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A B S T R A C T

A key challenge in current Business Analytics (BA) is the selection of suitable indicators for business objectives. 
This requires the exploration of business data through data-driven approaches, while modelling business stra-
tegies together with domain experts in order to represent domain knowledge. In particular, Key Performance 
Indicators (KPIs) allow human experts to properly model ambiguous enterprise goals by means of quantitative 
variables with numeric ranges and clear thresholds. Besides business-related domains, the usefulness of KPIs 
has been shown in multiple domains, such as: Education, Healthcare and Agriculture. However, finding 
accurate KPIs for a given strategic goal still remains a complex task, specially due to the discrepancy 
between domain as-sumptions and data facts. In this regard, the semantic web emerges as a powerful 
technology for knowledge representation and data modeling through explicit representation formats and 
standards such as RDF(S) and OWL. By using this technology, the semantic annotation of indicators of 
business objectives would enrich the strategic model obtained. With this motivation, an ontology-driven 
approach is proposed to formally concep-tualize essential elements of indicators, covering: performance, 
results, measures, goals and relationships of a given business strategy. In this way, all the data involved in the 
selection and analysis of KPIs are then integrated and stored in common repositories, hence enabling 
sophisticated querying and reasoning for semantic validation. The proposed semantic model is evaluated on a 
real-world case study on water management. A series of data analysis and reasoning tasks are conducted to 
show how the ontological model is able to detect semantic conflicts in actual correlations of selected indicators.   

1. Introduction

Modern Business Analytics (BA) demand reference models to
enhance interoperability and common virtual spaces for advanced data 
consolidation and analysis. In this environment, the selection of suitable 
indicators for business objectives is a current challenge (Tenneson & 
Brocklehurst, 2018), which requires the exploration of business data 
through data-driven approaches, while modelling business strategies 
together with domain experts in order to represent domain knowledge. 
In particular, Key Performance Indicators (KPIs) allow human experts to 
properly model ambiguous enterprise goals by means of quantitative 
variables with numeric ranges and clear thresholds. Besides 
business-related domains, the usefulness of KPIs has been shown in 
multiple domains, such as: Education (Maté, de Gregorio, Cámara, & 
Trujillo, 2014), Healthcare (Barone, Topaloglou, & Mylopoulos, 2012) 

and Agriculture (Benke & Tomkins, 2017). 
Nevertheless, finding precise KPIs for a given strategic goal is still a 

complex task, since there is a general lack of conceptualizations and 
data-driven approaches to capture the differences between performance 
(lead) and result (lag) indicators. In this regard, the semantic web 
emerges as a powerful technology for knowledge representation and 
data modeling through explicit representation formats, ontologies, vo-
cabularies and standards, such as RDF(S) and OWL. Specifically, ontol-
ogies describe concepts, relationships, classes, individuals, formal logic 
axioms and objects of a particular domain (Gruber, 1995). The objects 
refer to entities and events (concepts) in the real-world, and their re-
lations represent the semantic links between these entities. Using this 
technology, the semantic annotation of indicators of business objectives 
would enrich the strategic model obtained. 

In this sense, a series of studies have been appearing in the last years, 
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• The proposed ontology, called KPIOWL, has been designed and
implemented in OWL 2 for the representation and consolidation of
domain knowledge for the elicitation and selection of Key Perfor-
mance Indicators. It considers a large and complemented set of
concepts, attributes and relationships that have been taken from
business intelligence field.

• A semantic approach has been implemented for the semantic anno-
tation of all the involved concepts and measures from the data
sources, as well as those process and components required. The
concepts are integrated following the ontology structure and stored
in a common RDF repository.

• The semantic model is evaluated in the context of a real-world use
case of water supply network management company. A series of tests
and reasoning tasks are conducted to explore objectives and mea-
sures when monitoring water supply networks in the Mediterranean
region of Alicante (Spain). Reported results allow us to support
domain experts in decision making process.

The rest of this paper is structured as follows. In Section 2, back-
ground concepts and literature overview are presented. In Section 3, the 
metamodel for elicitation and selection of business indicators is 
explained. Section 4 describes the proposed semantic model, with design 
and implementation details. Section 5 presents the use case for testing 
and validation. In Section 6, comments concerning theoretical and 
managerial implications are included. Conclusions and future work are 
drawn in Section 7. 

2. Background and related work

In this section, the main background concepts in the field of Semantic
Web and Key Performance Indicators are briefly explained for the sake 
of a better understanding of this paper. A set of most important related 
works in the state of the art are also revised in order to point out the 
main differences with regards to the proposed approach. 

2.1. Background concepts  

• Ontology. In accordance with Noy, McGuinness, et al. (2001) and
Guarino et al. (1998), an ontology provides a formal representation
of the real world. It defines an explicit description of concepts in a
domain of discourse (classes or concepts), properties of each concept
describing various features and attributes of the concept (properties)
and restrictions on properties. Ontologies are part of the W3C stan-
dard stack of the Semantic Web.3 An ontology together with a set of
individual instances of classes constitutes a knowledge base and offer
services to facilitate interoperability across multiple, heterogeneous
systems and databases.

• RDF. Resource Description Framework (McBride, 2004) is a W3C
recommendation that defines a language for describing resources on
the web. RDF describes resources in terms of triples, consisting of a
subject, predicate and object. RDF Schema (RDFS) (Staab & Studer,
2013) describes vocabularies used in RDF descriptions.

• OWL. The Ontology Web Language is used to define ontologies on
the Web, which extends RDF and RDFS, but adding a vocabulary.
From a formal description, OWL is equivalent to a very expressive
description logic DL, where an ontology corresponds to a Tbox
(Gruber et al., 1993). This equivalence allows the language to exploit
description logic research results. OWL provides two sublanguages:
OWL Lite for simple applications, and OWL DL, which represents the
subset of language equivalents to description logic, those reasoning
mechanisms of which are quite complex. OWL-DL is syntactic
description that gives maximum expressiveness while retaining
computational completeness and decidability (Mcguinness, Van
Harmelen, et al., 2004). The complete language is called OWL Full.
In October 2007, a new W3C working group was created to extend
OWL with several new features, as proposed in the OWL 1.1 member
submission. This new version is called OWL 2 (Group, 2019). W3C
announced the new version on the 27th October 2009. OWL 2 also
defines three new profiles, OWL 2 EL, OWL 2 QL and OWL 2 RL
(Group, 2019), and a new syntax (OWL 2 Manchester Syntax). In
addition, some of the restrictions applicable to OWL DL have been
relaxed; as a result, the set of RDF Graphs that can be handled by
description logic reasoners is slightly larger in OWL 2.

In this sense, OWL-DL is syntactic description that gives maximum
expressiveness while retaining computational completeness and
decidability (Mcguinness, Van Harmelen, et al., 2004). For all these
reasons, we use OWL 2 to define our proposed ontology, since it is a
popular expressive language that adds several new features to OWL
(first version), including increased expressive power for properties,
extended support for datatypes, simple meta-modeling capabilities,
extended annotation capabilities, and keys. Like OWL, OWL 2
specifies a precise mapping from ontology structures to RDF graphs.
Conversely, OWL 2 also benefits from an explicitly specified mapping
from RDF graphs back to ontology structures.

