
On the design of a framework integrating an optimization engine with
streaming technologies

Cristóbal Barba-González ∗, Antonio J. Nebro, Antonio Benítez-Hidalgo, José García-Nieto, José F. 
Aldana-Montes

Departamento de Lenguajes y Ciencias de la Computación, Ada Byron Research Building, University of Málaga, 29071 Málaga, Spain

Keywords:

Dynamic multi-objective optimization 
Streaming data processing
Big data
Software framework

a b s t r a c t

A number of streaming technologies have appeared in the last years as a result of the rising of Big 
Data applications. Nowadays, deciding which technology to adopt is not an easy task due not only to 
the number of available data streaming processing projects, but also because they are continuously 
evolving. In this paper, we focus on how these issues have affected jMetalSP, a framework for dynamic 
multi-objective optimization that incorporates streaming features. jMetalSP allows the development of 
three tier optimization workflows where the central component is an optimizer that is continuously 
solving a dynamic multi-objective optimization problem. This problem can change as a consequence of 
the analysis of data streams carried out by components that use the Apache Spark streaming engine. 
A third kind of components receive and process the Pareto front approximations being yielded by 
the optimization algorithm. However, all jMetalSP elements are tightly coupled and linked to Spark, 
making it difficult to use a different streaming system. To overcome this issue, we have redesigned the 
jMetalSP architecture to make it flexible enough to avoid the dependence of any particular streaming 
system. This way, popular Apache projects such as Spark Structured Streaming, Kafka Streams, or Flink 
can be used without requiring to change the rest of components of the application. Furthermore, Kafka 
can be used for inter-process communication, what enables the execution of components in different 
nodes of a cluster, independently of their implementation languages thanks to the serialization of data 
streams with Apache Avro. We show how the embraced solution provides a high degree of flexibility 
that enhances the usability of jMetalSP. To this end, a representative case study based on a transport 
problem is conducted that focuses on data representation and performance evaluation of the Spark, 
Flink, and Kafka systems.

1. Introduction

At present, Big Data has become a consolidated field in which
a number of technologies are appearing and evolving quickly. This
is the case, in particular, of streaming data processing tools, which
are used in applications featuring some of the V’s characterizing
Big Data applications, such as volume, velocity, or variety. Exam-
ples of streaming engines include the Apache projects Spark [1],
Flink [2], Kafka [3], Samza [4], Beam [5], Storm [6], and Apex [7].

Our focus in this paper is related to the application of stream-
ing data processing in the context of an optimization framework.
Let us consider route planning, which is a typical problem in
dynamic optimization. To illustrate this problem, we can imagine

∗ Corresponding author.

an scenario in logistics where multiple product delivery routes
have to be periodically recalculated during a working day using
an application for this purpose. Initially, the routes to be followed
by the vehicles are pre-calculated, but traffic conditions may
change unexpectedly and these routes have to be readjusted to
optimize cost, distances, or times. In addition, this application is
continuously obtaining information from different data sources
(sensors, cameras, social networks, etc.) about possible incidents
(accidents, traffic jams, maintenance works), so it should be able
to react and provide recalculated routes taking into account the
new conditions that affect the initial planning. In this context, the
generation of efficient frameworks for dynamic (online) optimiza-
tion, incorporating advanced streaming processing capabilities,
remains an open challenge which is what drives us in this study.

If we consider Apache Spark, which is probably the most
popular project in this sense, we find that new versions appear
every few months, not just concerning small upgrades in the
basic library based on RDDs (Resilient Distributed Datasets), but

E-mail addresses: cbarba@lcc.uma.es (C. Barba-González), 
antonio@lcc.uma.es (A.J. Nebro), antonio.benitez@lcc.uma.es
(A. Benítez-Hidalgo), jnieto@lcc.uma.es (J. García-Nieto), jfam@lcc.uma.es 
(J.F. Aldana-Montes).

https://doi.org/10.1016/j.future.2020.02.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.02.020&domain=pdf
mailto:cbarba@lcc.uma.es
mailto:antonio@lcc.uma.es
mailto:antonio.benitez@lcc.uma.es
mailto:jnieto@lcc.uma.es
mailto:jfam@lcc.uma.es
https://doi.org/10.1016/j.future.2020.02.020


also adopting new engines for both streaming (denoted by struc-
tured streaming) and machine learning (based on the concept
of dataframes that supplement the existing RDD-based ones).
This could lead to situations in which some applications us-
ing Apache Spark are not prepared for its continuous evolution.
Furthermore, the choice of a particular streaming technology
can overwhelm the user, given the amount of available similar
projects like the aforementioned ones. If an application imple-
menting a given streaming project is too tight to it and another
alternative technology could be more appropriated in a given
context, substituting the streaming component by a different one
can be a complex task.

In this paper, we describe and analyze how these issues have
affected the jMetalSP [8] framework and how we have evolved
its design to address them. The motivation is also to provide de-
sign and implementation experiences on the combination of dy-
namic optimization procedures with streaming processing, thus
allowing to address new scenarios effectively.

The jMetalSP project was started as an attempt to combine
a multi-objective optimization framework, jMetal [9], with the
streaming engine of Apache Spark. The motivation was related
to the fact that many real-world problems from different do-
mains (e.g., engineering, economy, logistics, transportation, etc.)
can be formulated as a multi-objective optimization problem
(i.e., requiring to optimize two or more conflicting objectives
at the same time), which can be solved with non-exact tech-
niques such as metaheuristics [10]. Furthermore, as streaming
technologies have become very popular, it was foreseeable that
multi-objective optimization problems would arise in connection
with the processing of streaming data in the context of Big Data.
jMetalSP was born with the goal of offering a tool for dealing with
dynamic multi-objective problems whose objectives, constraints
and parameters can change over time.

The first version of jMetalSP revealed that, although it had
an object-oriented architecture, Apache Spark was tightly in-
corporated into it, which caused a number of drawbacks. First,
Spark was necessary to run any jMetalSP application, but we
found some use cases not requiring it (e.g., solving dynamic
multi-objective problems that did not depend on external stream-
ing data sources). Second, we found that replacing Spark with
another streaming technology would require many changes in
the framework implementation. Third, all the components of a
jMetalSP application run as a single process and communicate
through shared memory, which did not allow to deploy some
of them in different nodes of a cluster. Finally, jMetalSP is a
100% Java project, so it was very difficult to develop and in-
tegrate a component written in other programming languages
(e.g., Python).

To address these issues, we have redesigned the architecture
of jMetalSP, which includes the following features:

• jMetalSP incorporates jMetal as an optimization engine,
which provides a large number of features to define dynamic
multi-objective optimization problems and to develop dy-
namic optimization metaheuristics.

• The new architecture of jMetalSP is flexible enough to iso-
late the streaming engine. Now, it allows the use of Java
Threads [11], Spark Streaming [12], Spark Structured
Streaming [13], Kafka Streams [3], and Flink [14].

• The components of a jMetalSP application can communicate
through shared memory (message passing) or by means of
Kafka, which allows to deploy those components in different
nodes of a cluster. In this last case, Apache Avro [15,16] is
used for data serialization, bringing the possibility of mixing
components developed in different programming languages.

• A number of dynamic multi-objective algorithms are pro-
vided, such as: InDM2[17] and dynamic versions of NSGA-
II [18], NSGA-III [19], R-NSGA-II [20], SMPSO [21], SMP-
SO/RP [22] and WASF-GA [23]. In addition, a series of aca-
demic benchmark dynamic optimization problems have
been also included in jMetalSP. In this work, we have stud-
ied a transportation problem (a bi-objective formulation of
the traveling salesman problem) based on real-world data.

Fig. 1 shows the scheme of a workflow defined within jMet-
alSP. It is composed by three tiers: Streaming processing, Optimiza-
tion processing and Result processing. In this paper, we focus on
describing the streaming components that are members of the
streaming processing tier and the inter-process communications
between components.

The rest of this paper is structured as follows. In Section 2,
background concepts and literature overview are presented. Sec-
tion 3 describes the previous version of jMetalSP, focusing on its
main features and limitations. Section 4 details the new archi-
tecture and how it addresses with those drawbacks detected in
previous versions. Section 5 presents a use case for testing and
validation, while Section 6 reports performance results obtained
when using different streaming engines in a cluster. In Sec-
tion 7, we include an analysis and discussion about the proposed
framework. Conclusions and future work are drawn in Section 8.

2. Background concepts and technologies

In this section, we provide basic background concepts about
dynamic multi-objective optimization with metaheuristics and
streaming processing technologies.

2.1. Dynamic multi-objective optimization

Multi-objective optimization is a discipline aimed at solving
optimization problems having two or more conflicting functions
or objectives. As a consequence, the optimum of this kind of
problems is not usually a single solution, but a set of trade-off
solutions known as Pareto Optimal Set (and Pareto front when
it is represented in the objective space). The meaning of opti-
mality states that there is no other solution in the search space
improving any solution in this set for all the objective values.

Finding the Pareto front of multi-objective optimization prob-
lems (MOPs) in practice can be a very difficult task due to a
number of reasons, such as: NP-hard complexity, epistasis, non-
linearity, large number of decision variables, large number of
objectives, etc. [24]. For these reasons, the use of exact techniques
is frequently unfeasible and the alternative is to use approx-
imate algorithms like metaheuristics [25]. These are a family
of techniques including evolutionary algorithms [26], particle
swarm optimization [27], ant colony optimization [28], and many
others. Metaheuristics have proven to be very effective to find
near-optimal solutions to single and multi-objective optimization
problems [29].

Some real-world MOPs are dynamic, which means that they
are characterized by having objectives, constraints, and parame-
ters that can change over time [30]. Therefore, whenever there
is a change in the problem being optimized, the metaheuristic
to solve it must also be dynamic in the sense that it needs to
detect those changes and react accordingly. Our idea in jMetalSP
is to consider that changes are the result of analyzing data coming
in streaming from one or more sources, such as: sensors, Web
Services, Kafka topics, shared file systems, etc. The issue here
is how to provide a ‘‘clean way’’ to incorporate the streaming
processing part without affecting the rest of components of the
application.



Fig. 1. General workflow scheme of a jMetalSP application.

2.2. Streaming data processing technologies

Big Data tools can be classified into three main classes, namely:
batch processing tools, streaming processing tools, and interac-
tive analysis tools [31]. Batch processing tools are only applied
to the stored data, which does not change while being processed,
while streaming processing allows us to process data in real-time
as they arrive and quickly detect conditions within small time
periods. Most batch processing tools are based on the Apache
Hadoop ecosystem, such as Apache Mahout [32] or Hive [33].
Nevertheless, in case of interactive analysis, whose goal is to
empower data analysts to formulate and assess hypotheses in a
rapid and iterative manner [34], we find tools such as Apache
Hadoop [35] with its distributed programming model MapRe-
duce [36] and Apache Spark, and visualization tools like Data
Wrangle [37] or Profiler [38].

Streaming data processing has two main issues to deal with:
the first one is high volume, which implies that data arrives
continuously and cannot be stored to be analyzed with stan-
dard database technologies; the second one, low latency, is re-
lated with real-time constraints, which requires data to be pro-
cessed immediately, so computing capabilities beyond the CPU
power of individual machines may be needed. As a consequence,
streaming platforms must provide solutions able of handling high
volumes of data in real-time with a scalable, highly available
architecture [39].

These streaming technologies have a wide range of use cases,
such as social networks, real-time trading analytics, malfunc-
tion detection, log processing, campaign, smart advertisement
placement and metrics analytics [40]. The jMetalSP framework
presented in this paper includes four representative open source
distributed stream processing systems: Spark Streaming, Spark
Structured Streaming, Kafka Streams and Flink. In order to pro-
vide a comparison among them, we focus on seven features:

• Cluster Management . Platform where streaming processing
systems can be deployed.

• Delivery Guarantee. This feature is key when evaluating
streaming systems, as it specifies whether a streaming pro-
cessing system ensures that each record is processed once
and only once, even if some failures are encountered in the
middle of processing.

• Programming Language. A streaming system can support
more than one programming language.

• Programming Model. It refers to the programming style.
They are usually event- or batch-based.

• Streaming API . Streaming systems usually provide two APIs
for batch and streaming processing, which can be indepen-
dent or very close to each other.

• Latency. It refers to the delay between data production and
data reading by the streaming engine.

• Throughput . It determines the number of ingested and suc-
cessfully processed records per time unit.

2.2.1. Spark streaming
Spark Streaming is a mechanism used to process real-time

data with the built-in Spark modules for streaming, SQL, machine
learning and graph processing. It is an extension of the core Spark
RDD API that enables scalability, high-throughput, and guarantees
an exactly-one read data semantics in quasi real-time streaming
processing [41]. The Spark Streaming module provides a stream
abstraction called discretized stream or DStream, whose main
idea is to treat a streaming computation as a series of determin-
istic batch computations in small time intervals [42]. As a matter
of fact, Spark Streaming follows a micro-batching programming
model to simulate streaming processes. Instead of processing the
streaming data one record at a time, Spark Streaming combines
incoming data into small blocks (i.e., mini-batches), which are
then processed together so as to keep high-throughput. Due to
this fact, its main disadvantage is the growth of data latency.
Stateless transformations (for instance, RDD transformations) of
each batch does not depend on the data of its previous batches,
while stateful transformations (i.e., based on sliding windows and
on tracking state across time) use data or intermediate results
from previous batches to compute the results of the current
batch. In other words, RDD transformations are applied to data
within each time slice, but they cannot be applied to all time
slices if they are concatenated.

Spark Streaming is very versatile from two points of view,
cluster manager and programming language. In the first case,
Spark Streaming can connect to several types of cluster man-
agers, such as either Spark’s own standalone cluster manager,
(Mesos [43] or YARN [44]). In the second case, Spark Streaming
supports the programming languages Java, Scala, and Python.

2.2.2. Spark structured streaming
Spark Structured Streaming is a new high-level streaming API

in Apache Spark to tackle the problem of processing fast-flowing
data in real-time. It allows users to specify stream processing
logic in the same way as batch analytics. Structured Stream-
ing combines elements of Google Dataflow [5], such as separat-
ing processing time from event time and triggers, incremental
queries [45,46] and, as its predecessor Spark Streaming, to enable
stream processing under the Spark SQL API. Consequently, this
streaming engine provides SQL operators such as selection, ag-
gregation, and join, which are based on automatically extending a
static relational query (expressed using SQL or DataFrames). Built



on the Spark SQL engine, Spark Structured Streaming, just like
Spark Streaming, is a fault-tolerant and scalable system. The main
concept in Structured Streaming is to manage live data streams
as an unlimited table in a way that when new data arrives they
are appended as new rows of a table of unlimited length, allow-
ing low latency. This idea makes the stream processing model
very similar to a batch processing model, i.e., batch processing
may be seen as a special case of streaming processing [47]. As
Spark Streaming, Spark Structured Streaming is based on micro-
batching, it supports a number of programming languages (Java,
Scala, Python, and R) and it can be executed with different cluster
managers (Spark’s own standalone cluster manager, Mesos and
YARN).

2.2.3. Kafka streams
Apache Kafka [48,49] is a distributed, partitioned, replicated

commit log service, which maintains feeds of messages in cat-
egories called topics. Kafka is designed using the Producer Con-
sumer pattern, according to which producers are processes that
publish messages to a Kafka topic and consumers subscribe to
topics and read the published messages.

Kafka Streams is a client library which allows building appli-
cations and microservices, where the input and output data are
stored in a Kafka cluster. Furthermore, Kafka Streams supports
building streaming applications that allow calling external ser-
vices like databases or even send them via Kafka topics. The most
relevant features of this technology are:

• It is a simple and lightweight client library, whose API has
two versions in Java and Scala.

• Kafka Streams has no external dependencies on systems
other than Apache Kafka itself as the internal messaging
layer.

• It guarantees that each record (message) will be processed
once and only once.

• Kafka Streams supports one-record-at-a-time processing
with a millisecond processing latency, as well as event-time
based windowing operations as programming model (which
allows to keep high-throughput).

• It offers two stream processing primitives, a high-level
Streams DSL (Domain Specific Language) and a low-level Pro-
cessor API. Kafka Streams does not prescribe a deployment
mechanism [3].

• Kafka Streams can connect to Mesos and many other cluster
systems.

In addition, Kafka Streams DSL provides common data trans-
formation operations: map, filter, join and aggregations. The Pro-
cessor API offers the possibility of developing custom operators
close to the Kafka Core API.

2.2.4. Flink
Flink, like the aforementioned systems, is a top-level project

of the Apache Software Foundation [14]. It is a stream processing
engine making batch processing a special class of application. The
main difference is that in batch processing with Flink data are
bounded. The tool was developed as part of a research project at
the Technical University of Berlin in 2009.

The approach followed by Flink is to built many classes of data
processing applications, including real-time analytics, continuous
data pipelines, historic data processing (batch), and iterative algo-
rithms (machine learning, graph analysis) which can be expressed
and executed as pipelined fault-tolerant dataflows [2].

Flink uses a stream abstraction called DataStream, which is
a sequence of partially ordered records [50]. This framework
guarantees exactly-once state consistency in case of failures by
periodically and asynchronously checkpointing the local state to

durable storage. Flink also allows the integration with all common
cluster resource managers such as Yarn, Mesos, and Kubernetes,
although it can be set up to run as a stand-alone cluster as well.
Flink provides APIs in Java, Scala and Python.

A summary of streaming technologies with regards to their
main features (cluster management, delivery guarantee, program-
ming language, programming model, latency, and throughput) is
included in Table 1. It is worth noting that in Flink and Kafka
Streams every record is processed as soon as it arrives, allowing
the frameworks to achieve the minimum possible latency. This
implies that it is hard to achieve a high fault-tolerance degree.
However, in Spark Streaming the latency is higher, because it uses
micro-batching programming model instead of events. Neverthe-
less, Spark Structured Streaming enhances the latency compared
with Spark Streaming thanks to the incremental batch queries it
uses.

3. The jMetalSP framework

jMetalSP [8] is the result of combining the jMetal multi-
objective optimization framework [9,51] and the Apache Spark
cluster computing system [1], with the goal of solving dynamic
optimization problems frommultiple and diverse external stream-
ing data sources in Big Data contexts.

jMetal is a widely used software in the field of multi-objective
optimization and Spark is one of the dominant technologies in
Big Data, so the idea of integrating them in jMetalSP was to
generate a framework combining the features of the former (flex-
ible and extensible architecture, lots of representative multi-
objective metaheuristics and problems) and the latter (streaming
processing, high level parallel model).

jMetalSP is an open source MIT licensed project hosted and
maintained in GitHub.1 It is offered as a white-box framework,
as we provide the source code and to take advantages of some of
its features it is necessary to know implementation details. The
documentation of the project2 includes guides about installing
the project and several examples explaining use cases.

Since its launch in 2016 [8], jMetalSP has been continuously
evolving. We detail next the first two developed versions.

3.1. First version of jMetalSP

When thinking in the design and development of jMetalSP, we
were driven by some ideas. In particular, issues such as adding
streaming data sources and connecting them to algorithms that
deal with dynamic problems should be done in an easy a clean
way. This was addressed by adopting an object-oriented archi-
tecture.

A jMetalSP application was originally conceived to be com-
posed of these four types of components:

• Streaming data processing . The role this kind of compo-
nents is to receive and analyze incoming streaming data by
using Spark Streaming.

• Problem. These components represent dynamic multi-
objective problems to be optimized. In jMetalSP, we focus
on dynamic multi-objective optimization problems that are
characterized by the fact that their objectives or their search
space can undergo significant variations over time, which
may affect their Pareto set, their Pareto front or both of
them. In the context of jMetalSP, changes in the problems
will be originated by the results of the processing and
analysis of one or more streaming data sources.

1 jMetalSP project site: https://github.com/jMetal/jMetalSP.
2 https://jmetalsp.readthedocs.io/en/latest/.

https://github.com/jMetal/jMetalSP
https://jmetalsp.readthedocs.io/en/latest/


Table 1
Feature comparison between streaming technologies.
Feature Flink Kafka streams Spark streaming Spark structured streaming

Cluster Management Standalone / Yarn / Mesos Mesos / Manya Mesos / Yarn / Standalone Mesos / Yarn / Standalone
Delivery Guarantee Exactly Once At Least Once Exactly Once Exactly Once
Programming Language Java / Scala Java / Scala Java / Scala / Python Java / Scala / Python / R
Programming Model Event / Micro-batching Event Micro-batching Micro-batching
Streaming API Native Separated from batch Integrated with batch Incremental batch queries
Latency Low Low Medium Low
Throughput High Medium High High

aKurbenetes, Yarn, Swarm, ECS from Amazon, Cloud Foundry, etc.

Fig. 2. Architecture of the original jMetalSP framework.

• Algorithm. A dynamic algorithm in jMetalSP is a meta-
heuristic that considers two main aspects: first, the problem
can change during the algorithm execution, so the state
of the problem should be regularly checked and, when a
change is detected, a re-starting procedure is applied; sec-
ond, when the stopping condition is reached, the algorithm
(instead of just terminating) starts again.

• Consumer components. Dynamic algorithms are supposed
to run forever, so Pareto front approximations are produced
periodically. This means that any component ‘‘interested’’
in getting those fronts cannot wait until the completion of
the algorithm (that never ends), as in the case of techniques
dealing with static problems. Consumer components cap-
ture data from the algorithm in a way that they do not need
to wait until their completion, e.g., to plot Pareto fronts or
save them in a database or in files.

The architecture of the first version of jMetalSP is shown
in Fig. 2, where we can observe the three tiers presented in
Fig. 1. The first tier contains streaming data processing compo-
nents, the second tier is always composed of the optimization
component (metaheuristic and problem) that carries out the op-
timization process, and the third tier can have one or more
consumer components.

There is a Spark runtime layer on top of which the rest of
components are deployed. It is worth emphasizing that the data
sources supported by jMetalSP were directly related to Spark API
(version Spark 1.4.0), which allowed the deployment on the clus-
ter management systems Mesos, Yarn, as well as the Standalone
mode.

After using jMetalSP for a while, we observed some limitations
of the adopted architecture, namely:

1. Spark was tightly integrated into jMetalSP, what led to the
requirement of using it all the time and for every applica-
tion. However, some jMetalSP users were only interested in

solving benchmarks of dynamic multi-objective problems
that did not required any streaming data source.

2. The second consequence of the strong Spark integration
is that replacing Spark Streaming by another streaming
engine (in particular, Spark Structured Streaming) was not
easy and required many changes in other components.

3. All the components of a jMetalSP workflow were compiled
into a single Java program, so all of them were executed
concurrently using Java threads in a single node, so it was
not possible to distribute them in a cluster.

3.2. Second version of jMetalSP

The second version of jMetalSP architecture was born with the
goal of overcoming the main issues found in the first one. In this
version, we focused particularly on dealing with the decoupling
of Spark inside the jMetal architecture. For this reason, we added
an abstract level called Streaming Runtime, which can be stacked
on top of the former Spark Runtime, as well as on a new Default
runtime, which is based on Java threads and it does not require
Spark. The resulting architecture is depicted in Fig. 3, and it was
presented in [52].

In this version, jMetalSP included (for the first time) a bench-
mark of dynamic multi-objective problems. Concretely, the FDA
problem family [30], consisting in five dynamic problems with
different features depending on whether their Pareto-optimal
front (POF) and/or Pareto-optimal solutions (POS) change over
time.

The adoption of the Streaming Runtime introduced a higher
abstraction level, as it brought the opportunity to include dif-
ferent streaming systems, although this issue was not addressed
in this second version yet. It is worth mentioning that only
the streaming components were bound to a particular runtime
(i.e., using Spark for reading from Kafka, Twitter, etc. requires
the Spark Runtime); the rest of components (algorithms, prob-
lems, data consumers) are independent of the runtime system.



Fig. 3. Architecture of the second version of jMetalSP framework.

Anyway, as in the first version, the resulting application is a
multi-threaded Java program, where its components cannot be
executed in different nodes of a cluster and all of them must be
written in that programming language; thus, it is not possible,
for example, to implement a visualization component in Python,
which provides a richer set of libraries for that purpose than Java.

4. New architectural design

In this section, we describe the new and most recent version
of our framework. The goal of this architecture is to mitigate
the problems that have been identified in former versions of
jMetalSP. In this third approach, three additional streaming sys-
tems (Spark Structured Streaming, Kafka Streams and Flink) are
included and, what is more, a new way of inter-process commu-
nication via Kafka and Avro for message serialization is added.
The implications of these features are, first, the components of
a jMetalSP application can be deployed in different nodes of a
cluster; second, it allows to define and implement components
in other programming languages besides Java.

A design requirement we impose is that adopting these new
features must be done in a transparent way. Therefore, replacing
a streaming component should not affect the rest of components.

The new jMetalSP architecture is depicted in Fig. 4. Compared
to the previous version, we can observe that there are a number
of runtime systems, one per streaming engine, which allow the
deployment of components on clusters using Kafka and Avro for
inter-component communication. The default runtime based on
Java threads is still present as an option when none of these
technologies are needed.

Avro is a data serialization system that provides data struc-
tures (in binary data format), object container files to store per-
sistent data and remote procedure call (RPC) capabilities. Data
are then serialized and deserialized using Avro schemes, so it
brings a high degree of interoperability to jMetalSP, since com-
ponents only need to know the Avro schema of the data in order
to communicate between them. These data are then serialized
and transmitted via Kafka. In this sense, as Kafka topics are
fault-tolerant and highly scalable, these features are available to
jMetalSP workflows.

For a better understanding of the new architecture of jMetalSP,
Fig. 5 depicts the UML diagram of the final architecture. It is worth
mentioning that the observer pattern has been adopted to be used
for the communication between components. The classes of the
UML diagram and their relationships are described below:

• jMetalSPApplication. This class is a container of all the
elements composing an application under jMetalSP. It acts
as a template where all the components can be defined,
configured, and started when the run() method is called.

• StreamingRuntime. This class represents the underlying
streaming engine. It has five sub-classes: (1) default plain-
Java based runtime (Spark, Flink or Kafka are not required),
which starts each streaming data source in a dedicated
thread, (2) Spark RDD (Spark Streaming), (3) Spark SQL
(Spark Structured Streaming), (4) Flink runtime, and (5)
Kafka runtime.

• DynamicAlgorithm. In jMetalSP, a DynamicAlgorithm is a
conventional metaheuristic with a restart() method that is
required when a change in the problem has been detected.

• AlgorithmDataConsumer . These components receive the
output of the dynamic algorithms.

• DynamicProblem. This class represents the dynamic multi-
objective problems to be optimized. It includes two meth-
ods, isTheProblemModified() and reset(), to respectively in-
dicate when the problem has been modified and to reset
that state when, after a change detection, the corresponding
processing have been done.

• StreamingDataSource. A jMetalSP application can have one
o more streaming data source components, which are sub-
classes of StreamingDataSource.

• ObserverData. All the communication between components
are based on the observer pattern, which interchange in-
stances of ObservedData.

A dynamic algorithm is considered as an observable entity,
so when a new Pareto front approximation is produced it is
notified to the registered AlgorithmDataConsumer observer ob-
jects. Similarly, the streaming data sources are observable entities
that notify data to a particular observer, which is the dynamic
problem.

5. Use case: transportation problem with real-world data

For validation purposes, a case of study has been developed,
which is focused on streaming processing and optimization of
mobility routes with real-world data in the domain of Smart
Cities.

We have chosen a bi-objective formulation of the Traveling
Salesman Problem (TSP) [53], where two conflicting objectives,
minimizing travel time and minimizing the total travel distance,



Fig. 4. Current architecture of jMetalSP framework. Dotted points means that messages are sent via shared memory.

Fig. 5. UML diagram of the current architecture of jMetalSP framework.

have to be optimized at the same time. The data are obtained
from the New York City Department of Traffic that provides open
real-time traffic speed data.3 Metadata in this source comprise
the length of the links, the mean speed and the mean traveling
time of the cars traversing the two end points that define the
links. As data change with time, we are dealing with a dynamic
multi-objective problem.

Fig. 6 illustrates a workflow with the three kinds of com-
ponents involved in the workflow designed for this problem.
Each component runs independently in one or more nodes of the
cluster and the communications are carried out by means of Kafka
with the data serialized according to the Avro schemes. In this
example, two different data types are defined, TSPMatrixData and
AlgorithmData, which are described in the next subsections.

Code Snippet 1: Definition of TSPMatrixData in Java.

public class TSPMatrixData
extends SpecificRecordBase
implements SpecificRecord {

3 At the time of writing this paper, the traffic data can be obtained from
https://data.cityofnewyork.us/view/qkm5-nuaq.

private String matrixIdentifier ;
private int x ;
private int y ;
private double value ;
}

5.1. TSP matrix data

The data required to generate an instance of the TSP in the
problem component are stored by means of two matrices: cost
(travel time) and distance. The communication between stream-
ing data and problem components is carried out throughout the
class TSPMatrixData, which is summarized in Code Snippet 1
(for the sake of clarity, getters, setters and constructors have
been bypassed). This class contains the information necessary to
update the coordinates x and y of one of the two matrices. The
matrix to be updated is identified by the variable matrixIdentifier.

The corresponding Avro schema of TSPMatrixData is included
in Code Snippet 2. The fields of the TSP matrix data are repre-
sented in JSON notation. It is worth noting that Avro provides its
own data type primitives that can be also found in commonly

https://data.cityofnewyork.us/view/qkm5-nuaq


Fig. 6. Workflow for coping with optimization of the transportation problem.

used programming languages (Java or Python), such as: String,
Double, Integer and List.

Code Snippet 2: Definition of TSPMatrixData Avro schema.

{"namespace":"tsp",
"type": "record",
"name": "TSPMatrixData",
"fields":[

{"name": "matrixIdentifier",
"type":"string"},
{"name": "x", "type":"int"},
{"name": "y", "type":"int"},
{"name": "value", "type":"double"}

]
}

5.2. Algorithm data

The AlgorithmData class, described in Code Snippet 3, contains
the information sent by the DynamicAlgorithm to the consumer
components. This class defines fields to store the objectives and
variables of the Pareto front approximation that the algorithm
has found. In addition, it is used to manage metadata concerning
the algorithm and the problem names, as well as additional
information (e.g., reference points that can be used optionally by
some consumers).

Code Snippet 3: Definition of AlgorithmData in Java.

public class AlgorithmData
extends SpecificRecordBase
implements SpecificRecord, ObservedData {
private List<List<Double>> objectives;
private List<List<Double>> variables;
private int numberOfIterations;
private String algorithmName;
private String problemName;

private int numberOfObjectives;
private List <Double>referencePoints;

}

The corresponding Avro schema used to serialize the algo-
rithm data is included in Code Snippet 4. We can observe how
the objective and variables fields, implemented in Java as lists of
double values, are translated into two dimensional arrays in JSON.

6. Experiments

In this section, we describe the experimental studies we have
conducted to evaluate the jMetalSP we have proposed. We have
designed two types of experiments aimed at, first, testing the
working of NSGA-II when solving the dynamic bi-objective TSP
problem and, second, to analyze the computation performance
when using the Spark (RDD-based), Kafka, and Flink runtimes in
a cluster.

6.1. Dynamic bi-objective TSP optimization

This experiment uses the Spark Streaming (RDD-based) run-
time to process the streaming data obtained from the New York
Department of Traffic Web site and a dynamic version of the
NSGA-II metaheuristic to optimize the TSP problem, which reacts
when changes in the problem data are detected. Spark Streaming
can take as data source a directory which is monitored so that
whenever a new file is stored into it, this fact is detected and
the file is automatically read. We use this feature in such a way
that we run an external process which periodically gets the latest
traffic data information and write it in a new file that is stored in
a directory monitored by the StreamingDataSource component of
the jMetalSP application. As the traffic data are updated roughly
every minute, the frequency of the external process is set to one
minute.

The parameter settings of the dynamic NSGA-II algorithm are:
the population size is 100, the crossover operator is PMX (applied
with a 0.9 probability), the mutation operator is swap (applied
with a probability of 0.2), and the algorithm computes 100,000



Fig. 7. Pareto front approximations obtained when solving the TSP of New York
with Dynamic NSGA-II.

function evaluations before sending the front found to registered
data consumers and restarting. In particular, the jMetalSP applica-
tion for the TSP is configured with a data consumer that plots the
fronts that are being produced by the algorithm. When running
the application we obtain results as the one shown in Fig. 7,
which depicts the fronts computed after four problem changes.

6.2. Computational performance

The former experiments allows us to test that our proposal
works. However, the frequency update of the real traffic data
is very low, so there is not a high demand of computational
resources and hence we cannot assess the performance of our
framework when large amounts data arrive and they have to be
processed with real-time requirements.

For this reason, we have developed a second type of experi-
ments in which we execute the same application as before but we
produce artificially simulated traffic data at different speeds. The
goal is to evaluate the performance of three streaming engines
that can be used in jMetalSP, namely Spark Streaming, Flink,
and Kafka Streams. Before this, we present the computational
environment used to deploy a complete workflow as shown in
Fig. 6.

Code Snippet 4: Definition of AlgorithmData schema.

{"namespace":"algorithmdata",
"type": "record",
"name": "AlgorithmData",
"fields":[
{
"name":"objectives",
"type":{

"type":"array",
"items":
{

"type":"array",
"items":"double"

}
}

},
{
"name":"variables",
"type":{

"type":"array",
"items":

{
"type":"array",
"items":"double"

}
}

},
{
"name":"referencePoints",
"type":{
"type":"array",
"items":"double"
}

},
{
"name": "numberOfIterations",
"type":"int"

},
{

"name": "algorithmName",
"type":"string"

},
{

"name": "problemName",
"type":"string"

},
{
"name": "numberOfObjectives",
"type":"int"

}
]

}

We have conducted these experiments in a computational en-
vironment deployed on a private high-performance cluster com-
puting platform located in the Ada Byron Research Center at the
University of Málaga (Spain). This infrastructure comprises a set
of IBM hosting racks for storage, units of virtualization, server
compounds and backup services. The virtualization platform used
for experiments is made up of 9 virtual machines (VM1 to VM9),
each one with 8 cores, 10 GB RAM and 33 GB virtual storage (sum-
ming up 72 cores, 90GBs of memory and 227GBs HD storage). The
whole cluster is configured to execute the framework libraries
Apache Spark v2.4.3, Apache Flink v2.8.1 and Apache Kafka v2.3.0.

For these experiments, have registered the execution traces of
the entire workflow during one hour for two different test cases
under different conditions of message passing load. A first test is
performed by injecting 10,000 messages every 1 s from the data
sources to the workflow, while a second test perform the same
load of 10,000 messages but every 0.1 s. This way, we consider
different stress conditions to assess the performance of Spark
Streaming, Flink and Kafka Streams. The messages are written in
a Kafka topic so as to the streaming engines are able to read them.

In addition, we have incorporated a Kafka message producer
that generates a series of random messages (4 KBs) with in-
formation in form of TSPMatrixData to update the problem. In
this regard, the complete workflow is continuously producing
dynamic TSP routes according to these incoming data, so that the
new Pareto front approximations could be plotted as shown in
Fig. 7. This aspect was studied in our previous work [8], hence
we focus now on assessing the computational effort from the
perspective of managing streaming data. To this end, we have
traced and plotted the load_one measure of the entire cluster, in
order to check the overall CPU load. In particular, the load_one
measure computes the number of threads at kernel level that



Fig. 8. Test 1. Load one. Number of threads per node.

Fig. 9. Test 2. Load one. Number of threads per node.

are running and being queued while waiting for CPU resources,
averaged over the last hour. We could interpret this number in
relation with the number of hardware threads available on the
machine and the time it takes to drain the run queue.

6.2.1. Test 1: 10,000 messages each 1 second
Fig. 8 depicts the CPU load_one trace of each node in the

spark cluster through one hour of execution of jMetalSP for the
transportation use case described in Section 5. This time period is
divided in three intervals of twenty minutes for every streaming
engine, i.e., each 20 min messages are managed by a different
streaming processing engine.

In the first twenty minutes, Spark is in charge of reading the
data from the Kafka topic that is sending messages. We can ob-
serve how the processing time in the clusterspark-9 node (master
node) is high in the initial minutes of execution. This behavior
is caused by the initial scheduling process required to deploy
all running tasks in the computational framework, afterwards it

stabilizes. Nevertheless, when Flink is running, the load_one mea-
sure is steadier during the 20 min of message processing. Finally,
the performance of the application with Kafka Streams has two
threads consumption peaks, with the cluster being stabilized after
five minutes. A main observation in this test case is that the three
processing engines are able to manage the load of data derived
from messages successfully, even though Flink demands lower
computational resources than Kafka Streams and Spark.

6.2.2. Test 2: 10,000 messages each 0.1 second
In this second test, the goal is to assess the streaming en-

gines in a highly demanding environment characterized by the
ingestion of 10,000 messages every 0.1 s.

An execution trace of the load_one computed by jMetalSP in
this test is captured in Fig. 9. As happened in the previous test,
the cluster is initially stressed when Spark is reading streaming
data, although in this case peaks appear in all the nodes of the
cluster. Furthermore, the load is oscillating during the 20 min



Fig. 10. Test 2. Memory usage level.

Fig. 11. Test 2. Network usage level.

of Spark processing, so it needs more time to be stabilized. In
the case of Flink, incoming messages are properly managed, so
the load_one is stable throughout the observation time. However,
when Kafka stream is reading data, the system is not totally
stabilized although the cluster is still able to read the data. In
this regard, it is worth mentioning that although Kafka does not
follow a master–worker architecture, the master node (node 9)
registers a high load_one value, probably due to the way Kafka
splits its tasks.

In terms of memory and network usage of the cluster, an
interesting observation can be made when comparing Figs. 10
and 11, which show the trace of these two measures (respec-
tively) in the context of test 2. According to them, the use of
memory is practically stable during the complete execution time
of jMetaSP when processing data with Spark Streaming, Flink
and Kafka Streams. This is a highly desirable behavior, since it
avoids the system collapse even with harder scenarios of message

processing (as happens in Test 2). The network usage registers a
series of peaks, mostly in the case of Flink that seems to derive
certain network overhead, but with the aim of reaching stable
balance in CPU load among the nodes in the cluster.

7. Discussion

Our new proposed architecture for jMetalSP enhances the
capacity to deal with Big Data optimization problems, not only
due to the flexibility of incorporating different streaming engines,
but also by allowing the execution of its components in differ-
ent nodes of an High Performance Computing cluster, as well
as the interconnection with other components of a workflow,
such as external data sink processes, data generators, analysers,
visualizations, etc.

In terms of practical implications, the proposed architecture
deals with four important issues of Big Data, namely variability,



variety, velocity and volume, since this new version of jMetalSP
is able to use different streaming processes depending upon the
properties (e.g., amount of data, velocity or data source) of the
data to deal with. Furthermore, thanks to the new inter-process
communication based on Kafka and Avro, jMetalSP allows to
joint efforts with other tools in running time. In this sense, Avro
schemes are essential for documenting and modeling the manip-
ulated data, so its definitions capture a point in time of what
data looked like when it was first recorded, since the schema
is saved with the data inside it. Streams are often recorded
in data repositories like Hadoop HDFS, and those records can
represent historical data. It makes sense that data streams and
data repositories have a less rigid, yet more evolving schema than
the schema of the operational data base.

As a result, the proposed framework not only allows a bet-
ter definition of an analytic workflow oriented to optimization
using its components, but also can be used as part of a bigger
workflow comprised of other external components or software
that could complement its functionality when analyzing Big Data
optimization problems.

All these features facilitate the adoption of optimization tasks
in prescriptive modeling applications commonly found in indus-
try, agriculture, domotics, wearables, and many other areas where
the ingestion of multiple data from heterogeneous sensor sources
are involved.

Finally, it is worth mentioning that all the streaming systems
integrated with jMetalSP have fault-tolerance features. Although
these characteristics are not currently used by jMetalSP, they are
available to be used in cases of dealing with applications that
require them.

8. Conclusions

In this work, a new jMetalSP architecture is proposed to en-
hance this framework with new streaming engines, as well as
with the capacity to communicate components via Kafka and
using Avro for data serialization.

To test this architecture, a case study has been presented
based on a realistic online optimization of the well-known opti-
mization problem TSP. The experience obtained from this case on
different execution scenarios revealed that jMetalSP is able to not
only incorporate different streaming engines, but also to switch
between them without changing any component from its core.

The experiments show that jMetalSP improves its capacity
when coping with Big Data optimization problems thanks to
its new way to interconnect components, which can also be
independently deployed on different nodes of a cluster, thus
enhancing its capacity of defining workflows.

It is worthy to declare that although the proposed architecture
has been developed for optimization purposes, those ideas can
be transferred to other fields such as machine learning, deep
learning, etc. What is more, the current architecture facilitates the
interconnection between components from different fields, like
data sources or optimization, which share data or belong to the
same workflow and share analysis.

This motivates our future research agenda, which entails three
phases: first, designing and developing components from differ-
ent fields (optimization, machine learning, etc.); second, defining,
through Avro schemes, their data structures; third, defining their
communications and connections between the components in
order to develop a workflow to analyze any kind of Big Data
problems (and not only optimization ones). Finally, exploring
its usability on different real-world use cases where Big Data
optimization tasks are involved.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been partially funded by Grant TIN2017-86049-
R (Spanish Ministry of Education and Science). Cristóbal Barba-
González is supported by Grant BES-2015-072209 (Spanish Min-
istry of Economy and Competitiveness). Antonio Benítez-Hidalgo
is supported by Grant PRE2018-084280 (Spanish Ministry of Sci-
ence, Innovation and Universities) and José García-Nieto is the
recipient of a Post-Doctoral fellowship of ‘‘Captación de Talento
para la Investigación’’ Plan Propio at Universidad de Málaga.

References

[1] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark:
cluster computing with working sets, in: Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, in: HotCloud’10, USENIX
Association, 2010, p. 10.

[2] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas,
Apache flink: Stream and batch processing in a single engine, Bull. IEEE
Comput. Soc. Tech. Committee Data Eng. 36 (4) (2015) 28–38.

[3] M. Kleppmann, J. Kreps, Kafka, Samza and the unix philosophy of
distributed data, IEEE Data Eng. Bull. 38 (4) (2015) 4–14.

[4] S.A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta,
R.H. Campbell, Samza: stateful scalable stream processing at LinkedIn, Proc.
VLDB Endow. 10 (12) (2017) 1634–1645.

[5] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R.J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, et al., The
dataflow model: a practical approach to balancing correctness, latency, and
cost in massive-scale, unbounded, out-of-order data processing, Proc. VLDB
Endow. 8 (12) (2015) 1792–1803.

[6] M.H. Iqbal, T.R. Soomro, Big data analysis: Apache storm perspective, Int.
J. Comput. Trends Technol. 19 (1) (2015) 9–14.

[7] H. Pathak, M. Rathi, A. Parekh, Introduction to real-time processing in
Apache Apex, Int. J. Res. Advent Technol. (2016) 19.

[8] C. Barba-González, J. García-Nieto, A.J. Nebro, J.A. Cordero, J.J. Durillo, I.
Navas-Delgado, J.F. Aldana-Montes, Jmetalsp: a framework for dynamic
multi-objective big data optimization, Appl. Soft Comput. 69 (2017)
737–748, http://dx.doi.org/10.1016/j.asoc.2017.05.004.

[9] J.J. Durillo, A.J. Nebro, Jmetal: A java framework for multi-objective
optimization, Adv. Eng. Softw. 42 (10) (2011) 760–771.

[10] J.D. Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das,
P.N. Suganthan, C.A.C. Coello, F. Herrera, Bio-inspired computation: Where
we stand and what’s next, Swarm Evol. Comput. 48 (2019) 220–250.

[11] P. Hyde, Java Thread Programming, vol. 1, Sams Indianapolis, 1999.
[12] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,

J. Rosen, S. Venkataraman, M.J. Franklin, et al., Apache spark: a unified
engine for big data processing, Commun. ACM 59 (11) (2016) 56–65.

[13] M. Armbrust, D. Bateman, R. Xin, M. Zaharia, Introduction to spark 2.0 for
database researchers, in: Proceedings of the 2016 International Conference
on Management of Data, ACM, 2016, pp. 2193–2194.

[14] E. Friedman, K. Tzoumas, Introduction to Apache Flink: Stream Processing
for Real Time and Beyond, O’Reilly Media, Inc., 2016.

[15] J. Scott, Avro–more than just a serialization framework, Chicago Hadoop
Users Group (2012).

[16] D. Vohra, Apache avro, in: Practical Hadoop Ecosystem, Springer, 2016, pp.
303–323.

[17] A.J. Nebro, A.B. Ruiz, C. Barba-González, J. García-Nieto, M. Luque,
J.F. Aldana-Montes, InDM2: Interactive Dynamic multi-objective decision
making using evolutionary algorithms, Swarm Evol. Comput. 40 (2018)
184–195.

[18] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002)
182–197.

[19] Y. Yuan, H. Xu, B. Wang, An improved NSGA-III procedure for evolu-
tionary many-objective optimization, in: Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation, ACM, 2014, pp.
661–668.

[20] K. Deb, J. Sundar, Reference point based multi-objective optimization using
evolutionary algorithms, in: Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, ACM, 2006, pp. 635–642.

http://refhub.elsevier.com/S0167-739X(19)31569-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb7
http://dx.doi.org/10.1016/j.asoc.2017.05.004
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb11
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb14
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb14
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb14
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb16
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb16
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb16
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb20


[21] A.J. Nebro, J.J. Durillo, J. Garcia-Nieto, C.C. Coello, F. Luna, E. Alba,
SMPSO: A new PSO-based metaheuristic for multi-objective optimization,
in: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making (MCDM), IEEE, 2009, pp. 66–73.

[22] A.J. Nebro, J.J. Durillo, J. García-Nieto, C. Barba-González, J. Del Ser,
C.A.C. Coello, A. Benítez-Hidalgo, J.F. Aldana-Montes, Extending the speed-
constrained multi-objective PSO (SMPSO) with reference point based
preference articulation, in: International Conference on Parallel Problem
Solving from Nature, Springer, 2018, pp. 298–310.

[23] A.B. Ruiz, M. Luque, K. Miettinen, R. Saborido, An interactive evolutionary
multiobjective optimization method: interactive WASF-GA, in: Interna-
tional Conference on Evolutionary Multi-Criterion Optimization, Springer,
2015, pp. 249–263.

[24] T. Weise, M. Zapf, R. Chiong, A.J. Nebro, Why is optimization difficult? in: R.
Chiong (Ed.), Nature-Inspired Algorithms for Optimisation, Springer, Berlin,
2009, pp. 1–50, ISBN 978-3-642-00266-3.

[25] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview
and conceptual comparison, ACM Comput. Surv. 35 (3) (2003) 268–308.

[26] C.A.C. Coello, G.B. Lamont, D.A. Van Veldhuizen, et al., Evolutionary
Algorithms for Solving Multi-Objective Problems, vol. 5, Springer, 2007.

[27] J. Kennedy, Particle swarm optimization, Encyclopedia Mach. Learn. (2010)
760–766.

[28] M. Dorigo, M. Birattari, Ant Colony Optimization, Springer, 2010.
[29] C. Coello Coello, G. Lamont, D. van Veldhuizen, Multi-Objective Optimiza-

tion Using Evolutionary Algorithms, second ed., John Wiley & Sons, Inc.,
NY, USA, 2007.

[30] M. Farina, K. Deb, P. Amato, Dynamic multiobjective optimization
problems: test cases, approximations, and applications, IEEE Trans.
Evol. Comput. 8 (5) (2004) 425–442, http://dx.doi.org/10.1109/TEVC.2004.
831456.

[31] C. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques
and technologies: A survey on big data, Inform. Sci. 275 (2014) 314–347.

[32] S. Owen, S. Owen, Mahout in Action, Manning Shelter Island, 2012.
[33] A. Bhardwaj, A. Kumar, Y. Narayan, P. Kumar, et al., Big data emerging

technologies: A Casestudy with analyzing twitter data using apache hive,
in: 2015 2nd International Conference on Recent Advances in Engineering
& Computational Sciences, RAECS, IEEE, 2015, pp. 1–6.

[34] J. Heer, S. Kandel, Interactive analysis of big data, XRDS: Crossroads ACM
Mag. Stud. 19 (1) (2012) 50–54.

[35] C. Lam, Hadoop in action, Manning Publications Co., 2010.
[36] M. Bhandarkar, Mapreduce programming with apache hadoop, in: 2010

IEEE International Symposium on Parallel & Distributed Processing, IPDPS,
IEEE, 2010, p. 1.

[37] S. Kandel, A. Paepcke, J. Hellerstein, J. Heer, Wrangler: Interactive visual
specification of data transformation scripts, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, 2011, pp.
3363–3372.

[38] S. Kandel, R. Parikh, A. Paepcke, J.M. Hellerstein, J. Heer, Profiler: Inte-
grated statistical analysis and visualization for data quality assessment, in:
Proceedings of the International Working Conference on Advanced Visual
Interfaces, ACM, 2012, pp. 547–554.

[39] A. Mohamed, M.K. Najafabadi, Y.B. Wah, E.A.K. Zaman, R. Maskat, The state
of the art and taxonomy of big data analytics: view from new big data
framework, Artif. Intell. Rev. (2019) 1–49.

[40] A.I. Stojnev, D.H. Stojanović, Software systems for processing and analysis
of big data and event streams, in: 2017 13th International Conference
on Advanced Technologies, