
On the Velocity Update in Multi-Objective
Particle Swarm Optimizers

Juan J. Durillo, Antonio J. Nebro, José Garcı́a-Nieto, and Enrique Alba

Dept. Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga,
Campus de Teatinos, 29071 Málaga, Spain
{durillo,antonio,jnieto,eat}@lcc.uma.es

Summary. Since its appearance, Particle Swarm Optimization (PSO) has become a very
popular technique for solving optimization problems because of both its simplicity and its fast
convergence properties. In the last few years there has been a variety of proposals for
extending it to handle with multiples objectives. Although many of them keep the same prop-
erties of the original algorithm, they face difficulties when tackling the optimization of some
multi-modal problems, i.e., those having more than one suboptimal front of solutions. Recent
studies have shown that this disadvantage could be related to the velocity of the particles:
uncontrolled high velocities may have no effect in particles movements. While many of the
contributions on the specialized literature have focused on the selection of the leaders of the
swarm, studies about different schemes for controlling the velocity of the particles are scarce
in the multi-objective domain. In this work, we study different mechanisms in order to
update the velocity of each particle with the idea of enhancing the search capabilities of
multi-objective PSO algorithms. Our experiments show that some modifications help to
over-coming the difficulties observed in previous proposals when dealing with hard
optimization problems.

3.1 Introduction

Particle Swarm Optimization (PSO) has become a popular algorithm due to its rel-
ative simplicity and competitive performance when solving a wide range of opti-
mization problems in the continuous domain [11]. A considerable number of these
problems has to optimize more than one objective function at the same time which
are in conflict with respect to each other, so many proposals of Multi-Objective
PSO (MOPSO) techniques have been developed [16]. In the survey presented in
[16], the authors considered that the main characteristics of all the existing
MOPSOs are the existence of an external archive of non-dominated solutions, the
selection strategy for non-dominated solutions as leaders for guiding the swarm,
the neighborhood topology, and the existence or not of a mutation operator. In this
chapter, our ap-proach is to study a different feature: the scheme for controlling the
velocity of the particles. This issue has been studied in single-objective
optimization [1, 2, 15, 18], and we are interested in investigating how it can affect
the search effectivity in MOPSOs.

In our previous research, we analyzed the performance of six representative
MOPSO metaheuristics in [8], concluding that a variant of the OMOPSO al-
gorithm [17] provided the best overall performance over a set of 21 benchmark
problems. OMOPSO also shown to be very fast in a comparison with other state-
of-the-art multi-objective metaheuristics [14]; however, we realized that OMOPSO
had difficulties when facing the solution of some multi-modal problems. We deeply
studied this issue in [8], finding that the velocity of the particles in MOPSOs can
become too high, and hence resulting in erratic movements towards the upper and
lower limits of the positions of the particles. This is an example of the so-called
swarm explosion [2], and we found out that it can be prevented by using a velocity
constriction mechanism [8].

Our motivation then is, taking OMOPSO as our baseline MOPSO algorithm, and
to study different velocity update schemes in order to have an insight of the potential
improvements in the search capacity they can lead to MOPSO metaheuristics. The
contributions of this chapter can be summarized as follows:

• We propose four velocity schemes to be applied to MOPSO algorithms.
• The resulting techniques are evaluated on a benchmark of 21 problems (those

comprising the ZDT [20], DTLZ [5], and WFG [10] problem families).
• Three quality indicators are used to assess the performance of the algorithms

(additive unary epsilon (I1
ε +) [13],spread (Δ) [4], and hypervolume (HV) [19]).

• We use a statistical analysis methodology to ensure the significance of the ob-
tained results.

The remainder of this chapter is organized as follows. Section 3.2 includes basic
background about PSO and MOPSO algorithms. Section 3.3 is aimed at describing
OMOPSO, the baseline approach considered, and the different velocity schemes
that we have applied, leading to four resulting versions of OMOPSO. Section 3.4 is
devoted to the experimentation, including the benchmark problems, the quality in-
dicators, the parameter setting, and the methodology adopted in the statistical tests.
In Section 3.5, we analyze the obtained results regarding the three used quality in-
dicators. The results are discussed in Section 3.6. Finally, Section 3.7 contains the
conclusions and some possible lines for future work.

3.2 PSO Background

In a PSO algorithm, each potential solution to the problem is called particle and the
population of solutions is called swarm. A basic PSO updates the particle xi at the
generation t with the formula:

xi(t) = xi(t −1)+ vi(t) (3.1)

where the factor vi(t) is known as velocity and is given by

vi(t) = χ [w · vi(t −1)+C1 · r1 · (xpi − xi)+C2 · r2 · (xgi − xi)] (3.2)

In this formula, xpi is the best solution that xi has viewed (pbest), xgi is the best
particle (gbest, also known as the leader) that the entire swarm has viewed, w is
the inertia weight of the particle and controls the trade-off between global and local
experience, r1 and r2 are two uniformly distributed random numbers in the range
[0,1], and the parameters C1 and C2 are specific parameters which control the effect
of the personal and global best particles. χ is a constriction coefficient introduced
to control the particle’s velocity [2].

Algorithm 3.1. Pseudocode of a general PSO algorithm.
1: initializeSwarm()
2: locateLeader()
3: generation = 0
4: while generation < maxGenerations do
5: for each particle do
6: updatePosition() // flight (Formulas 1 and 2)
7: evaluation()
8: updatePbest()
9: end for
10: updateLeader()
11: generation ++
12: end while

Algorithm 3.1 describes the pseudocode of a general single-objective PSO. The
algorithm starts by initializing the swarm (Line 1), which includes both the positions
and velocities of the particles. The corresponding pbest of each particle is initialized,
as well as the leader (Line 2). Then, during a maximum number of iterations, each
particle flies through the search space updating its position (Line 6). Then, it is
evaluated (Line 7), and its pbest is also calculated (Lines 6-8). At the end of each
iteration, the leader is updated.

