead people are separately reported, they can be 

explicitly modeled, leading to a discrete-time SIRD 

(Susceptible-Infected-Recovered-Deceased) model, as used in 

[14-16]: 

 

𝑆𝑐(𝑛 + 1) = 𝑆𝑐(𝑛) − 𝛽 ∙ 𝑆𝑐(𝑛)𝐼(𝑛)/𝑁                      (1) 

𝐼(𝑛 + 1) = 𝐼(𝑛) + 𝛽 ∙ 𝑆𝑐(𝑛)𝐼(𝑛)/𝑁 − (𝛾 + 𝜇)𝐼(𝑛)          (2) 

𝑅𝑐(𝑛 + 1) = 𝑅𝑐(𝑛) + 𝛾 ∙ 𝐼(𝑛)                       (3) 

𝐷𝑐(𝑛 + 1) = 𝐷𝑐(𝑛) + 𝜇 ∙ 𝐼(𝑛)                                        (4) 
 

where 𝑛 is the elapsed time (in days) from a given origin, 𝐷𝑐(𝑛) 

is the cumulative dead and 𝜇 is a mortality ratio.  

 

The data publicly reported (available in references such as 

[17],[18]), typically comprise the following three items: 

 

• Fraction of infectious people who, subject to a test, yield a 

positive outcome. This considers the fact that there may be 

many more infected than those reported positives, as 

happens with a large number of asymptomatic people. The 

cumulative positives will be denoted 𝑃𝑐(𝑛). 
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• Fraction of recovered people who have been previously 

identified as positive. For simplicity of notation, the same 

symbol as in the basic SIR model, 𝑅𝑐(𝑛), will be used in 

the sequel, even though we are referring here to a subset of 

𝑅𝑐.  

• Cumulative number of deceased, 𝐷𝑐(𝑛), which is assumed 

to be the same as in the SIRD model, even though the actual 

number of dead by the virus may differ from the reported 

figures.  

 

Some sources directly provide the active positive cases, 𝑃(𝑛), 
defined as: 𝑃(𝑛) = 𝑃𝑐(𝑛) − 𝑅𝑐(𝑛) − 𝐷𝑐(𝑛). Note that both 

𝐼(𝑛) and 𝑃(𝑛) tend to zero as 𝑛 increases sufficiently (end of 

the viral outbreak), while the remaining cumulative magnitudes 

asymptotically reach a maximum or steady-state value. 

 

Epidemiologists use the so-called basic reproductive number, 

𝑅0 (average number of people infected by a single infectious 

person during the infective period at the onset of the outbreak) 

to characterize whether and how fast an epidemic spreads at the 

very beginning. If 𝑅0>1, then the epidemic will progress 

exponentially. As time elapses, though, the number of 

susceptible people decreases, either by the virus evolution itself 

or as a consequence of social distancing measures, and 𝑅0 is 

replaced by the effective reproductive number, 𝑅𝑡. In terms of 

SIRD coefficients, 𝑅0 and 𝑅𝑡 are given by: 

 

𝑅0 = 𝛽/(𝛾 + 𝜇)     ;     𝑅𝑡(𝑛) = 𝑅0𝑆𝑐(𝑛)/𝑁 

 

However, as thoroughly discussed in [19], the basic 

reproductive number 𝑅0 is not free from ambiguity and 

controversy. For instance, it is stated in [19] that "using 𝑅0 as a 

threshold parameter for a population-level model could produce 

misleading estimates of the infectiousness of the pathogen, the 

severity of an outbreak, and the strength of the medical and/or 

behavioral interventions necessary for control". Moreover, if 𝑅0 

is estimated from time series of reported data, as in [11], then 

there is no way, at least for a new virus such as Covid-19, to 

subsequently check or contrast the accuracy of the estimates. 

This probably explains the wide confidence intervals so far 

reported for 𝑅0 values [20]. Similar arguments apply to 𝑅𝑡 . 
 