• SPARQL is a query language for easy access to RDF stores. It is the
query language recommended by W3C (Harris, Seaborne, & Prud’-
hommeaux, 2013) to work with RDF graphs (Prud, Seaborne, et al.,
2006), then supporting queries and web data sources identified by
URIs.

2 RDF in W3C https://www.w3.org/RDF/. 3 https://www.w3.org/standards/semanticweb/. 

in which ontological approaches are suggested to enhance data ware-
house by means of semantic representations (Bellatreche, Khouri, & 
Berkani, 2013; Huang, Chou, & Seng, 2007; Nebot & Berlanga, 2012). 
These studies are mostly aimed at bridging the gap between the strate-
gical definition of indicators and the design of data cubes, supporting the 
design of data marts and OLAP analysis. Another interesting proposal is 
KPIOnto (Diamantini, Potena, & Storti, 2016), which is designed to 
represent the formulas used to calculate KPIs, hence allowing to make 
the algebraic relationships among indicators explicit. However, in these 
works, all indicators are treated as KPIs disregarding whether they refer 
to actual performance (KPIs) or measured results (Key Result Indicators 
– KRIs) (Horkoff et al., 2014; Maté, Trujillo, & Mylopoulos, 2016). The
distinction between the concepts of KPI and KRI (Parmenter, 2015) is 
crucial to avoid mistakes and enable the process of finding an adequate 
KPIs to focus on for an enterprise objective. Therefore, the generation of 
standardized models to support formal analysis and exploration in this 
direction is a challenge in current Business Analytics (Simoni, 2018).

This motivates us to propose an ontology-driven approach to 
formally conceptualize essential elements of indicators, covering: per-
formance, results, measures, goals and relationships of a given business 
strategy. In this way, all the data involved in the selection of KPIs are 
then integrated and stored in common repositories, hence enabling so-
phisticated querying and reasoning for semantic validation. 

The proposed semantic model is evaluated on a real-world case study 
on water management, which comprises an RDF2 (Resource Description 
Framework) repository that follows the ontology scheme. This re-
pository can be queried by high level algorithms using SPARQL. The 
goal is to properly feed post processing procedures capable of guiding 
the design of accurate KPIs. As a proof-of-concept, a series of data 
analysis and reasoning tasks are conducted to show how the ontological 
model is able to detect semantic conflicts in actual correlations of 
selected indicators. 

The main contributions of this study can be outlined as follows:  

https://www.w3.org/RDF/
https://www.w3.org/standards/semanticweb/
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2004).4 

2.2. Related work 

Since the last decade, there have been appearing a series of studies in 
which ontological approaches are proposed to take part in different steps 
of Business Intelligence processes (Berkani, Bellatreche, & Benatallah, 
2016; Gómez et al., 2017; Nebot & Berlanga, 2012; Sell, Cabral, Motta, 
Domingue, & Pacheco, 2005). In particular, in the field of data ware-
house, there exists a number of works (Bellatreche et al., 2013; Huang 
et al., 2007; Nebot & Berlanga, 2012) in which semantic representations 
are mostly designed for bridging the gap between the strategical defi-
nition of indicators and the design of data cubes, supporting the design 
of data marts and OLAP analysis. In this regard, the RDF Data Cube 
vocabulary (QB) (Cyganiak & Reynolds, 2014) is a W3C recommenda-
tion for the publication of multi-dimensional data on the web, such as 
statistics. It defines the dimensions, attributes and measures used in the 
dataset and it builds upon existing RDF vocabularies (for example, SKOS 
(Miles & Brickley, 2005), SCOVO (Hausenblas, Halb, Raimond, Fei-
genbaum, & Ayers, 2009), Dublin Core (Group, 2017), FOAF (Brickley & 
Miller, 2000), etc.). The Data Cube vocabulary is compatible with SDMX 
(Statistical Data and Metadata eXchange) (Community, 2019), an ISO 
standard for exchanging and sharing statistical data and meta-data 
among organizations. Nevertheless, the RDF Data Cube vocabulary 
shows a series of limitations to fully support the multidimensional model 
operations. An extension of QB to overcome its limitations is QB4OLAP 
(Etcheverry, Vaisman, & Zimányi, 2014), which allows the imple-
mentation of OLAP operations, such as: rollup, slice, dice, and 
drill-across by means of SPARQL queries. 

From a bottom-up perspective, early formal specification languages 
(Popova & Treur, 2005) and ontologies (del Río-Ortega, Resinas, & 
Ruiz-Cortés, 2010) are also used for the annotation of structural defi-
nition of indicators to enhance business goals representation (del Mar 
Roldán García, García-Nieto, & Aldana-Montes, 2016). An example of 
this can be found in Kehlenbeck and Breitner (2009), where based on 
MathML markup language, an ontology is defined to explicitly define 
formula of indicators, hence allowing the automatic linking to specific 
data warehouse elements. In del Río-Ortega et al. (2010), an ontology is 
designed for the definition of Process Performance Indicators (PPIs) that 
explicitly defines the relationships between the indicators and the ele-
ments, also enabling the analysis of PPIs at design-time. Another inter-
esting proposal is KPIOnto (Diamantini, Genga, Potena, & Storti, 2014), 
which is designed to represent the formulas used to calculate KPIs, hence 
allowing to make the algebraic relationships among indicators explicit. 
An extension of KPIOnto is conducted by means of SemPI (Diamantini 
et al., 2016), a semantic framework for representing Key Performance 
Indicators that supports the construction and maintenance of a minimal 
and consistent dictionary. 

Recently, a KPI-based OWL-Q ontology has been proposed in Kriti-
kos, Plexousakis, and Woitch (2018), which enables formally and fully 
specifying how KPIs can be measured over Business Process as a Service 

(BPaaS) hierarchy components. Authors of this last work argued that via 
introducing KPI metric hierarchies that span the whole BPaaS hierarchy, 
the measurably of KPIs is guaranteed. 

Despite these advances, a common drawback can be identified in 
these previous works. Even though they enable the calculus of KPIs, they 
do not conduct advanced semantic analysis to connect underlying data 
with business objectives, indicators and, most importantly, business 
rules and domain knowledge. The lack of distinction between actual 
performance (KPIs) and results obtained (KRIs), makes difficult to 
evaluate the suitability of indicator and strategic models built from a 
business perspective. Therefore, in order to achieve deeper strategic 
analysis it is required not only to provide the ability to calculate KPIs 
together with an ontological foundation, but also that this ontological 
foundation is aimed to test domain knowledge and assumptions against 
data facts. 

The KPIOWL ontology proposed here is designed for filling this gap, 
e.g., for covering representation and consolidation of domain knowledge
for the elicitation and selection of KPIs, including KRIs, measures, and
further data analysis, as crucial concepts in this process. The aim is not
to substitute previous ontologies, but to complement them by incorpo-
rating new elements, attributes and relationships leading to future
ontology alignments (e.g. with KPIOnto) and the generation of Linked
Open Data extensive models. In this way, the proposal in this paper leads
to a framework that enables advanced analysis and reasoning over
business strategies, which was not previously possible.