As commented before, the leader is usually the best particle in the swarm (i.e.,
gbest). However, it can be a different particle depending on the social structure of
the swarm (i.e., the topology of the neighborhood of each particle) [12].

To apply a PSO algorithm in multi-objective optimization the previous scheme
has to be modified to cope with the fact that the solution of a problem with multiple
objectives is not a single one but a set of non-dominated solutions. Therefore, issues
that have to be considered now are [16]:

1. How to select the particles to be used as leaders?
2. How to retain the non-dominated solutions found during the search?
3. How to maintain diversity in the swarm in order to avoid convergence to single

solutions?

The pseudocode of a general MOPSO is included in Algorithm 3.2. After initialis-
ing the swarm (Line 1), the typical approach is to use an external archive to store
the leaders, which are taken from the non-dominated particles in the swarm. After
initializating the leaders archive (Line 2), some kind of quality measure has to be
calculated (Line 3) for all the leaders to select usually one leader for each particle of
the swarm. In the main loop of the algorithm, the flight of each particle is performed

after a leader has been selected (Lines 7-8) and, optionally, a mutation or turbulence
operator can be applied (Line 9); then, the particle is evaluated and its corresponding
pbest is updated (Lines 10-11). After each iteration, the set of leaders is updated and
the quality measure is calculated again (Lines 13-14). After the termination condi-
tion, the archive is returned as the result of the search. For further details about the
operations contained in the MOPSO pseudocode, please refer to [16].

Algorithm 3.2. Pseudocode of a general MOPSO algorithm.
1: initializeSwarm()
2: initializeLeadersArchive()
3: determineLeadersQuality()
4: generation = 0
5: while generation < maxGenerations do
6: for each particle do
7: selectLeader()
8: updatePosition() // flight (Formulas 1 and 2)
9: mutation()
10: evaluation()
11: updatePbest()
12: end for
13: updateLeadersArchive()
14: determineLeadersQuality()
15: generation ++
16: end while
17: returnArchive()

3.3 Velocity Schemes and Resulting Algorithms

In this section we describe the MOPSO variants we have developed for our study.
We start by giving details of OMOPSO, the baseline approach.

3.3.1 OMOPSO

As commented in the introduction, our base MOPSO algorithm is a variant of
OMOPSO (Optimized MOPSO), proposed by Reyes-Sierra and Coello Coello
in [17]. This algorithm is characterized by using the crowding distance of NSGA-
II to filter out leader solutions and the combination of two mutation operators to
accelerate the convergence of the swarm. The original OMOPSO algorithm makes
use of the concept of ε-dominance to limit the number of solutions produced by the
algorithm, but in our experiments we always discard this feature, being the leaders
archive the result of the execution of the technique.

The velocity scheme in OMOPSO, following Equation 3.2, is defined as follows:

• The inertia weight w is a uniformly distributed random number in the range
[0,1].

• The coefficients C1 and C2 are two uniformly distributed random numbers in the
range [1.5,2.0].

• The constriction coefficient χ takes the value 1.0.

In addition, we introduce a mechanism in such a way that the accumulated veloc-
ity of each variable j (in each particle) is further bounded by means of the following
velocity constriction equation:

vi, j(t) =

⎧
⎪⎨

⎪⎩

delta j if vi, j(t) > delta j

−delta j if vi, j(t) ≤−delta j

vi, j(t) otherwise

(3.3)

where

delta j =
(upper limit j − lower limit j)

2
(3.4)

After applying Equation 3.1, OMOPSO checks whether the resulting positions are
out of the bounds of the variables of the problem. In that case, the positions are
assigned the corresponding upper or lower bound value; additionally, the direction
of the velocity is reversed by multiplying it by −1.0.

Finally, OMOPSO applies a combination of uniform and non-uniform mutation
to the particle swarm (uniform mutation to the 30% of the swarm, non-uniform to
other 30%, and no mutation to the rest of the particles).

Once we have defined our base MOPSO algorithm, we present next the four
velocity schemes which will lead to the same number of algorithms. Each scheme
affects to each different component of Equation 3.2: the constriction coefficient χ ,
the inertia weigth w, the coefficients C1 and C2, and the component vi(t − 1) (the
current velocity).

3.3.2 SMPSO

Our previous research in [8] indicated that OMOPSO had difficulties when solving
some multi-modal problems (e.g., ZDT4, DTLZ1, and DTLZ3). Our analysis of this
issue showed that including a constriction coefficient similar to the one proposed
in [2] the resulting algorithm could successfully solve these problems. We called
this algorithm SMPSO (Speed contrained Multi-objective PSO). The constriction
coeffient applied in SMPSO is defined as follows:

χ =
2

2−ϕ −
√

ϕ2 −4ϕ
(3.5)

where

ϕ =

{
C1 +C2 if C1 +C2 > 4

4 if C1 +C2 ≤ 4
(3.6)

Besides using this velocity scheme, the coeffients C1 and C2 are random numbers in
the range [1.5,2.5]; the range used in OMOPSO, [1.5,2.0] would lead Equation 3.6
to always return a value of 4.

3.3.3 MOPSO TVAC

Ratnaweera et al. proposed in [15] the use of Time-Varying Acceleration Coefficients
(TVAC) with the idea of enhancing the search in the early part of the optimization
and to encourage the particles to converge toward the global optima at the end of the
search process. This can be carried out by linearly changing the coefficients C1 and
C2 through the time (number of iterations). They suggest the following definitions
of C1 and C2:

C1 = (C1 f −C1i)
iter

MAXITR
+C1i (3.7)

C2 = (C2 f −C2i)
iter

MAXITR
+C2i (3.8)

where C1i, C1 f , C2i, and C2 f are constants, iter is the current iteration number and
MAXITR is the maximum number of iterations of the PSO algorithm. As suggested
in [15], we use the values of C1 and C2 changing from 2.5 to 0.5 and from 0.5 to 2.5,
respectively. The inertia weight w is not considered, so it takes the value 1.0.