For this reason, instead of or in addition to 𝑅0, we postulate 

in this work the use of a more intuitive and measurable index, 

related with the growth rate of the infected class, to duly and 

unambiguously characterize a viral epidemic. Let the daily 

evolution of the active infectious be expressed as a geometric 

time series: 

 

  𝐼(𝑛 + 1) = 𝒓(𝒏) ∙ 𝐼(𝑛)                                                    (5) 

 

where 𝑟(𝑛) is the time-varying ratio of the series. Then the daily 

growth rate is obtained from: 

 

Growth rate (p. u. ) =  ∆𝐼(𝑛)/𝐼(𝑛) = 𝑟(𝑛) − 1 

 

Clearly, as long as 𝑟(𝑛)>1, the viral outbreak will continue 

its expansion, whereas the disease extinguishes when 𝑟(𝑛)<1. 

There is no ambiguity in using 𝑟(𝑛) as a threshold, when 

referred to a whole population. Note however that, if (5) were 

expressed in terms of cumulative magnitudes, rather than daily 

or active cases, then 𝑟(𝑛) would tend asymptotically to 1. 

 

By direct comparison of (5) with (2), the following relation 

is obtained, 

𝑟(𝑛) = 1 + 𝛽 ∙ 𝑆𝑐(𝑛)/𝑁 − (𝛾 + 𝜇) 

 

or, in terms of 𝑅𝑡: 
 

𝑟(𝑛) = 1 + (𝛾 + 𝜇)[𝑅𝑡(𝑛) − 1] 
 

Given 𝑟(𝑛), one still would have to guess the values of the 

parameters involved in the SIRD model (1)-(4), to obtain 𝑅0. 

We contend that there is no need to worry in the short term 

about 𝑅0, as 𝑟(𝑛) suffices to duly track the epidemic evolution 

on a daily basis.  

 

This work is aimed at estimating, from the daily reported 

data, the evolution of 𝑟(𝑛) and, as a consequence, the growth 

rate of the infectious people. Note that, if 𝑟(𝑛) can be somehow 

estimated, then equation (1) becomes unnecessary. In our 

approach, the impact of susceptible people, a factor which 

varies smoothly, is also embedded into 𝑟(𝑛). 

  

In order to take advantage of the reported numbers of positive, 

deceased, and recovered cases, the following relationships are 

considered, taking into account (3)-(4): 

 

𝑃(𝑛) = 𝑡(𝑛) ∙ 𝐼(𝑛)                 (6) 

𝐷(𝑛) = 𝜇(𝑛) ∙ 𝐼(𝑛)                      (7) 

𝑅(𝑛) = 𝑡(𝑛) ∙ 𝛾(𝑛) ∙ 𝐼(𝑛) = 𝛾
𝑡
(𝑛) ∙ 𝐼(𝑛)           (8) 

 

where 𝑡(𝑛) is a testing or reporting ratio that models the 

fraction of those infectious who are subject to tests and yield 

positive, 𝐷(𝑛) = 𝐷𝑐(𝑛) − 𝐷𝑐(𝑛 − 1) is the daily increase in 

the number of deaths, and 𝑅(𝑛) = 𝑅𝑐(𝑛) − 𝑅𝑐(𝑛 − 1) is the 

daily variation in the number of recovered cases. 

 

From (7) at two consecutive instants, keeping (5) in mind: 

 

𝐷(𝑛 + 1) = 𝜇(𝑛 + 1) ∙ 𝑟(𝑛) ∙ 𝐼(𝑛)  

𝐷(𝑛) = 𝜇(𝑛) ∙ 𝐼(𝑛) 

 

and dividing: 

 

𝑟𝐷(𝑛) = 𝑟(𝑛) ∙ 𝐾𝜇(𝑛)                                (9) 

 

where 𝑟𝐷(𝑛) = 𝐷(𝑛 + 1)/𝐷(𝑛) is the ratio of consecutive 

daily deaths and 𝐾𝜇(𝑛) = 𝜇(𝑛 + 1)/𝜇(𝑛) is in turn a ratio of 

consecutive mortality ratios.  
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Similarly, from (6) and (5):  

 

𝑃(𝑛 + 1) = 𝑡(𝑛 + 1) ∙ 𝑟(𝑛) ∙ 𝐼(𝑛)  

𝑃(𝑛) = 𝑡(𝑛) ∙ 𝐼(𝑛)  
 

and dividing: 

 

𝑟𝑃(𝑛) = 𝑟(𝑛) ∙ 𝐾𝑡(𝑛)                              (10) 
 

where 𝑟𝑃(𝑛) = 𝑃(𝑛 + 1)/𝑃(𝑛) is the ratio of consecutive daily 

positives and 𝐾𝑡(𝑛) = 𝑡(𝑛 + 1)/𝑡(𝑛) is a ratio of consecutive 

𝑡(𝑛) coefficients. 