3. Elicitation and selection of business indicators

In Business Intelligence, existing modeling languages (Horkoff et al.,
2014; Silva Souza, Mazón, Garrigós, Trujillo, & Mylopoulos, 2012) 
include a large set of concepts that are required for analyzing different 
aspects of the business strategy, such as dependencies across organiza-
tions, external influences, or the business mission and vision. However, 
these concepts fall out of the scope when modeling KPIs for the elici-
tation process, and do not provide the expressiveness required for the 
indicator analysis. 

In order to keep the analysis focused, we follow a reduced meta-
model proposed in Maté et al. (2016) that includes only those concepts 
required for applying our methodology, and can be integrated as an 
extension for any of the existing modeling languages. A design overview 
of this metamodel, created using the Ecore framework5 within the 
Eclipse platform, is shown in Fig. 1, whose main concepts are detailed as 
follows:  

• Goals: Desired state of affairs that represent business objectives. For
example in water management we can define the goal “Minimize
water lost”. Goals are the basic blocks of the strategic model, and we
do not need to make a distinction of whether they are strategic,
operational or tactical for the analysis. They are the most common
concept included in strategic modeling languages (Horkoff et al.,
2014; Silva Souza et al., 2012).

• Relationships: They allow domain experts and analysts to express
the expected relationships between goals to be achieved. Relation-
ships can either be contributions, where one goal affects positively or
negatively the achievement of another goal, or decompositions,
where a goal is further refined into more detailed, finer-grained
goals. For example, “Minimize leaks” could be decomposed into
“Minimize transportation network leaks” and “Minimize distribution
network leaks”. The expressiveness of relationships varies across
strategic modeling languages. In our language, relationships have
the evidence property, which captures the results from the data
analysis showing whether the relationship is supported by the data or
not. The evidence property is evaluated in practice by using a

4 https://www.w3.org/Submission/SWRL/. 5 https://www.eclipse.org/modeling/emf/. 

M. SWRL. The Semantic Web Rule Language provides the OWL-based 
ontologies with procedural knowledge, which compensates for some 
of the limitations of ontology inference, particularly in iden-tifying 
semantic relationships between individuals (Horrocks, Patel-
Schneider, Bechhofer, & Tsarkov, 2005). SWRL uses the typical logic 
expression “Antecedent ⇒ Consequent” to represent semantic rules. 
Both antecedent (rule body) and consequent (rule head) can be 
conjunctions of one or more atoms written as “atom1 ∧ atom2 ∧ ⋯ ∧ 
atomn”. Each atom is attached to one or more parameters 
represented by a question mark and a variable (e.g., ? x). The most 
common uses of SWRL include transferring characteristics and 
inferring the existence of new individuals (Grosof & Poon, 

https://www.w3.org/Submission/SWRL/
https://www.eclipse.org/modeling/emf/
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combination of sentinels and statistical techniques (namely correla-
tion and cross-correlation when there is insufficient information for 
building more complex ARIMA models) (Maté et al., 2016).  

• Indicators: They measure the satisfaction of goals. They translate
business objectives into measures that can be monitored, such as
“Decrease water lost by 10%”. In order to make indicators from our
model compatible with existing modeling proposals (Horkoff et al.,
2014; Silva Souza et al., 2012) all indicators can have a formula, a
current value, a target value, a threshold, a worst value, and a target
time. Furthermore, they also have a status, which provides infor-
mation on the status of the indicator with respect to the data avail-
able. In addition, we have added a new property to the indicator
construct in the metamodel – aim – in order to improve the reasoning
capabilities. Aim denotes whether the indicator is trying to be
maximized, minimized, or stabilized. This property is derived from
the target and threshold values. If the target value attribute is below
the threshold attribute, then, the indicator is a minimization indi-
cator. Conversely, if the target value is above the threshold value,
then the indicator is a maximization indicator. Finally, if the second
threshold value is not null, and the target value is in-between, then it
is a stabilization indicator, which essentially condenses a maximi-
zation and minimization indicator into a single one. Any other
combination would mean an inconsistent indicator definition that
should be revised.

Indicators in our language are further specialized into three types for
capturing the nature of the analysis carried out in this methodology, 
which are not found in other modeling languages:  

• Measures are the simplest form of indicators. They represent known
formulas for measuring business activities, with no known targets or
thresholds. Due to the absence of any clear criteria, they cannot be
used to make any statements with regards to goal satisfaction. For
example, given the “N of water connections” measure, we cannot
argue whether the associated objective has been fulfiled or not.
Nevertheless, measures are the most common representation of data
from enterprises, and they serve a fundamental role, being candi-
dates to define KPIs and KRIs.

• Key Result Indicators are indicators which evaluate the actual
satisfaction of a goal and have a set time to meet its target. For

example, “Decrease water lost by 10%” is a KRI. It provides informa-
tion about the results of the business objective “Minimize water lost” 
and must be achieved within the lifespan of the current business 
plan. Other examples of KRIs we can find in different sectors are 
“Increase sales by 3%”, “Decrease average inpatient stay by 10%”, or 
“Increase overnight stays by 15% during summer”. KRIs differentiate 
from the concept of KPIs in two critical aspects. First, KRIs cannot be 
affected directly by the company. They must be improved through 
changes in company’s processes that are expected to improve a 
company’s results. A water management company cannot simply 
decrease water lost, they have to try to minimize it by fixing open 
leaks and the health of the water network. In a similar way, a com-
pany can increase the number of workers at an industrial plant to 
directly affect the “Production rate”. However, they cannot do any-
thing to directly increase their sales. In turn, this means that any KRI 
unrelated to KPIs in the model is essentially a goal that is not being 
actively pursued. Second, they have no predictive power by them-
selves outside trend analysis. Their main objective is to evaluate the 
actual effectiveness that business initiatives eventually had. 

• Key Performance Indicators are indicators that measure the per-
formance of key activities and initiatives. They follow the intuitive
idea that performing well will lead to obtaining good results. Like
KRIs, KPIs have clear defined thresholds. However, they may or may
not have a target time, since they can be used in monitoring
continuous tasks, thus having a period instead. For example, “Time
since last network maintenance under 2 years” is a continuous task.
Other examples of KPIs are “# of daily complaints unattended”,
“Average medical consultation time”, or “Total food costs”. KPIs are
important for the semantic analysis due to the ability of the company
to affect them directly through business rules and policies. Due to
their nature, if KRIs change, it is likely that the set of KPIs to be
monitored also changes. The great advantage of KPIs is that they can
provide information ahead of time about underlying problems or the
expected results of the company. However, the information they
provide w.r.t. company goals is not always accurate, as KPIs only
measure a subset of factors that influence the outcome of a KRI.

This metamodel enables the construction of strategic and semantic
models focused on indicators in collaboration with domain knowledge 
experts. The process for building the initial strategic model is 

Fig. 1. Metamodel with the concepts and relationships for out modeling language.  
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4. Semantic model

After the strategic modeling step, a candidate model is obtained with
varying degrees of completion depending on the knowledge available 
about the business and its measurement. The indicators in the model are 
then used as input to the second step in this process, the data analysis, in 
order to test their suitability according to existing data. At this point, the 
complete process is semantically modeled to allow the representation 
and consolidation of all data involved in the selection of KPIs, hence 
enabling sophisticated querying and reasoning for semantic validation. 