The resulting algorithm after applying this velocity scheme to OMOPSO is
named MOPSO TVAC. In [15], a mutation operator is introduced, but we have omit-
ted it due to the fact that OMOPSO already includes its own mutation mechanism.

3.3.4 MOHPSO

The self-Organizing Hierarchical Particle Swarm Optimization optimizer (HPSO)
was also proposed in [15]. The authors of this work observed that in the absence of
the previous velocity term, particles rapidly rush to a local optimum and stagnate due
to the lack of momentum. To cope this issue, they proposed a reinitialization scheme
proportional to the maximum allowable velocity. Taking these ideas, the MOHPSO
algorithm is characterized by the following equation defining the velocity:

vi(t) = C1 · r1 · (xpi − xi)+C2 · r2 · (xgi − xi) (3.9)

If a given velocity element vi, j(t) gets 0, then it is reinitialized according to:

vi, j(t) =

{
rand1 ·delta j i f rand2 < 0.5

rand3 ·−delta j i f rand2 >= 0.5
(3.10)

where rand1, rand2, and rand3 are separately generated uniformly distributed ran-
dom numbers in [0,1]. The limit delta j results from Equation 3.4.

3.3.5 MOPSO TVIW

The last variant we have considered is based on the Time-Varying Inertia Weight
(TVIW) proposed by Shi and Eberhart in [18]. They found that the performance of
a PSO method could improve by linearly varying the inertia weigh w. We adopt this

scheme in OMOPSO and the result is MOPSO TVIW. The inertia weight is defined
as follows:

w = (w1 −w2)
MAXITR− iter

MAXITR
+ w2 (3.11)

where w1 and w2 are the initial and final values of the inertia weight, respectively,
iter is the current iteration number, and MAXITR is the maximum number of iter-
ations of the PSO algorithm. The study carried out in [18] yielded that the most
promising results were obtained by varying w from 0.9 (w1) at the beginning of the
search to 0.4 (w2) at the end for most of the studied problems; here, we use the same
values of w1 and w2.

3.4 Experimentation

In this section we explain the benchmark problems used to evaluate the algorithms,
the quality indicators used to assess their performance, the parameter settings used,
and the statistical tests carried out.

3.4.1 Benchmark Problems

Here, we describe the different sets of problems addressed in this work. These prob-
lems are well-known, and they have been used in many studies in this area.

The problems families are the following:

• Zitzler-Deb-Thiele (ZDT): This benchmark is composed of five bi-objective
problems [20]: ZDT1 (convex), ZDT2 (nonconvex), ZDT3 (nonconvex, dis-
connected), ZDT4 (convex, multimodal), and ZDT6 (nonconvex, nonuniformly
spaced). These problems are scalable according to the number of decision
variables.

• Deb-Thiele-Laumanns-Zitzler (DTLZ): The problems of this family are scal-
able both in the number of variables and objectives [5]. It is composed of the
following seven problems: DTLZ1 (linear), DTLZ2-4 (nonconvex), DTLZ5-6
(degenerate), and DTLZ7 (disconnected).

• Walking-Fish-Group (WFG): This set is composed of nine problems, WFG1
- WFG9, that have been constructed using the WFG toolkit [10]. The properties
of these problems are detailed in Table 3.1. They all are scalable both in the
number of variables and the number of objectives.

In this work we have used the bi-objective formulation of the DTLZ and WFG
problem families. A total of 21 MOPs are used to evaluate the six metaheuristics.

3.4.2 Quality Indicators

To assess the search capabilities of multi-objective metaheuristics on the test prob-
lems, two different issues are normally taken into account: the distance between the

Table 3.1. Properties of the MOPs created using the WFG toolkit

Problem Separability Modality Bias Geometry
WFG1 separable uni polynomial, flat convex, mixed
WFG2 non-separable f1 uni, f2 multi no bias convex, disconnected
WFG3 non-separable uni no bias linear, degenerate
WFG4 non-separable multi no bias concave
WFG5 separable deceptive no bias concave
WFG6 non-separable uni no bias concave
WFG7 separable uni parameter dependent concave
WFG8 non-separable uni parameter dependent concave
WFG9 non-separable multi, deceptive parameter dependent concave

solution set generated by the proposed algorithm to the optimal Pareto front should
be minimized (convergence) and the spread of solutions should be maximized in
order to obtain as smooth and uniform a distribution of solutions as possible (diver-
sity). To measure these two criteria it is necessary to know the exact location of the
optimal Pareto front; the benchmark problems used in this work have known Pareto
fronts.

The quality indicators can be classified into three categories depending on
whether they evaluate the closeness to the Pareto front, the diversity in the solu-
tions obtained, or both [3]. We have adopted one indicator of each type.

• Unary Epsilon Indicator (I1
ε+). This indicator was proposed by Zitzler et

al. [21] and makes direct use of the principle of Pareto-dominance. Given an
approximation set, A, of a problem, the I1

ε+ indicator is a measure of the small-
est distance one would need to translate every point in A so that it dominates the
optimal Pareto front of the problem. More formally, given z1 = (z1

1, ...,z
1
n) and

z2 = (z2
1, ...,z

2
n), where n is the number of objectives:

I1
ε+(A) = in fε∈R

{∀z2 ∈ Pareto Optimal Front ∃z1 ∈ A : z1 ≺ε z2} (3.12)

where, z1 ≺ε z2 if and only if ∀1 ≤ i ≤ n : z1
i < ε + z2

i .
• Spread (Δ). The Spread indicator [4] measures the extent of spread achieved

among the obtained solutions. This indicator (illustrated in Fig. 3.1) is defined
as:

Δ =
d f + dl + ∑N−1

i=1

∣
∣di − d̄

∣
∣

d f + dl +(N −1)d̄
, (3.13)

where di is the Euclidean distance between consecutive solutions, d̄ is the mean
of these distances, and d f and dl are the Euclidean distances to the extreme
(bounding) solutions of the optimal Pareto front in the objective space (see [4]
for the details). Δ takes a value of zero for an ideal distribution, pointing out a

Fig. 3.1. Calculating the Spread quality indicator

f1

f2

Pa r e to-o p tim a l front

W

A

B

C

1

0

Fig. 3.2. The hypervolume enclosed by the non-dominated solutions

perfect spread out of the solutions in the Pareto front. We apply this indicator
after a normalization of the objective function values.