 

Finally, from (8) and (5): 

 

𝑅(𝑛 + 1) = 𝛾
𝑡
(𝑛 + 1) ∙ 𝑟(𝑛) ∙ 𝐼(𝑛)  

𝑅(𝑛) = 𝛾
𝑡
(𝑛) ∙ 𝐼(𝑛)  

 

and dividing: 

 

𝑟𝑅(𝑛) = 𝑟(𝑛) ∙ 𝐾𝛾(𝑛)                                (11) 

 

where 𝑟𝑅(𝑛) = 𝑅(𝑛 + 1)/𝑅(𝑛) is the ratio of daily recovered 

cases and 𝐾𝛾(𝑛) = 𝛾
𝑡
(𝑛 + 1)/𝛾

𝑡
(𝑛) is a ratio of consecutive 

𝛾𝑡(𝑛) coefficients. 

 

III. KALMAN FILTER APPLICATION AND IMPLEMENTATION 

From the above simple model, given by (9)-(11), a system of 

state equations can be formulated allowing the sequence 𝑟(𝑛) 

to be estimated by means of a non-linear KF, such as the 

Extended KF (EKF), Unscented KF (UKF) or Ensemble KF 

(EnKF)  [9], [21]. This type of filter is capable of estimating the 

dynamic evolution of both parameters and state variables. Even 

though its maximum likelihood has only been proven for linear 

problems, it is applied successfully in nonlinear problems, such 

as the one in hand. 

  

In our proposal, the state vector is composed of the infectious 

geometric ratio, 𝑟(𝑛), not directly measured, and the gains 

𝐾𝜇(𝑛), 𝐾𝑡(𝑛) and 𝐾𝛾(𝑛), all of them initially assumed to evolve 

with a random walk. Therefore, the state vector is 

 

𝑥 = [𝐾𝜇 𝐾𝑡 𝐾𝛾 𝑟]𝑡 

 
and the state transition equation: 

 

𝑥(𝑛) = 𝑥(𝑛 − 1) + 𝑤(𝑛) 

 

where 𝑤 = [𝑤𝜇 𝑤𝑡 𝑤𝛾 𝑤𝑟]𝑡 is a Gaussian noise vector 

with a covariance matrix Q(n), which accounts for model errors 

such as possible time lags not duly considered in the model. 

 
The state is to be estimated with the help of a measurement 

vector, composed of 𝑟𝐷(𝑛), 𝑟𝑃(𝑛) and 𝑟𝑅(𝑛), along with the 

pseudo-measurements of 𝐾𝜇(𝑛), 𝐾𝑡(𝑛) and 𝐾𝛾(𝑛). Thus, 

assuming that the coefficients 𝜇(𝑛), 𝑡(𝑛) and 𝛾𝑡(𝑛) change 

slowly, their variation ratios can be considered to lie around the 

unity. Therefore, the measurement vector is, 

 

𝑧(𝑛) = [𝑟𝐷(𝑛) 𝑟𝑃(𝑛) 𝑟𝑅(𝑛) 1 1 1]𝑡 
 

and the measurement equation, 

 

𝑧(𝑛) =   ℎ[𝑥(𝑛)] + 𝑣(𝑛) 
 

where 𝑣 = [𝑣𝐷 𝑣𝑃 𝑣𝑅 𝑣𝜇 𝑣𝑡 𝑣𝛾]𝑡 is a Gaussian noise 

vector that models the measurement error with a covariance 

matrix R(n), and the nonlinear measurement function is  

 

ℎ(𝑥) = [𝑟 ∙ 𝐾𝜇 𝑟 ∙ 𝐾𝑡 𝑟 ∙ 𝐾𝛾 𝐾𝜇 𝐾𝑡 𝐾𝛾]𝑡 
 

With this formulation, the EKF is able to deal properly with 

the non-linearity arising in the measurement equation, 

performing at each iteration a linear prediction step, followed 

by the non-linear correction step. So, the KF provides the 

sequence of states estimates �̂�(𝑛), whose last component, the 

estimate of 𝑟(𝑛), will be denoted as 𝑟𝐾(𝑛). 
 