The semantic model proposed here is driven by an OWL ontology 
that covers all the concepts and relationships concerning the KPI elici-
tation and selection process. To this end, the standard Ontology 101 
development process (Noy and McGuinness, 2001) has been followed, 
which main steps are:  

1. Determine the domain and scope of the ontology. As a starting point,
the ontology definition is based on the KPI selection and elicitation
meta-model proposed by Maté et al. (2016).

2. Consider reusing existing ontologies. KPIOnto (Diamantini et al.,
2016) has been considered for reusing, but it focus on KPI calculation
modeling, without annotation of elementary concepts for our model,
such as: KRIs, measures, contribution and decomposition. Therefore,
the proposed ontology here (KPIOWL) has been designed from
scratch, although incorporating properties and classes that could be
used for a future ontology alignment with KPIOnto (and others).

3. Enumerate important terms in the ontology. Important terms in the
ontology were extracted from KPI selection meta-model (Maté et al.,
2016). Examples of such terms are: goal, relationship, indicator,
measure, etc.

4. Define classes, properties, slots, facets and instances. These terms are
described in Tables 2–4 . Instances (individuals in OWL) correspond
to the specific indicators in the business strategical domain (in this
article, water management). Individuals are obtained by mapping
the dataset of sensorized data (in water management supply
network) to RDF in accordance with the ontology.

As a result, the KPIOWL ontology is detailed next.

4.1. KPIOWL ontology 

One of the main goals in this study is to formalize the metamodel 
described in Section 3. This metamodel has been extended to include 
relationships between indicators. Therefore, we opted to design an OWL 
2 ontology to describe goals, relationships, indicators, measures, KPIs 
and KRIs. The result is a simple, although complete ontology called 
“KPIOWL”, which allows to capture all the information required in 
business KPI selection and elicitation processes. The proposed ontology 
consists of 8 classes (groups of individuals sharing the same attributes), 
11 object properties (binary relationships between individuals), 12 data 
properties (individual attributes), 128 logical axioms and 69 declaration 
axioms. The complete ontology is available in the GitHub repository.6 

Fig. 2 shows the main classes in the hierarchy starting from the top 
class Thing (⊤), to the main classes, subclasses, and including some of 
their most interesting object and data properties. These main classes are: 
Goal, Relationships and Indicator. Each of these classes incorporates a set 
of properties and conditions in order to be conceptualized. An individual 

that satisfies those properties is considered a member of that class. For a 
formal definition of them, we use next the OWL-DL syntax as described 
in Table 1, where a summarized logic syntax is represented (left-hand 
column) with regards to the corresponding OWL-DL equivalent (right). 

– Goal. Class modeling the metamodel goals, i.e. the business ob-
jectives. Goals are related one to each other. Types of “Relationships” 
between Goals are subclases Contribution and Decomposition (see Section 
3 and Maté et al., 2016 for further descriptions). The contribution 
relationship can be positive (direct) or negative (reverse). A main data 
property in this class annotates that each goal has a name. Table 2 shows 
the properties of the class Goal in OWL-DL notation. 

– Relationship. It models relationships between goals. Relationship
has two subclasses, Contribution and Decomposition. Each of these sub-
classes has different properties. Therefore, Relationship must be defined 
as a class with two subclases, and specifies the corresponding properties 
for each subclass. It is not defined as an object property with two sub-
properties, because OWL does not allow to define attributes for a 
property. The object property hasRelationship connects a goal with the 
corresponding type of relationship. The object property withGoal con-
nects the relationship with the target goal if this relationship is Decom-
position. The object properties goalDirect and goalReverse connect the 
relationship with the target goal if the relationship is Contribution. For 
example, in KPI modeling for a water management environment, a 
graphical representation of the decomposition relationship between the 
two goals “maintain a healthy distribution network” and “renovate supply 
network” is shown in Fig. 3. As data properties, each relationship has an 
evidence, a contribution has a value and a formula and a decomposition 
has a type, which is a logical operator. Table 3 displays the formal def-
initions of Relationship, Contribution and Decomposition object and data 
properties. 

– Indicator. This class has three subclasses, which correspond to the
types of indicators, i.e. Measure, KRI and KPI. Indicator class has a cur-
rent value, a target value to be surpassed by the indicator, a threshold 
that separates acceptable from struggling performance, a worst value 
below which the indicator is considered to be failing, a target time, a 
name, a status and its aim (see data properties in Table 4). Indicators 
monitor goals. Indicators are also related to each other, so in a similar 
way to goals, this relationship can be positive (indicatorDirect) or 
negative (indicatorReverse). In addition, two object properties between 
indicators are defined in the ontology to capture whether a relationship 
between indicators is inconsistent or redundant, according to the in-
formation provided by knowledge domain experts (see object properties 
in Table 4) throughout the business intelligence modeling process. 

KPIOWL is formally defined using OWL 2 DL, which facilitates its 
alignment with other OWL ontologies. For example, OWL provides owl: 
EquivalentClass and owl:subClass axioms to align classes in different 
ontologies. To integrate classes, properties and restrictions defined in a 
different ontology, OWL provides the owl:imports statement. Therefore, 
KPIOWL could be aligment with KPIOnto by asserting KPIOWL:Indicator 
owl:EquivalentClass KPIONTO:Indicator. To include the KPIONTO:In-
dicator properties in KPIOWL, KPIOnto must be imported. 

4.2. Reasoning rule framework 

Given the definitions above, a series of semantic rules are built on top 
of the KPIOWL ontology to deduce new information from the existing 
knowledge. These rules are formulated in SWRL (see Section 2.1) lan-
guage to infer new relationships and/or to detect inconsistent relation-
ships between indicators. 

First, a set of rules are defined to infer relationships between in-
dicators from the model. According to the model, an indicator i1 is 
considered to have a relationship with another indicator i2 if there is a 
relationship between the objectives monitored by each of them. The 
relationships between indicators capture the effect that i1 has over the 
value of i2. Formally, a sample of these rules (R1, R2 and R3) is as 6 URL link: https://github.com/KhaosResearch/KPIOWL. 

approached in a top-bottom fashion, from the identification of the main 
goals pursued by the organization, to the definition of candidate mea-
sures, KRIs, KPIs and their relationships. In case any candidate KRI, KPI, 
or measure is not related to any goal, it is listed and included into the 
model with no relationship to the rest of elements. 

https://github.com/KhaosResearch/KPIOWL
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follows:  
R1: aim(? i1,”maximize”) ̂ monitors(? i1, ? o1)  
̂hasRelationship(? o1, ? gr1),  

̂Contribution(? gr1),  

̂goalDirect(? gr1, ? o2),  

̂aim(? i2,”maximize”) ̂ monitors(? i2, ? o2)  
-> indicatorDirect(? i1, ? i2)  

R2: aim(? i1,”maximize”) ̂ monitors(? i1, ? o1)  
̂hasRelationship(? o1, ? gr1),  

̂Contribution(? gr1),  

̂goalDirect(? gr1, ? o2),  

(continued on next column)  

(continued ) 

̂aim(? i2,”minimize”) ̂ monitors(? i2, ? o2)  

(continued on next page) 

Fig. 2. KPIOWL ontology general scheme with main classes and properties. It has been generated by using OntoGraph plugging of Protégé tool for ontology 
modeling. Legend indicates relationships between classes by means of data and object properties. 

Table 1 
Basic OWL-DL semantic syntax used to formally define the proposed ontology.  