• Hypervolume (HV). The HV indicator calculates the volume, in the objective
space, covered by members of a non-dominated set of solutions Q for prob-
lems where all objectives are to be minimized [19]. In the example depicted
in Fig. 3.2, the HV is the region enclosed within the discontinuous line, where
Q = {A,B,C} (in the figure, the grey area represents the objective space that
has been explored). Mathematically, for each solution i ∈ Q, a hypercube voli is
constructed with a reference point W and the solution i as the diagonal corners
of the hypercube. The reference point can be found simply by constructing a
vector of worst objective function values. Thereafter, a union of all hypercubes
is found and its hypervolume (HV) is calculated:

HV = volume

⎛

⎝
|Q|⋃

i=1

voli

⎞

⎠ . (3.14)

Normality

(Kolmogorov-Smirnov)

Variance Homogeneity

(Levene)

Kruskal-Wallis Welch ANOVA

No Yes

YesNo

Fig. 3.3. Statistical analysis performed in this work

Algorithms with larger HV values are desirable. Since this indicator is not free
from arbitrary scaling of objectives, we have evaluated the metric by using nor-
malized objective function values.

3.4.3 Parameter Settings

Given that we are studying variants of a same technique, the main parameters take
the same values in all of them. All the MOPSOs studied here were implemented
using the Java-based framework jMetal [7] for solving multi-objective optimization
problems1. These algorithms have been configured with swarms of 100 particles and
the archive size is also 100. The specific parameters of each algorithm are specified
in previous sections.

The stopping criterion is to reach 25,000 function evaluations in the experiments
performed for assessing the quality of the obtained solution sets.

3.4.4 Statistical Tests

Since we are dealing with stochastic algorithms we have made 100 independent
runs of each experiment, and we show the median, x̃, and interquartile range, IQR,
as measures of location (or central tendency) and statistical dispersion, respectively.
The following statistical analysis has been performed throughout this work [6].
Firstly, a Kolmogorov-Smirnov test was performed in order to check whether the
values of the results follow a normal (gaussian) distribution or not. If the distri-
bution is normal, the Levene test checks for the homogeneity of the variances. If
samples have equal variance (positive Levene test), an ANOVA test is done; other-
wise a Welch test is performed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the algorithms. Fig. 3.3 sum-
marizes the statistical analysis.

The null hypothesis is that the means of the obtained results are equivalents. We
always consider in this work a confidence level of 95% (i.e., significance level of 5%
or p-value under 0.05) in the statistical tests, which means that the differences are

1 jMetal is freely available to download at the following URL:
http://neo.lcc.uma.es/metal/

unlikely to have occurred by chance with a probability of 95%. Then, if the given
test obtains confidence values lower than 0.05 (p-value< 0.05) the null hypothesis
is rejected and the compared results are significantly different. Successful tests (null
hypotheses rejected) are marked with ‘+’ symbols in the last column in all the ta-
bles containing the results; conversely, ‘-’ means that the null hypothesis cannot be
rejected, and hence no statistical confidence was found (p-value > 0.05). For the
sake of better understanding, the best result for each problem has a gray colored
background and the second best one has a clearer gray background.

To further analyze the results statistically, in some cases, we have also included a
post-hoc testing phase which allows for a pair-wise comparison of samples [9]. We
have used the Wilcoxon test for that purpose.

3.5 Analysis of the Obtained Results

Let us start by analyzing the values obtained after applying the I1
ε+ indicator, which

are included in Table 3.2. At a first glance, we observe that there is not a clear win-
ner algorithm taking into account the whole 21 benchmark problems. If we consider
each problem family, on the one hand, we find that SMPSO and MOPSO TIVW
provide the lowest (best) indicator values on the ZDT problems, but they are the
worst techniques on the WFG benchmark; on the other hand, the opposite happens
with OMOPSO and MOHPSO: they achieve the lowest values on the WFG bench-
mark, but not a best nor a second best indicator value on the ZDT problems. Regard-
ing the seven problems composing the DTLZ family, the best results are distributed
among the five MOPSOs. All the results in Table 3.2 have statistical confidence,
as it can be seen in the last column, where all the cells have a ‘+’ symbol. Let us