The sequence 𝑟𝐾(𝑛) incorporates, in a statistically optimal 

fashion, the noisy information provided by raw data ratios, such 

as 𝑟𝐷(𝑛), 𝑟𝑃(𝑛) or 𝑟𝑅(𝑛), which results in a more reliable 

estimation than the raw data ratios themselves. 

 

After several initial trials, an enhanced model has been 

finally implemented, considering two improvements: 

 

1) The random walk in 𝑟(𝑛) can be advantageously replaced, 

while keeping the linearity of the state equation, by a linear 

prediction based on the recent past history, e.g., based on 

𝑟(𝑛 − 1), 𝑟(𝑛 − 2) and 𝑟(𝑛 − 3). In this case, 

 

𝑥 = [𝐾𝜇 𝐾𝑡 𝐾𝛾 𝑟 𝑟𝑛−1 𝑟𝑛−2 𝑟𝑛−3]𝑡 
 

and 

𝑥(𝑛) = 𝐴 ∙ 𝑥(𝑛 − 1) + 𝑤(𝑛)                                  (12) 
where:  

 

𝐴 =

[
 
 
 
 
 
 
1   
 1  
  1

 
 
 

   
    
   

   4

3
  

−1

3
   
    
   

1
 
 

   
1   
 1  ]

 
 
 
 
 
 

 ,  𝑤 =

[
 
 
 
 
 
𝑤𝜇

𝑤𝑡
𝑤𝛾

𝑤𝑟

0
0
0 ]

 
 
 
 
 

 

 

2) The information available at instant 𝑛 can be used to 

improve previous estimations. For this purpose, the Rauch-

Tung-Striebel (RTS) smoother [9], is implemented in two steps: 

 

• Forward pass performed with EKF. 

• Backward recursion smoother based on the linear state 
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transition equation. 

Regarding the tuning of the filter, the diagonal elements of 

𝑅(𝑛) related to 𝑣𝐷, 𝑣𝑃 and 𝑣𝑅 are self-tuned according to the 

respective sample variances of the last available days of 𝑟𝐷(𝑛), 

𝑟𝑃(𝑛)  and 𝑟𝑅(𝑛). The terms related to the pseudo-

measurements are set to 10−4 to increase their weights. The 

diagonal elements of 𝑄(𝑛) are set to constant values 𝑄𝑖,𝑖 =

10−3, according to the observed variance of 𝑟𝐾(𝑛) −
𝑟𝐾(𝑛 − 1), except in the case of history variables, where 𝑄𝑖,𝑖 =

0. The initial values of 𝑥(0) and P(0), required by the filter, are 

not relevant as their effect quickly vanishes. The proposed 

values are: 𝑟𝐾(0) and history variables initialized to the mean 

of the raw ratios, 𝐾𝑖 gains initialized to 1, and P(0) initialized 

to an identity matrix. 

 

Additionally, the results of the KF allow the estimation or 

prediction of two magnitudes of great interest: 

 

1) The day in the future when the infection peak will be reached, 

𝑛𝑝, which will occur when 𝑟𝑘(𝑛𝑝) = 1. For this purpose, the 

sequence 𝑟𝐾(𝑛) can be fitted to a predetermined evolution in 

order to predict its future behavior from the past history. 

According to what can be observed empirically, we have fitted 

the sequence 𝑟𝐾(𝑛) to a decreasing exponential, characteristic 

of first-order systems. It is worth stressing that, at this point, we 

are talking about the peak of infected, the peak of positives 

being a proxy for it. 

 

2) The estimated number of active infectious people, 𝐼𝐾(𝑛). 
This magnitude can be computed from those infected at a given 

reference day, 𝑛0, as follows: 

 

𝐼𝐾(𝑛) = ∏ 𝑟𝑘(𝑖)
𝑛−1
𝑖=𝑛0

∙ 𝐼(𝑛0)                                       (13) 

 
This means that, besides the errors of the sequence 𝑟𝐾(𝑛), the 

uncertainty of 𝐼𝐾(𝑛) inherits that of the initial guess 𝐼(𝑛0). 