Descriptions Abstract syntax DL syntax 

Operators intersection(C1, C2, …, Cn) C1 ⊓ C2 ⊓ ⋯ ⊓ Cn

union(C1, C2, …, Cn) C1 ⊔ C2 ⊔ ⋯ ⊔ Cn 

Restrictions for at least 1 value V from C ∃V . C  
for all values V from C ∀V . C  
R is Symmetric R ≡ R−

Axioms A partial(C1, C2, …, Cn) A ⊑ C1 ⊓ C2 ⋯ ⊓ Cn

A complete(C1, C2, …, Cn) A ≡ C1 ⊓ C2 ⋯ ⊔ Cn

Table 2 
Goal: object and data properties.  

Object properties Description logic 

hasRelationship ∃ hasRelationship.Thing ⊑ Goal  
⊤⊑ ∀ hasRelationship.Relationship 

monitoredBy ∃ monitoredBy.Thing ⊑ Goal  
⊤⊑ ∀ monitoredBy.Indicator  

name ∃ name.Datatype Literal ⊑ Goal  
⊤⊑ ∀ name.Datatype string  

Fig. 3. Example of a decomposition relationship between two goals.  

Table 3 
Relationship, Contribution and Decomposition: object and data properties.  

Object properties Description logic 

withGoal ∃ withGoal.Thing ⊑ Decomposition  
⊤⊑ ∀ withGoal.Goal 

goalDirect ∃ goalDirect.Thing ⊑ Contribution  
⊤⊑ ∀ goalDirect.Goal 

goalReverse ∃ goalReverse.Thing ⊑ Contribution  
⊤⊑ ∀ goalReverse.Goal  

evidence ∃ evidence.Datatype Literal ⊑ Relationship  
⊤⊑ ∀ evidence.Datatye double 

value ∃ value.Datatype Literal ⊑ Contribution  
⊤⊑ ∀ value.Datatype string 

formula ∃ formula.Datatype Literal ⊑ Contribution  
⊤⊑ ∀ formula.Datatype string 

type ∃ type.Datatype Literal ⊑ Decomposition  
∃ type.Datatype Literal ⊑ Decomposition  

Table 4 
Indicator: object and data properties  

Object properties Description logic 

monitors ∃ monitors.Thing ⊑ Indicator  
⊤⊑ ∀ monitors.Goal 

indicatorDirect ∃ indicatorDirect.Thing ⊑ Indicator  
⊤⊑ ∀ indicatorDirect.Indicator) 

indicatorReverse ∃ indicatorReverse.Thing ⊑ Indicator  
⊤⊑ ∀ indicatorReverse.Indicator) 

inconsistent ∃ inconsisten.Thing ⊑ Indicator  
⊤⊑ ∀ inconsistent.Indicator) 

redundant ∃ redundant.Thing ⊑ Indicator  
⊤⊑ ∀ redundant.Indicator)  

name ∃ name.Datatype Literal ⊑ Indicator  
⊤⊑ ∀ name.Datatype string 

currentValue ∃ currentValue Datatype Literal ⊑ Indicator  
⊤⊑ ∀ currentValue.Datatype double 

status ∃ status Datatype Literal ⊑ Indicator  
⊤⊑ ∀ status.Datatype string 

targetTime ∃ targetTime Datatype Literal ⊑ Indicator  
⊤⊑ ∀ targetTime.Datatype dateTime 

targetValue ∃ targetValue Datatype Literal ⊑ Indicator  
⊤⊑ ∀ targetValue.Datatype double 

threshold ∃ threshold Datatype Literal ⊑ Indicator  
⊤⊑ ∀ threshold.Datatype double 

worstValue ∃ worstValue Datatype Literal ⊑ Indicator  
⊤⊑ ∀ worstValue.Datatype double 

aim ∃ aim Datatype Literal ⊑ Indicator  
⊤⊑ ∀ aim.{”maintain”, ”maximize”, ”minimize”}  
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(continued )

-> indicatorReverse(? i1, ? i2)  

R3: aim(? i1,”minimize”) ̂ monitors(? i1, ? o1)  
̂hasRelationship(? o1, ? gr1),  

̂Contribution(? gr1),  

̂goalDirect(? gr1, ? o2),  

̂aim(? i2,”minimize”) ̂ monitors(? i2, ? o2)  
-> indicatorDirect(? i1, ? i2)  

Aside from these rules that establish relationships between in-
dicators, our semantic model is also able to infer inconsistency and 
redundancy between indicators in the model using both, its structure 
and data available. 

A second rule is also defined next (R4) to indicate that, if two 
different indicators monitor the same goal, then there is a possible 
redundant relationship between these two indicators.  
R4: monitors(? i2, ? o) ̂ monitors(? i1, ? o)  

-> redundant(? i1, ? i2)  

In addition to SWRL rules, it is worth noting that indicatorDirect and 
indicatorReverse object properties are defined as OWL transitive prop-
erties. This allows the automatic reasoner to infer that, if an indicator i1
has a direct/reverse relationship with an indicator i2, and i2 has a 
direct/reverse relationship with an indicator i3, then there is a possible 
direct/reverse relationship between i1 and i3. 

Finally, more complex rules could be added, which application de-
pends on the available data, as the indicator’s target value and current 
value are needed. An example of such a complex rule could be as follows: 

When a goal (parent) is decomposed into several goals (children), 
and all of the children indicators are satisfied while the parent indicator 
is not, then the indicators are inconsistent. An indicator is satisfied if its 
current value is greater than its target value and its aim is maximize, or if 
its current value is less than its target value and its aim is minimize. An 
example of this kind of rules is defined in R5:  
R5: monitors(? i1, ? o1) ̂ monitors(? i2, ? o2)  

̂monitors(? i3, ? o3) ̂ hasRelationship(? o1,? gr1)  

̂Decomposition(? gr1) ̂ withGoal(? gr1, ? o2)  

̂withGoal(? gr1, ? o3) ̂ aim(i1, ”maximize”)  
̂currentValue(? i1,? cv1) ̂ targetValue(? i1,? tv1)  

(continued on next column)  

(continued ) 

̂lessThan(? cv1,? tv1) ̂ aim(i2, ”maximize”)  
̂currentValue(? i2,? cv2) ̂ targetValue(? i2,? tv2)  

̂greatherThan(? cv2,? tv2) ̂ aim(i3, ”maximize”)  
̂currentValue(? i3,? cv3) ̂ targetValue(? i3,? tv3)  

̂greatherThan(? cv3,? tv3)  

-> inconsistent(? i1,? i2) ̂ inconsistent(? i1,? i3)   

4.3. Overall approach 

As commented in Section 1, the selection of suitable indicators for 
business objectives entails the exploration of the specific business 
strategy together with domain experts, while providing data-driven in-
sights whenever conformation or additional information is required. As 
argued in Maté et al. (2016), an iterative methodology that alternates 
conceptual modeling with data analysis will refine the KPI selection 
process. In this regard, the proposed semantic model allows domain 
experts to annotate business information and perform reasoning tasks to 
validate the strategic model obtained. 