Table 3.2. Median and interquartile range of the I1
ε+ quality indicator

OMOPSO SMPSO MOPSO TVAC MOHPSO MOPSO TVIW
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 6.01e−034.7e−04 5.63e−033.0e−04 5.69e−033.7e−04 6.72e−031.4e−03 5.61e−032.9e−04 +
ZDT2 5.68e−033.7e−04 5.52e−032.4e−04 5.79e−032.9e−04 5.91e−035.4e−04 5.42e−032.3e−04 +
ZDT3 6.73e−033.0e−03 5.61e−039.1e−04 5.44e−031.4e−03 2.63e−023.8e−02 5.84e−031.1e−03 +
ZDT4 6.33e+005.3e+00 6.44e−036.7e−04 7.48e−032.3e−03 3.02e+002.2e+00 8.69e−031.9e−01 +
ZDT6 4.87e−035.1e−04 4.74e−035.1e−04 5.99e−031.5e−03 5.37e−036.4e−04 4.83e−033.6e−04 +
DTLZ1 3.12e+006.5e+00 3.06e−032.7e−04 3.56e−031.1e−03 1.84e+002.1e+00 2.50e−017.5e−01 +
DTLZ2 5.21e−032.3e−04 5.28e−033.3e−04 6.89e−031.3e−03 5.37e−033.3e−04 6.23e−035.7e−04 +
DTLZ3 2.99e+015.9e+01 5.65e−038.8e−04 1.00e−027.0e−01 2.33e+011.9e+01 4.89e+002.2e+01 +
DTLZ4 5.52e−034.2e−04 5.50e−033.7e−04 5.99e−022.5e−02 5.45e−034.9e−04 7.45e−031.1e−03 +
DTLZ5 5.19e−032.6e−04 5.33e−034.2e−04 6.79e−031.2e−03 5.43e−033.7e−04 6.11e−036.0e−04 +
DTLZ6 5.34e−034.4e−04 5.15e−033.8e−04 5.06e−034.4e−04 9.03e−034.6e−03 5.09e−033.2e−04 +
DTLZ7 5.63e−036.8e−04 5.24e−033.7e−04 5.12e−033.9e−04 5.68e−037.7e−04 5.13e−032.8e−04 +
WFG1 1.16e+001.4e−01 1.16e+006.0e−02 1.40e+003.6e−02 7.65e−011.2e−01 1.33e+004.3e−02 +
WFG2 1.23e−022.9e−03 1.78e−026.1e−03 1.04e−013.0e−02 1.56e−022.7e−02 1.76e−024.6e−03 +
WFG3 2.00e+006.0e−04 2.00e+001.4e−03 2.07e+003.1e−02 2.00e+001.4e−03 2.00e+001.3e−03 +
WFG4 4.34e−025.2e−03 5.50e−025.7e−03 7.18e−027.7e−03 2.83e−028.2e−03 6.33e−027.1e−03 +
WFG5 6.36e−025.1e−04 6.38e−021.1e−03 6.54e−022.7e−02 6.35e−025.6e−04 6.37e−027.9e−04 +
WFG6 1.47e−029.4e−04 1.83e−022.0e−03 9.03e−021.9e−02 1.48e−021.1e−03 1.89e−021.7e−03 +
WFG7 1.54e−026.9e−04 1.94e−022.0e−03 1.19e−011.6e−02 1.54e−027.2e−04 1.96e−021.9e−03 +
WFG8 5.11e−012.4e−03 4.09e−016.7e−02 3.88e−018.0e−02 5.07e−012.5e−03 5.13e−015.3e−02 +
WFG9 2.58e−022.6e−03 2.83e−022.6e−03 4.80e−021.2e−02 2.17e−024.2e−03 2.89e−022.6e−03 +

Table 3.3. Median and interquartile range of the Δ quality indicator

OMOPSO SMPSO MOPSO TVAC MOHPSO MOPSO TVIW
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 7.98e−021.4e−02 7.66e−021.4e−02 1.01e−011.3e−02 1.10e−012.7e−02 8.39e−021.6e−02 +
ZDT2 7.46e−021.6e−02 7.33e−021.6e−02 8.71e−021.3e−02 9.01e−021.9e−02 7.09e−022.0e−02 +
ZDT3 7.13e−011.0e−02 7.10e−017.2e−03 7.81e−017.1e−02 7.71e−015.9e−02 7.12e−019.5e−03 +
ZDT4 8.69e−015.9e−02 9.81e−021.4e−02 2.05e−013.6e−02 9.02e−011.6e−01 1.29e−013.4e−01 +
ZDT6 2.90e−011.1e+00 2.83e−011.2e+00 1.33e+005.7e−02 1.29e+004.3e−02 1.11e+001.2e+00 +
DTLZ1 8.30e−011.8e−01 7.71e−021.4e−02 1.62e−012.4e−02 8.01e−013.7e−01 6.00e−016.2e−01 +
DTLZ2 1.29e−011.5e−02 1.32e−011.7e−02 2.29e−015.1e−02 1.30e−011.4e−02 1.68e−012.2e−02 +
DTLZ3 8.06e−012.2e−01 1.43e−013.5e−02 3.06e−012.7e−01 8.83e−011.7e−01 6.88e−012.9e−01 +
DTLZ4 1.28e−011.9e−02 1.26e−011.7e−02 7.78e−011.2e−01 1.23e−012.0e−02 2.02e−013.0e−02 +
DTLZ5 1.32e−011.6e−02 1.34e−011.7e−02 2.34e−013.6e−02 1.29e−011.6e−02 1.66e−012.0e−02 +
DTLZ6 1.18e−012.3e−02 1.11e−012.2e−02 1.10e−012.0e−02 2.72e−011.3e−01 1.09e−011.9e−02 +
DTLZ7 5.20e−013.7e−03 5.19e−012.2e−03 5.21e−013.1e−03 5.20e−012.5e−03 5.19e−018.3e−04 +
WFG1 1.15e+009.4e−02 1.01e+005.1e−02 1.14e+004.6e−02 9.69e−012.4e−01 1.11e+003.5e−02 +
WFG2 7.76e−011.7e−02 8.27e−014.3e−02 8.59e−018.9e−02 7.91e−018.6e−02 8.36e−014.5e−02 +
WFG3 3.67e−017.0e−03 3.85e−016.3e−03 6.36e−013.6e−02 3.68e−017.3e−03 3.89e−017.4e−03 +
WFG4 3.98e−014.4e−02 4.88e−015.8e−02 4.77e−017.4e−02 2.06e−015.3e−02 5.29e−015.3e−02 +
WFG5 1.29e−011.9e−02 1.44e−011.6e−02 1.63e−013.8e−02 1.33e−012.0e−02 1.45e−011.8e−02 +
WFG6 1.24e−011.6e−02 1.62e−012.2e−02 6.23e−016.3e−02 1.24e−011.6e−02 1.74e−012.8e−02 +
WFG7 1.22e−011.9e−02 1.60e−011.8e−02 6.27e−016.9e−02 1.30e−011.6e−02 1.66e−011.9e−02 +
WFG8 5.69e−014.6e−02 7.48e−015.6e−02 7.78e−017.2e−02 5.49e−015.2e−02 7.67e−019.9e−02 +
WFG9 1.99e−011.7e−02 2.17e−012.8e−02 3.43e−015.7e−02 1.69e−012.0e−02 2.26e−012.5e−02 +

start by analyzing the values obtained after applying the I1
ε+) indicator, which are

included in Table 3.2. At a first glance, we observe that there is not a clear winner al-
gorithm taking into account the whole 21 benchmark problems. If we consider each
problema family, on the one hand we find that SMPSO and MOPSO TIVW pro-
vide the lowest (best) indicator values on the ZDT problems, but they are the worst
techniques on the WFG benchmark; on the other hand, the opposite happens with
OMOPSO and MOHPSO: they achieve the lowest values on the WFG benchmark,
but not a best nor a second best indicator value on the ZDT problems. Regarding the
seven DTLZ family, the best results are distributed among the five MOPSOs. All the
results in Table 3.2 have statistical confidence, as it can be seen in the last column,
where all the cells have a ‘+’ symbol.

The values obtained after applying the Δ quality indicator are shown in Table 3.3,
where the lower the value the better. The results show that, as happened with the
previous analyzed indicator, SMPSO and MOPSO TVIW are the best algorithms in
the ZDT benchmark, and they are the worst algorithms in the WFG family, in which
OMOPSO and MOHPSO has obtained the best values. As to the DTLZ benchmark,
SMPSO has been the best algorithm in this indicator: it has obtained the best and
second best value in, respectively, two and three out of the seven DTLZ problems.
OMOPSO and MOPSO TVIW have also obtained the best value in two problems.
Statistical confidence has been found in all the comparisons.

Finally, we pay attention to the results obtained after applying the HV indicator
(Table 3.4). Higher values of HV mean better results. In this case, MOPSO TVAC
has been clearly the best algorithm in the ZDT family: it has obtained the highest
(best) value in four out of the problems composing this benchmark. Regarding the
WFG family, the results have confirmed the conclusions obtained for this family in
the two previous analyzed indicators: OMOPSO and MOHPSO have obtained the

Table 3.4. Median and interquartile range of the HV quality indicator

OMOPSO SMPSO MOPSO TVAC MOHPSO MOPSO TVIW
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 6.61e−014.5e−04 6.62e−011.6e−04 6.62e−012.7e−05 6.61e−019.0e−04 6.62e−011.4e−04 +
ZDT2 3.28e−013.3e−04 3.29e−019.3e−05 3.29e−012.8e−05 3.28e−013.7e−04 3.29e−015.3e−05 +
ZDT3 5.15e−019.2e−04 5.15e−014.1e−04 5.16e−013.0e−04 5.12e−012.9e−03 5.15e−014.7e−04 +
ZDT4 0.00e+000.0e+00 6.61e−012.8e−04 6.62e−011.7e−04 0.00e+000.0e+00 6.59e−012.4e−01 +
ZDT6 4.01e−011.3e−04 4.01e−011.3e−04 4.01e−012.3e−04 4.01e−011.5e−04 4.01e−019.3e−05 +
DTLZ1 0.00e+000.0e+00 4.94e−012.5e−04 4.95e−019.5e−05 0.00e+000.0e+00 2.50e−014.9e−01 +
DTLZ2 2.12e−011.8e−04 2.12e−011.6e−04 2.12e−014.1e−04 2.12e−015.0e−04 2.11e−012.9e−04 +
DTLZ3 0.00e+000.0e+00 2.12e−013.8e−04 2.12e−011.3e−01 0.00e+000.0e+00 0.00e+008.6e−02 +
DTLZ4 2.10e−012.8e−04 2.10e−011.6e−04 1.79e−011.5e−02 2.10e−014.5e−04 2.08e−019.0e−04 +
DTLZ5 2.12e−011.7e−04 2.12e−011.8e−04 2.12e−013.7e−04 2.11e−015.0e−04 2.11e−013.0e−04 +
DTLZ6 2.12e−019.7e−05 2.12e−018.1e−05 2.12e−013.3e−05 2.12e−014.4e−04 2.12e−013.5e−05 +
DTLZ7 3.34e−012.6e−04 3.34e−019.1e−05 3.34e−011.5e−05 3.34e−011.9e−04 3.34e−015.5e−05 +
WFG1 1.46e−016.8e−02 1.14e−015.4e−03 8.86e−025.1e−03 2.62e−014.7e−02 9.98e−024.7e−03 +
WFG2 5.63e−017.7e−04 5.60e−011.6e−03 5.28e−016.6e−03 5.62e−012.1e−03 5.61e−018.0e−04 +
WFG3 4.42e−011.4e−04 4.41e−013.0e−04 4.14e−013.3e−03 4.41e−012.5e−04 4.41e−012.7e−04 +
WFG4 2.06e−011.8e−03 2.01e−012.2e−03 1.91e−019.2e−04 2.13e−013.3e−03 1.97e−011.7e−03 +
WFG5 1.96e−016.2e−05 1.96e−017.6e−05 1.96e−017.9e−05 1.96e−016.2e−05 1.96e−017.4e−05 +
WFG6 2.10e−012.2e−04 2.08e−015.4e−04 1.86e−015.1e−03 2.10e−013.7e−04 2.08e−014.9e−04 +
WFG7 2.10e−011.6e−04 2.09e−013.2e−04 1.73e−014.2e−03 2.10e−013.7e−04 2.09e−014.1e−04 +
WFG8 1.44e−011.0e−03 1.47e−011.7e−03 1.26e−016.8e−03 1.50e−011.2e−03 1.40e−012.3e−03 +
WFG9 2.36e−016.8e−04 2.35e−016.3e−04 2.26e−018.7e−04 2.38e−011.5e−03 2.34e−014.4e−04 +

best or second best value in most of the problems of this benchmark. Meanwhile,
SMPSO is the best choice in the DTLZ problems: it has obtained the best value
in three problems, and the second best value in another two. MOPSO TVAC has
obtained similar figures in this family: two best and two second best values. As
in the previous cases, we have found statistical confidence in all the experiments
carried out.

We summarize in Table 3.5 the comparison of OMOPSO against the different
alternatives implemented. In this table, each cell represents the result of the compar-
ison between OMOPSO and another algorithm in the quality indicator represented
by the column which contains the cell. In this comparison using the Wilcoxon test,
a symbol “�” means that the corresponding algorithm is significantly better than
OMOPSO in that quality indicator, a symbol “�” means that OMOPSO is better,
and a symbol “–” means that no statistical differences were found. We see that
SMPSO, MOPSO TVAC, and MOPSO TVIW outperform the results of OMOPSO
in most of the problems belonging to the ZDT familiy. SMPSO is the only technique
which clearly improves OMOPSO in the DTLZ benchmark, while MOHPSO is the
only algorithm yielding competitive results compared with OMOPSO in the WFG
family.

Figure 3.4 shows some examples of fronts obtained by the different approaches
when solving the ZDT4 problem. We see that OMOPSO, and MOHPSO are unable
to converge to the optimal Pareto front on ZDT4. The rest of evaluated algorithms
has obtained similar results: they converge to the optimal Pareto front and they have
obtained a uniform distribution of solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

f
0

f 1

ZDT4

Optimal Pareto Front
OMOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
0

f 1

ZDT4

Optimal Pareto Front
SMPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f
0

f 1

ZDT4

Optimal Pareto Front
MOPSO_TVAC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

f
0

f 1

ZDT4

Optimal Pareto Front
MOHPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
0

f 1

ZDT4

Optimal Pareto Front
MOPSO_TVIW

Fig. 3.4. Pareto fronts obtained by the different approaches when solving the ZDT4 problem.
From top to bottom: OMOPSO, SMPSO, MOPSO TVAC, MOHPSO, MOPSO TVIW.

Table 3.5. OMOPSO vs other Approaches

Problem SMPSO MOPSO TVAC MOHPSO MOPSO TVIW
I1
ε+ Δ HV I1

ε+ Δ HV I1
ε+ Δ HV I1

ε+ Δ HV
ZDT1 � – � � � � � � � � � �
ZDT2 � – � – � � � � � � – �
ZDT3 � � � � � � � � � � – �
ZDT4 � � � � � � � – – � � �
ZDT6 – – � � � � � � � – � �
DTLZ1 � � � � � � � – – � � �
DTLZ2 � � � � � � � – � � � �
DTLZ3 � � � � � � � � � � � �
DTLZ4 – – � � � � – – � � � �
DTLZ5 � � � � � � � – � � � �
DTLZ6 � � � � � � � � � � � �
DTLZ7 � � � � � � – – � � � �
WFG1 – � � � – � � � � � � �
WFG2 � � � � � � � � � � � �
WFG3 � � � � � � � – � � � �
WFG4 � � � � � � � � � � � �
WFG5 � � � � � � – – � – � �
WFG6 � � � � � � – – � � � �
WFG7 � � � � � � – � � � � �
WFG8 � � � � � � � � � � � �
WFG9 � � � � � � � � � � � �

3.6 Discussion

In the previous section we have seen that there is not an algorithm which can be
considered the best one in all the evaluated problems. We have observed that there
are some alternatives which are specially suited for solving one or two problem
families, but they fail when they are evaluated using other benchmarks. The arising
question is whether it could be possible to combine the features of different MOP-
SOs, each of them standing out in a concrete problem family, in order to combine
the better characteristic of them into a unique MOPSO able of outperforming the
others in most of the problems.

Taking a look to Table 3.5, we see that SMPSO has improved OMOPSO in a
higher number of cases than the other approaches in the problems belonging to
the ZDT and DTLZ families, while MOHPSO obtains remarkable figures in the
WFG test suite. Thus, the ideal algorithm should perform like SMPSO on the ZDT
and DTLZ problems, and like MOHPSO in the WFG family. As both algorithms
are based in different ideas, we have combined them to propose a new algorithm:
SMHPSO.

To evaluate the performance of SMHPSO, the natural approach is to compare it
against SMPSO and MHPSO. Table 3.6 summarizes the comparison between SMH-
PSO, SMPSO, and MOHPSO. As in Table 3.5, we have also used the Wilcoxon test
to check the statistical significance of the results. Here, a symbol “�” means that the

Table 3.6. SMHPSO vs SMPSO vs MOHPSO

Problem SMPSO MOHPSO
I1
ε+ Δ HV I1

ε+ Δ HV
ZDT1 � � � � � �
ZDT2 � � � � � �
ZDT3 � � � � � �
ZDT4 � – � � � �
ZDT6 � � � � – �

DTLZ1 – � � � � �
DTLZ2 – – – � � �
DTLZ3 – – � � � �
DTLZ4 – – – – – �
DTLZ5 – – – � � �
DTLZ6 � � � � � �
DTLZ7 � � � � � �
WFG1 � � � � � �
WFG2 � � � � � �
WFG3 – � � � � �
WFG4 � � � � � �
WFG5 � � – � � –
WFG6 � – � � � �
WFG7 � – � � � �
WFG8 � � � � � –
WFG9 � – � � � �

corresponding algorithm is significantly better than SMHPSO in the indicator spec-
ified by the column containing that symbol, a symbol “�” means that SMHPSO is
perform better, and a symbol “–” means that no statistical differences were found.

The results in Table 3.6 indicate that SMHPSO outperforms SMPSO in the WFG
family and, in a similar way, it improves the values obtained by MOHPSO also in
the DTLZ problems. Thus, we can state that SMHPSO has improved the results of
SMPSO and MOHPSO in those problems in which these two algorithms encounter
difficulties, but it has not been able to improve the results in those problems in which
SMPSO and MOHPSO are the best algorithms.

This leads us to propose a research line, related to investigate how to use the proper
velocity update scheme in order to design a MOPSO able of improve the performance
of those studied in this chapter. Besides analyzing other update strategies (e.g., those
proposed in [1]), finding out hybrid approaches as well as designing adaptative mech-
anisms to vary the update scheme during the search are promising ideas.

3.7 Conclusions and Future Work

In this chapter we have studied the effect of applying different velocity schemes
to OMOPSO, a multi-objective PSO algorithm which has proven to be competi-
tive against a set of state-of-the-art multi-objective optimizers in previous works.

Concretely, we have developed and evaluated four alternatives called SMPSO,
MOPSO TVAC, MOHPSO, and MOPSO TVIW, each of them characterized by
modifying a different component of the formula defining the velocity scheme in
a PSO. As bechmark problems, we have used 21 instances corresponding to the
well-known ZDT, DTLZ, and WFG test suites.

The obtained results have shown that, in the context of the problems, the qual-
ity indicators, and the parameter settings considered, SMPSO, MOPSO TVAC, and
MOPSO TVIW improves the results obtained by OMOPSO in the ZDT and DTLZ
families, whereas MOHPSO is well suited for solving the problems composing the
WFG benchmark. We have also carried out a first attempt to hybridize two of the
most promising MOPSOs trying to combine their search habilities but, although the
results are promising, it is a matter of further research.

Other future research topics in this line are related to study how the velocity
update scheme may affect the MOPSOs concerning issues such as their speed to
converge faster to the true Pareto front, or their ability to solve scalable problems in
the number of variables and/or objectives.

Acknowledgement. Authors acknowledge funds from the Spanish Ministry of Sciences and
Innovation European FEDER under contract TIN2008-06491-C04-01 (M* project, avail-
able at http://mstar.lcc.uma.es) and CICE, Junta de Andalucı́a under contract
P07-TIC-03044 (DIRICOM project, http://diricom.lcc.uma.es). Juan J. Durillo
is supported by grant AP-2006-003349 from the Spanish Ministry of Education and Science.
José Garcı́a-Nieto is supported by grant BES-2009-018767 from the Spanish Ministry of
Sciences and Innovation.

References

1. Bui, L., Soliman, O., Abbass, H.: A modified strategy for the constriction factor in par-
ticle swarm optimization. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007.
LNCS (LNAI), vol. 4828, pp. 333–344. Springer, Heidelberg (2007)

2. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1),
58–73 (2002)

3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &
Sons, Chichester (2001)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary
Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolution-
ary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145.
Springer, USA (2005)

6. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

7. Durillo, J., Nebro, A., Luna, F., Dorronsoro, B., Alba, E.: jMetal: a Java Framework for
Developing Multi-objective Optimization Metaheuristics. Tech. Rep. ITI-2006-10, De-
partamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I.
Informática, Campus de Teatinos (2006)

8. Durillo, J., Garcı́a-Nieto, J., Nebro, A., Coello Coello, C., Luna, F., Alba, E.: Multi-
objective particle swarm optimizers: An experimental comparison. Accepted for publi-
cation in EMO 2009 (2009)

9. Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. Wiley, Chichester
(1987)

10. Huband, S., Barone, L., While, R.L., Hingston, P.: A scalable multi-objective test prob-
lem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005.
LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005)

11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE Interna-
tional Conference on Neural Networks, pp. 1942–1948 (1995)

12. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San
Francisco (2001)

13. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. Tech. Rep. 214, Computer Engineering and Net-
works Laboratory (TIK), ETH Zurich (2006)

14. Nebro, A.J., Durillo, J.J., Coello Coello, C., Luna, F., Alba, E.: A study of convergence
speed in multi-objective metaheuristics. In: Rudolph, G., Jansen, T., Lucas, S., Poloni,
C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 763–772. Springer, Heidelberg
(2008)

15. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. International Journal of Computa-
tional Intelligence Research 8(3), 240–255 (2004)

16. Reyes-Sierra, M., Coello Coello, C.: Multi-Objective Particle Swarm Optimizers: A
Survey of the State-of-the-Art. International Journal of Computational Intelligence Re-
search 2(3), 287–308 (2006)

17. Reyes-Sierra, M., Coello Coello, C.A.: Improving PSO-Based Multi-objective Optimiza-
tion Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Hei-
delberg (2005)

18. Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceedings
of the 1999 Congress on Evolutionary Computation, 1999. CEC 1999, pp. 1945–1950
(1999)

19. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computa-
tion 3(4), 257–271 (1999)

20. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms:
Empirical results. IEEE Transactions on Evolutionary Computation 8(2), 173–195
(2000)

21. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.G.: Performance as-
sessment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation 7, 117–132 (2003)

	On the Velocity Update in Multi-Objective Particle Swarm Optimizers
	Introduction
	PSO Background
	Velocity Schemes and Resulting Algorithms
	OMOPSO
	SMPSO
	MOPSO_TVAC
	MOHPSO
	MOPSO_TVIW

	Experimentation
	Benchmark Problems
	Quality Indicators
	Parameter Settings
	Statistical Tests

	Analysis of the Obtained Results
	Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