Therefore, as happens also with the SIR model, and in fact with 

any other model based on differential equations, precisely 

estimating 𝐼𝐾(𝑛) based on the above expression requires that an 

accurate number of infectious people be known on a given day, 

which can be very challenging. For our results, we will obtain 

the initial guess from 𝐼𝐾(𝑛0) = 𝑃(𝑛0)/𝑡(𝑛0), for an assumed 

value of 𝑡(𝑛0). For instance, 𝑡(𝑛0) = 0.2 if we believe the first 

day there were 5 infectious people per reported positive. 

 

IV. SIMULATION RESULTS 

In this section, the performance of the proposed 

implementation of the KF is tested on a set of simulated 

scenarios, where the SIR model described in Section II is 

considered for the propagation of a virtual virus. 

 

While the total simulation time is 90 days, a lockdown is 

assumed to take place at day 15. This restrictive policy is aimed 

to completely stop non-essential public mobility, resulting in a 

quick reduction of the transmission rate, β (which is assumed 

to evolve exponentially, from an initial value 0.5 to 0.09) and, 

therefore, also of the ratio 𝑟(𝑛). The remaining simulation 

parameters are given in Table I.  

 

In all simulated cases presented in the sequel, artificial 

Gaussian noise has been added to the measurements used by the 

KF algorithm in order to represent a more realistic scenario 

where the reported information presents inaccuracies. 

 
TABLE I 

VALUE OF THE PARAMETERS IN THE SIMULATION 
 

Parameter Definition Simulation value 

μ Mortality ratio 0.004 

γ Recovery rate 0.1 

𝐼(0) Initial infectious 1000 

𝑁 Total population 47 Million 

𝑡(𝑛) Testing ratio 0.2 

 

A. Base case 

In the base case, the testing ratio, 𝑡(𝑛), is assumed to remain 

constant (except for the noise). The time evolution of the 

estimated geometric ratio, 𝑟(𝑛), is represented in Fig. 1 along 

with the raw noisy measurements provided by the simulation 

and the actual value of 𝑟(𝑛). Note that the estimation provided 

by the KF is very close to the simulated value, giving evidence 

of the good performance of the proposed method. Fig. 2 shows 

the benefit attained from the incorporation of the smoothing 

filter mentioned above to the basic EKF algorithm, in terms of 

more damped oscillations.  

 

 
Fig. 1.  Estimation of r(n) in the base case 

 

To compare the proposed KF implementation with other 

methods customarily employed as filters in these cases, Fig. 3 

shows the estimated value of 𝑟(𝑛) along with the results 

provided by three moving-average filters respectively applied 

to each of the noisy measurements, 𝑟𝑃, 𝑟𝐷 and 𝑟𝑅. As can be 

seen, the KF more closely tracks the evolution of 𝑟(𝑛). 
 

From the estimated 𝑟(𝑛) sequence, and the initial testing ratio, 

𝑡(0), an estimation is obtained for the evolution of infectious 

people, which is compared in Fig. 4 with the simulated value of 

𝐼(𝑛) and the reported positives. The maximum estimation error 
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(around 4.5%) takes place, as expected, at the peak of the 

epidemic. 

 

 
Fig. 2.  Estimation of r(n) with and without the smoother 

 

 
Fig. 3.  Comparison of the proposed method with moving average filters 

  

 
Fig. 4.  Estimation of the infectious people in the base case 

B. Error assessment 

Once the proposed estimation technique is validated in the 

base case, where only Gaussian noise is considered, the effect 

of different error sources is studied in the following scenarios. 

 

 

• Step in 𝑡(𝑛) 

 

An abrupt change is simulated in the testing ratio from 

𝑡(𝑛) =0.2 to 0.3 at day 25, representing an increase in the 

availability of the tests (this has been observed in practice in 

several countries). Fig. 5 shows the estimation of 𝑟(𝑛), along 

with the simulated value and the measurements of the geometric 

ratios 𝑟𝑃, 𝑟𝐷 and 𝑟𝑅. Note that the step in 𝑡(𝑛) is observed as an 

impulse in the ratio 𝑟𝑃, which is quite effectively filtered out by 

the proposed KF implementation. 

 

 
Fig. 5. Estimation of r(n) with a step on the testing ratio 
 

 

 
Fig. 6.  Estimation of the infectious people with a step on the testing ratio 

 

Step on 
𝑡(𝑛) seen as 
an impulse 
on 𝑟𝑃(𝑛) 

Step on 
𝒕(𝒏) day 25 
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The estimation of 𝐼(𝑛) is represented in Fig. 6, where the 

actual simulated value is again very close to the estimated one, 

giving evidence of the good performance of the method in the 

presence of a step in the testing ratio.  

 

• Deviations in 𝑡(0) 

 

Finally, the last scenario considered in this section shows 

how errors in the initial guess of the testing ratio, 𝑡(0), with 

respect to the assumed value 𝑡(0) = 0.2, affect the results. 

Given that the errors in this factor only affect the estimation of 

the infectious people, 𝐼(𝑛), the representation of the estimated 

𝑟(𝑛) is not repeated. Fig. 7 shows the estimation of 𝐼(𝑛) for 

𝑡(0) = 0.15 and 𝑡(0) = 0.25 (±25% error). 

 
Fig. 7. Estimation of the infectious people for a range of t(0) values. 

 

The results in Fig. 7 clearly show the importance of having 

an accurate guess of the number of infectious at the onset of the 

outbreak, as this initial error propagates proportionally up to the 

peak. Note, however, that any epidemiological model, such as 

SIR, faces the same challenge.  

V. CASE STUDIES 

In this section, the proposed KF-based estimation technique 

is applied to the real data reported by different countries. For 

convenience, the results have been divided in two subsections: 

1) the time period when massive lockdowns occurred in most 

countries, denoted in the media as the “first wave” of the 

pandemic [22], and 2) the subsequent transient period, once the 

lockdowns are relaxed, usually through several de-escalation 

phases, towards the so-called “new normality”. 

 

1. Lockdown period (first wave) 

 

A total of four countries have been considered in this period: 

China, South Korea, Spain and the UK. At the early stage of the 

pandemic, the information provided by these countries was 

sufficient to allow the application of the proposed methodology. 

 

 

 

 

Figs. 8-15 represent the estimated sequence of the geometric 

ratio, 𝑟(𝑛), and the number of infected people, 𝐼(𝑛), for the four 

countries. The KF implementation is tuned as described in 

Section III for the covariance matrices 𝑄 and 𝑅, and the initial 

values of the vector 𝑥(0) and the covariance matrix 𝑃(0). In 

order to estimate the number of infectious people, 𝐼(𝑛), 

according to (13), an initial value for the parameter 𝑡(0) is 

needed. In absence of a better clue, 𝑡(0) = 0.2 is considered in 

all cases, expect for Spain (see the discussion of this particular 

case below). The points for which 𝑟(𝑛) = 1 (peak of the 

epidemic) are highlighted with a dot. The following remarks 

can be made from those results: 

 

o A different evolution of 𝑟(𝑛) can be observed for the Asian 

countries (China and South Korea), where the effects of 

Covid-19 started earlier. Once the geometric ratio 𝑟(𝑛) <
1, the trend for South Korea is to remain roughly constant 

throughout the considered period, whereas for China a 

certain rebound can be noticed after March 10. 

 

o The estimation results obtained for Spain show an 

asymptotic trend towards 𝑟(𝑛) =0.95. A slight increase is 

observed in 𝑟(𝑛) between April 10 and 15, probably 

influenced by a sudden increase in the number of tests. 

 

Regarding the parameter 𝑡(0), in the Spanish case we have 

taken into account the results of a massive seroprevalence 

test performed by the government in the first half of May 

[23], from which it was concluded that the total number of 

infected people was around 5.2% of the population 

(approximately 2.3 million people). In view of this valuable 

information, the initial value 𝑡(0) has been adjusted so that 

the cumulative number of infected people matches the result 

of the survey on the date it was released (May 13), leading 

to 𝑡(0)=0.12. This provides the estimation of 𝐼(𝑛) shown in 

Fig. 13, where a maximum value of the active infectious 

people of around 1.3 million can be noticed by mid-April. 

Fig. 16 represents the estimation of the cumulative 

infectious people for the Spanish territory, where the total 

number of infected people matches the results of the survey. 

 

o With the available information in mid-May, some countries 

had already left behind the peak of the epidemic (i.e., 

𝑟(𝑛) < 1). For those cases (China, South-Korea and Spain), 

a rather accurate early forecasting of the epidemic evolution 

can be made, around 10 to 14 days before the peak, by fitting 

a decreasing exponential to a window of past estimated data. 

This prediction is shown with green dotted lines in Figs. 8-

13.  

 

o Regarding the UK, where the peak of the number of 

infectious people had not been reached in the period 

considered (i.e., 𝑟(𝑛) > 1), an exponential fitting (made 

between around mid-April and early May) and the 

corresponding extrapolation is considered for this case. 

According to such fitting, the peak should take place in the 

second half of May.  
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Fig. 8. Estimation of r(n) in China in the first period considered 

 

 
Fig. 10. Estimation of r(n) in South-Korea in the first period considered 

 

 
Fig. 12. Estimation of r(n) in Spain in the first period considered 

 

 
Fig. 9. Estimation of infectious people in China in the first period considered 
 

 
Fig. 11. Estimation of infectious people in South-Korea in the first period  

 
Fig. 13. Estimation of infectious people in Spain in the first period considered 
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Fig. 14. Estimation of r(n) in UK in the first period considered 

 

 
Fig 16. Estimation of cumulative infectious people in Spain 

 
Fig 17. Fitted geometric ratios from common threshold 

 

 
Fig. 15. Estimation of infectious people in UK in the first period considered 

 

 

Finally, Fig. 17 shows the evolution of the above-mentioned 

fitted exponential curves for different countries (Italy has been 

included in the representation in order to establish a more 

complete  comparison), all of them represented from a common 

threshold 𝑟(𝑛) = 1.2, so that the corresponding time constants 

can be easily compared. In light of this representation, it can be 

noticed that the reduction of the geometric ratio is faster in 

China (just 13 days from 𝑟(𝑛) = 1.2 to 𝑟(𝑛) = 1), possibly as 

a consequence of a more severe lockdown, followed by Spain 

and South Korea (between 25 and 27 days to reach 𝑟(𝑛) = 1), 

showing similar trends, and finally Italy (40 days to reach 

𝑟(𝑛) = 1).  

 

 

2. Post-lockdown period (second wave) 

 

As the pandemic evolves, it becomes more difficult to 

properly report on a regular basis all the information involved 

in the estimation of active positives. Many countries (notably 

Spain) stopped reporting the number of recovered people, 

probably owing to the remarkable increase in the number of 

asymptomatic positive cases, which never entered a hospital 

and hence never counted as recovered or dead. For this reason, 

it is not possible to accurately update the estimations of the 

geometric ratios of active positives, 𝑟(𝑛), for some of the 

countries considered in the early stages. Instead, Figs. 18-25 

represent the estimated geometric ratio, 𝑟(𝑛), and the number 

of active infectious people, 𝐼(𝑛), for four countries (USA, Italy, 

India and Brazil), all of them specially affected by the pandemic 

and still reporting the information required by the proposed 

estimation technique. 
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Fig. 18. Estimation of r(n) in USA in the second period considered 

 

 
Fig. 20. Estimation of r(n) in Italy in the second period considered 

 

 
Fig. 22. Estimation of r(n) in India in the second period considered 
 

 

 

 
Fig. 19. Estimation of infectious people in USA in the second period considered 
 

 
Fig. 21. Estimation of infectious people in Italy in the second period considered 

 

 
Fig. 23. Estimation of infectious people in India in the second period considered 
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Fig. 24. Estimation of r(n) in Brazil in the second period considered 

 

 
Fig. 25. Estimation of infectious people in Brazil in the second period considered 
 

 

Similar assumptions as in the previous section are made 

regarding the KF tuning. The following remarks can be made 

from the results presented in Figs. 18-25: 

 

o The number of infectious people in the USA briefly reached 

a peak by the end of May (𝑟(𝑛) ≈ 1). However, Fig. 18 also 

shows that, afterwards, 𝑟(𝑛) has remained somewhat 

around or above one, which means that the outbreak is not 

still under full control, and that additional actions should be 

taken in this country in order to substantially reduce the 

number of infectious people. 

 

o In Italy, the effect of relaxing the social distance measures 

can be easily noticed, with an increase of the ratio 𝑟(𝑛) from 

June. However, a new reduction is apparent in mid-August, 

probably due to a reinforcement in the severity of the 

mobility constraints, or simply owing to the holiday season. 

 

o The curve of the geometric ratio in India is similar to that of 

the USA, with an asymptotic yet much slower trend to a 

value smaller than one. At the time of writing, it is observed 

that 𝑟(𝑛) > 1, which means that the pandemic is still 

uncontrolled in this country. 

 

o As far as Brazil is concerned, the most noticeable difference 

when compared to other countries lies in the almost periodic 

oscillations of 𝑟(𝑛) around the exponentially decreasing 

trend, the period being of about a week, which is probably 

due to the poor quality of the reported data. 

 

VI. CONCLUSION 

This work has addressed the problem of monitoring and 

tracking the evolution of a viral epidemic, such as Covid-19, 

through the application of signal processing techniques to the 

time series of data reported by governments and health 

agencies. Three main contributions can be pointed out: 1) the 

exclusive use of time-varying geometric ratios of daily data to 

track the disease, rather than the customary virus reproductive 

number (𝑅0); 2) the development of a simple algebraic model 

relating the geometric ratio of infectious people, 𝑟(𝑛), with 

those of positives, reported and dead; 3) the application of a 

nonlinear KF, along with a smoothing technique, to estimate the 

evolution of 𝑟(𝑛). By properly fitting the estimated values of 

𝑟(𝑛) to a decreasing exponential, an accurate prediction of the 

epidemic peak can be made, as early as two weeks before the 

peak actually takes place.  

 

The proposed methodology has been satisfactorily tested on 

a simulated case, in the presence of Gaussian noise and other 

sources of uncertainty, the main one being the number of 

infectious people at the onset of the outbreak.  

 

The estimation technique has also been applied to a pool of 

countries, and the results obtained are divided in two periods: 

 

o A first period, when most of the countries imposed a 

lockdown. Four territories are reported in this scenario, 

namely: China, South Korea, Spain, and the UK. The 

evolution of 𝑟(𝑛) reflects in all cases the severity of the 

lockdown, allowing the first peak of the epidemic to be 

forecasted well in advance. In some cases, a slightly 

increasing trend is apparent in the evolution of this ratio 

once the lockdown is removed, suggesting that additional 

mobility restrictions might be necessary.  

 

o For the countries that have continued reporting the required 

information, the estimation of 𝑟(𝑛) is extended up to the 

moment of writing this manuscript, reflecting the panoply 

of post-lockdown measures taken by most of them. In this 

case, four countries are reported: the USA, Italy, India and 

Brazil. The results show how the geometric ratio 𝑟(𝑛) keeps 

rather close to 1, or slightly above, which explains the onset 

of the second wave we are currently facing in many places. 

 

In light of the presented results, it can be concluded that the 

proposed methodology can effectively characterize, by means 

of the ratio 𝑟(𝑛), the evolution of the virus spread, when 

adequate information of active positives, recovered and 
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deceased people is available. This information on the state and 

dynamics of the epidemic can be used by the governing 

authorities in order to take the corresponding actions: 

 

o An increasing trend of the geometric ratio represents a virus 

spread which might turn out of control, especially when 

𝑟(𝑛) > 1, leading to more restrictive policies. 

 

o On the contrary, values of 𝑟(𝑛) < 1 with decreasing trend 

indicate a situation where the severity of the social 

distancing measures can be alleviated. 

 

As shown in the simulated scenario, the proposed methodology 

is not only suitable for the Covid-19, but also for other 

pandemics that can be characterized using the SIRD model, and 

for which the required information is available. Future work is 

aimed to the application of KF-based estimators to new models 

that can arise with less informative scenarios. 
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Glossary 

EPS Electric Power System 

PMU Phasor Measurement Unit 

DSE Dynamic State Estimator 

KF Kalman Filter 

UKF Unscented Kalman Filter 

EKF Extended Kalman Filter 

CKF Cubature Kalman Filter 

EnKF Ensemble Kalman Filter 

VSC Voltage Source Converter 

CPI Customer-Phase Identification 

PCA Principal Component Analysis 

LASSO Least Absolute Shrinkage and Selection Operator 

Covid Coronavirus disease 

SIR Susceptible, Infected, Recovered 

SIRD Susceptible, Infected, Recovered, Deceased 
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