Fig. 4 illustrates an overview of the proposed approach, which con-
sists on a two-fold strategy comprising: semantic model and KPI selec-
tion/elicitation meta-model. On top of this approach, domain experts 
are able to construct a strategic model in collaboration with the analyst, 
as well as to express their knowledge by means of semantic annotation, 
according to the KPIOWL scheme. This is performed in a first step (1), 
which is aimed at establishing the main business objectives pursued 
(which can be clearly related to a set of result indicators or performance 
indicators) and exploring other existing indicators, measures and ob-
jectives. In a second step (2), data involving indicators and measures are 
used as input for the data analysis (correlations) to detect potential or 
hidden relationships between indicators and to establish performance 
levels for measures. Step three (3) entails a series of reasoning task for 
semantic validation of those relationships between indicators extracted 
in the previous step. After this, the findings from the data analysis and 
the semantic validation are mapped back into the strategic model in step 
(4). Finally, a new cycle starts (step 5) until a stable strategic model is 
obtained (i.e. the model does not suffer a variation with respect to the 
previous iteration) or domain experts are satisfied with the current 
model. 

In this approach, KPIOWL is the ontological scheme driving the 
whole process. It is the terminological box (TBox) that defines the 

Fig. 4. General scheme of the semantic model driven by KPIOWL for business KPI selection and elicitation.  
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5. Use case

For validation purposes, a complete case of study has been developed
to show how the proposed semantic approach is used for driving and 
validating the meta-modelling process of KPI selection. To this end, a 
real-world application is worked here, which consists in monitoring a 
water supply management network in the Mediterranean area of Ali-
cante (Spain). It is a critical application nowadays because of the 
generalized water scarcity in the Southeast of Spain (Morote, Olcina, 
Rico, & Hernández, 2019), so the generation of innovative solutions for 
monitoring Key Performance Indicators is a must for policy and decision 
makers. Water supply management companies focus on ensuring water 
supply to multiple zones. On the one hand, water provided requires an 
adequate quality for its target, whether urban zones or farms, and cuts in 
service must be kept to a minimum. On the other hand, the water supply 
network incurs into losses, and must be renovated once critical points 
are reached. However, finding the specific parts of the network that 
require renovation is a challenging task, and thus entire blocks of the 
network have to be renovated, which is costly. In order to support in this 
task, a number of measures are gathered by the water supply manage-
ment company in our study, although they still have to be associated 
with criteria to make decisions. 

In this application, the original data sources describe hydro-graphic 
zones, sub-zones and monitored values, including measures, such as 
water leakages or structural breaks. Additionally, a series of mapping 
functions have been developed to convert these monitored values to RDF 
by following the ontology scheme provided by KPIOWL. The resulting 
data is then stored in the RDF repository (as shown in Fig. 4), which is 
now ready for querying and reasoning tasks. In this regard, it is worth 
specifying that KPIOWL has been extended with domain specific sub-
classes and individuals to enhance the inference procedure in reasoning 
time. Concretely, three subclasses of the class Measure have been 
included as shown in Fig. 5, namely: TransportationNetwork, Dis-
tributionNetwork and ConnectionNetwork, to classify those measures 
monitored in each of these three different parts of the water supply 
network (e.g. transportation, distribution and connection, respectively). 
In addition, a couple of new SWRL rules have been included in the se-
mantic model to detect possible inconsistencies between direction of 
indicators and types of networks, as follows:  
R6: ConnectionNetwork(? i2) 

̂TransportationNetwork(? i1)  

̂indicatorDirect(? i1, ? i2)  

-> inconsistent(? i1, ? i2)  

R7: ConnectionNetwork(? i2) 

̂TransportationNetwork(? i1)  

̂indicatorReverse(? i1, ? i2)  

-> inconsistent(? i1, ? i2)  

In accordance with the KPI selection model, the highest level goal is 
“to provide an efficient water supply”, which does not have any known 

measure associated. In order to track this high level objective, it is 
further decomposed into minimizing water lost and improve network 
efficiency. In order to minimize water lost, intuitively the company 
wishes to minimize breakdowns and leaks, which are avoided by 
maintaining the supply network and renovating it when needed. How-
ever, renovating the supply network involves a costly process, and thus 
harms the reduction of maintenance costs. For the first iteration of the 
analysis, a number of 20 measures have been considered, which contain 
yearly readings for the period of 2008–2014 (6 data points) for 574 
instances of the data. An additional measure is included to refer to 
“water lost” (not directly available), which is calculated from the dif-
ference of water supplied and water registered. In a second phase, a 
preliminary data analysis is carried out, which comprises normalization 
of data values within regions, and correlation between different mea-
sures. This last analysis shows a number of 22 correlations (Pearson) 
stronger than 0.5 threshold, which are further analyzed using linear 
regression to determine the predicting power of each factor. The 
resulting model is then updated as illustrated in Fig. 6 , where a series of 
potential relationships between result indicators have been identified. 

At next iteration, three new relationships have been identified as 
non-interesting, since the measures involved are calculated in a similar 
fashion. These relationships relate the number of natural leaks with the 
number of leaks according to the size of the network (Measures 12–16, 
13–17) and the water supplied to the water lost (20-water lost). On the 
other hand, other three relationships that cover the renewed lengths of 
the different networks (4–5), number of water connections with the 
number of leaks, (7–11), and hydraulic system performance with final 
water lost (19–20) are marked as of special interest. However, as can be 
observed in Fig. 7, an initially expected relationship between measure 
regarding to breakdowns in the network and water lost is not supported 
by the data analysis. This leads the expert to review either the way the 
main goal is monitored, i.e. how are breakdowns measured, or review 
the suitability of this relationship, i.e. “breakdowns not cause water 
loss” (no sense semantically). A further semantic validation can be then 
carried out by means of reasoning tasks within KPIOWL on the anno-
tated data, which effectively shows inconsistencies in this regard. Spe-
cifically, following our model, the water supply company experts define 
that “breakdowns monitors water lost and minimize breakdowns mon-
itors minimize water lost”. Breakdowns and water lost are indicators 
while minimize breakdowns and minimize water lost are goals. 
Furthermore, a contribution relationship between the two goals is 
included, so the application of rule R3 (see Section 4.2) infers that 
“breakdowns have a direct relationship with water lost”. 

A second task consists in using the semantic reasoner to infer new 
semantic relationships, by applying transitivity. This experiment pro-
vides the following results, which complement the analysis carried out 
from measured data in the KPI meta-modeling phase. For example, after 
applying rule R5, the following new relationships are inferred:  
- AvgNetworkAge

is-related-to WaterLost

- NaturalLeaksDivLengthOfDistributionNetwork

is-related-to WaterLost

- NaturalLeaksDivLengthOfTransportionNetwork

is-related-to WaterLost

- NaturalLeaksDivWaterConnections

is-related-to WaterLost

- WaterConnectionsDivNetworkLength

is-related-to WaterLost

By applying the rest of semantic rules (R5 and R6), a series of new 
relationships are obtained involving “breakdowns”:  
- breakdowns

is-related-to waterRegistered

- breakdowns

is-related-to waterlostperkmandday

- breakdowns

is-related-to waterlost

(continued on next page) 7 In URL: http://www.stardog.com/. 

vocabulary with concepts and properties in the KPI selection meta- 
model. At bottom-left, the Assertional Box (ABox) defines all the in-
stances in the knowledge domain (in OWL 2 an instance is represented 
by an individual) involving strategic models focused on indicators, i.e. 
specific goals, measures, etc. These instances are stored in RDF triple 
format in a Stardog7 repository, which is a commercial version of the 
Pellet OWL 2 reasoner (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007), 
but enhanced with persistence capabilities. Once the ontology (Tbox) 
has been loaded together with SWRL rules, a series of reasoning tasks are 
launched by using the Stardog OWL 2 reasoner to derive new informa-
tion that is not explicitly expressed in the knowledge base. 

http://www.stardog.com/
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(continued ) 

- breakdowns

is-related-to watersuply

Finally, by applying the rule to detect possible redundant relation-
ships between indicators (R4), we obtain among others:  
- Waterlost and waterRegistered

- waterlost and waterSupplied

- waterlost and waterlostperkmandday

- renovated network lenght and

percentage of renovated network

- renovated network lenght and

avg network renovated

A further step is to gather additional data and perform new analyses 
that lead the experts to obtain more insights, although it has been shown 
how the proposed semantic model has already helped in both, simpli-
fying the indicator list, as well as enriching the strategic model, in the 
context of the water management case study. 

6. Theoretical and managerial implications

The increasing amount of available data from multiple and

heterogeneous sources in organizations entails an opportunity when 
feeding Business Intelligence and Analytic processes, although it also 
poses additional technical complexity derived from dealing with such 
diversity of data (Torres & Sidorova, 2019). The task of offering Infor-
mation Management (IM) tools for supporting managers in monitoring 
organizations and in decision making processes, requires BI systems to 
work over standardized data processes through the whole data life cycle, 
since it is crucial to guarantee the conversion from raw data to valuable 
information about the business domain of knowledge. 

In this sense, ontological approaches provide information manage-
ment tools with a knowledge-based semantically enriched for the 
interpretation of unstructured and merged content (Mikroyannidis & 
Theodoulidis, 2010). However, the use of ontologies in IM tools is still 
preliminary and disregards important factors, such as: modeling con-
crete enterprise strategies driven by goals, statistical features of data and 
their relations with business indicators, linkage and integration with 
other external data ontologies, and especially, their implementation for 
practical use. 

The KPIOWL semantic model proposed in this work is aimed at 
coping with these issues, so it goes beyond the conceptual modelling 
towards the actual implementation and use in a real-world scenario, 
although it can be exported to other different cases where monitored 
data are duly modelled in form of KRIs and KPIs in BI processes. In the 

Fig. 5. Ontology overview of additional elements for the specific use case of water management.  

Fig. 6. Subset of the indicator model updated with data analysis results.  
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light of the experiences reported in this study, a series of implications 
can be extracted from theoretical and managerial points of view. 

6.1. Theoretical implications 

Our study offers two main theoretical implications to the efficient 
modeling of Business Intelligence processes and indicators for the gen-
eration of value from data. A first implication concerns the limited focus 
on the improved-decision making, without considering how knowledge 
domain is semantically contextualized, modelled and integrated. We 
contribute to this research by focusing specifically on the mechanism of 
selection of relevant KPIs, since it is an important initial task in BI 
processes to monitor performance to undertake the relevant corrective 
actions when necessary. Concretely, our model strategy emphasizes on 
the distinction between the concepts of KPI and KRI (Parmenter, 2015), 
which is crucial to avoid mistakes and enable the process of finding an 
adequate KPIs to focus on for an enterprise objective. 

In this sense, KPIs are responsible of monitoring the performance of 
the crucial processes of the organizations taking into account the 
implemented corporate strategy, which requires to have a panoramic 
view of the company’s processes and activities. Without a holistic and 
up-to-date vision of these processes, it is not possible to design a strategy 
tailored to the actual needs and potential of the organization, and 
therefore, to select the most appropriate KPIs to build a solid and 
valuable strategy. To this end, the adoption of ontology-driven ap-
proaches constitutes a promising line of work, since it allows semantic 
consolidation of heterogeneous sources of information and contextual-
ization (Ogiela & Ogiela, 2014). 

This entails the second implication of our proposal, which relies on 
the materialization of the semantic model (Tbox, Abox) on software 
architectures comprising RDF repository, SPARQL Endpoint and map-
ping methods for data gathering. In addition, the ontology alignment 

with other related proposals, such as QB4OLAP (Etcheverry et al., 2014) 
and KPIOnto (Diamantini et al., 2016), would complement KPIOWL 
allowing higher contextualization and richer strategic business model-
ling. This will likely contribute to create more detailed models and 
possibly extend the modeling language, where these complex relation-
ships can be reflected explicitly in order to provide additional insights 
and ideas for domain experts. All this will allow the connection with 
external Open Data repositories and the generation of Linked Data with 
the possibility of performing federated querying and advanced 
reasoning (Mikroyannidis & Theodoulidis, 2010). The incorporation of 
Open Linked Data will enrich the semantic model with new perspectives 
of information, such as new data analysis with richer and more so-
phisticated algorithms, which could help in detecting more complex 
relationships between indicators. The use of reasoning procedures will 
lead the inference of new implicit information that could be incorpo-
rated to the knowledge base. 

6.2. Managerial implications 

In terms of managerial implications, a major issue often detected in 
current BI processes lies in the lack of machine-readable representation 
of such processes as a whole on a semantic level (Colomo-Palacios, 
García-Crespo, Soto-Acosta, Ruano-Mayoral, & Jiménez-López, 2010). 
Key Performance Indicators are core elements in BI for efficiently sup-
porting decision making, so the formal modeling and data standardi-
zation in this kind of processes should be duly considered in practice. 
The present work investigates on the potential of ontologies in 
improving the selection of KPIs, within a corporate environment for 
business intelligence. The paper shows the use of KPIOWL, a framework 
that employs ontology management and evolution in the context of in-
formation management systems. The capabilities of the framework in 
facilitating information management and business intelligence are 

Fig. 7. Correlations computed between measures.  
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7. Conclusions

In this work, the ontology-driven approach KPIOWL is proposed to
formally conceptualize essential elements of indicators, covering: per-
formance, results, measures, goals and relationships of a given business 
strategy. In this way, all the data involved in the selection and analysis of 
KPIs are then annotated, integrated and stored in an RDF repository, 
hence enabling sophisticated querying and reasoning for semantic 
validation. The main objective is to enrich strategic business models for 
the efficient elicitation, assessment and selection of KPIs and KRIs. 

The proposed semantic model is evaluated on a real-world case study 
on water management in the Mediterranean region of Alicante (Spain), 
where the elicitation and selection of correct indicators is mandatory for 
improving the supply network efficiency. A series of data analysis and 
reasoning tasks are conducted to show how the ontological model is able 
to detect semantic conflicts in actual (although wrong from a business 
perspective) correlations of selected indicators. 

The semantic model elaborated here is also applicable to other do-
mains where the selection of KPIs is involved. This motivates our main 
future line of research. In addition, ongoing work is focusing on the 
incorporation of Open Linked Data to enrich the semantic model with 
new perspectives of information, such as new data analysis with richer 
and more sophisticated algorithms, which could help in detecting more 
complex relationships between indicators. This will likely contribute to 
create more detailed models and possibly extend the modeling language, 
where these complex relationships can be reflected explicitly in order to 
provide additional insights and ideas for domain experts. In this regard, 
ontology alignment with other related proposals, such as KPIOnto 
(Diamantini et al., 2016), would complement KPIOWL allowing higher 
contextualization and richer strategic business modelling. 
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Maté, A., de Gregorio, E., Cámara, J., & Trujillo, J. (2014). Improving massive open 
online courses analysis by applying modeling and text mining: A case study. In 
J. Parsons, & D. Chiu (Eds.), Advances in conceptual modeling (pp. 29–38). Cham: 
Springer International Publishing.

evaluated through a real-life case study of urban management, specif-
ically for water supply network monitoring. 

The designed architecture and functionalities aim to create coherent 
semantic data layers for KPI modelling and descriptive analysis (corre-
lations, ARIMA, etc.), defining the semantics for knowledge sharing and 
reasoning capabilities. Descriptive data analysis and insights identifi-
cation from semantic querying and reasoning can transform and add 
value to an organization. This paper presents a knowledge management 
and engineering perspective (ontology based) for the application of KPI 
selection meta-model and insights at the organizational (corporate) 
workplace towards the development of the organizational BI processes. 

In this regard, consistency preservation is another goal of ontological 
models. As done in related works such as Heraclitus II (Mikroyannidis & 
Theodoulidis, 2010), consistency is performed semantically by resolving 
inconsistencies that arise when the structure or semantics of an ontology 
become invalid because of a wrong assumption from data analytics (e.g. 
lack of causality in correlations). Semantic Knowledge-bases taking into 
account actual human expert’s experience could led to detect, thanks to 
reasoning rules, semantic inconsistencies delivered from unbiased data 
analysis. 

http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0005
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0005
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0005
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0005
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0010
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0010
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0010
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0010
https://doi.org/10.1080/15487733.2017.1394054
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0020
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0020
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0020
http://www.foaf-project.org/
https://doi.org/10.1016/j.ijinfomgt.2010.05.012
https://sdmx.org/
https://www.w3.org/TR/vocab-data-cube/
https://doi.org/10.1016/j.eswa.2016.06.034
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0050
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0050
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0050
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0050
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0055
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0055
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0055
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0055
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0055
https://doi.org/10.1016/j.future.2015.04.011
https://doi.org/10.1016/j.future.2015.04.011
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0065
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0065
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0065
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0065
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0070
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0070
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0070
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0070
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0075
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0075
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0075
http://www.dublincore.org/documents/dcmi-type-vocabulary/
http://www.dublincore.org/documents/dcmi-type-vocabulary/
http://www.w3.org/TR/owl2-overview/
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0090
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0090
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0095
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0095
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0100
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0100
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0105
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0105
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0110
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0110
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0110
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0110
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0110
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0115
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0115
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0115
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0120
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0120
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0120
https://doi.org/10.1016/j.ins.2006.12.022
https://doi.org/10.1016/j.ins.2006.12.022
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0130
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0130
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0130
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0130
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0135
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0135
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0135
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0135
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0140
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0140
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0140
http://refhub.elsevier.com/S0268-4012(19)30581-X/sbref0140


12

S. Yamamoto, & M. Saeki (Eds.), Conceptual modeling (pp. 73–80). Cham: Springer 
International Publishing.

McBride, B. (2004). The resource description framework (RDF) and its vocabulary 
description language RDFs. In Handbook on ontologies (pp. 51–65). 

McGuinness, D. L., Van Harmelen, F., et al. (2004). OWL web ontology language 
overview. W3C Recommendation, 10(10), 2004. 

Mikroyannidis, A., & Theodoulidis, B. (2010). Ontology management and evolution for 
business intelligence. International Journal of Information Management, 30(6), 
559–566. https://doi.org/10.1016/j.ijinfomgt.2009.10.002. 

Miles, A., & Brickley, D. (2005). SKOS core vocabulary specification (Online). Accessed 
23.07.19 https://www.w3.org/TR/swbp-skos-core-spec/. 

Morote, L.-F., Olcina, J., Rico, A.-M., & Hernández, M. (2019). Water management in 
urban sprawl typologies in the city of Alicante (southern Spain): New trends and 
perception after the economic crisis? Urban Science, 3(1). https://doi.org/10.3390/ 
urbansci3010007. 

Nebot, V., & Berlanga, R. (2012). Building data warehouses with semantic web data. 
Decision Support Systems, 52(4), 853–868. https://doi.org/10.1016/j. 
dss.2011.11.009 (1) Decision Support Systems for Logistics and Supply Chain 
Management. (2) Business Intelligence and the Web. 

Noy, N. F., & McGuinness, D. L. (2001). Dontology development 101: A guide to creating 
your first ontology, Tech. rep. Stanford University Knowledge Systems Laboratory. 
Technical Report KSL-01-05. http://protege.stanford.edu/publications/ontology_de 
velopment/ontology101-noy-mcguinness.html.  

Noy, N. F., McGuinness, D. L., et al. (2001). Ontology development 101: A guide to creating 
your first ontology. 

Ogiela, L., & Ogiela, M. R. (2014). Cognitive systems for intelligent business information 
management in cognitive economy. International Journal of Information Management, 
34(6), 751–760. https://doi.org/10.1016/j.ijinfomgt.2014.08.001. 

Parmenter, D. (2015). Key Performance Indicators: Developing, implementing, and using 
winning KPIs. New York, NY, USA: John Wiley & Sons, Inc.  

Popova, V., & Treur, J. (2005). A specification language for organisational performance 
indicators. In M. Ali, & F. Esposito (Eds.), Innovations in applied artificial intelligence 
(pp. 667–677). Berlin, Heidelberg: Springer Berlin Heidelberg.  

Prud, E., Seaborne, A., et al. (2006). Sparql query language for RDF. W3C 
Recommendation. 

Sell, D., Cabral, L., Motta, E., Domingue, J., & Pacheco, R. (2005). Adding semantics to 
business intelligence. 16th international workshop on database and expert systems 
applications (DEXA’05, 543–547. https://doi.org/10.1109/DEXA.2005.44. 

Silva Souza, V. E., Mazón, J.-N., Garrigós, I., Trujillo, J., & Mylopoulos, J. (2012). 
Monitoring strategic goals in data warehouses with awareness requirements. 
Proceedings of the 27th annual ACM symposium on applied computing, SAC’12 (pp. 
1075–1082). New York, NY, USA: ACM. https://doi.org/10.1145/ 
2245276.2231944. 

Simoni, G. D. (2018). How to use semantics to drive the business value of your data (Online). 
Accessed 30.01.19 https://www.gartner.com/doc/3894095/use-semantics 
-drive-business-value. 

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL- 
DL reasoner. Web Semantics: Science, Services and Agents on the WWW, 5(2), 51–53. 

Staab, S., & Studer, R. (2013). Handbook on ontologies. Springer Science & Business 
Media.  

Tenneson, C., & Brocklehurst, G. (2018). Digital business KPIs: Defining and measuring 
success for tech CEOs (Online). Accessed 30.01.19 https://www.gartner.com/doc/ 
3891236/digital-business-kpis-defining-measuring. 

Torres, R., & Sidorova, A. (2019). Reconceptualizing information quality as effective use 
in the context of business intelligence and analytics. International Journal of 
Information Management, 49, 316–329. https://doi.org/10.1016/j. 
ijinfomgt.2019.05.028. 
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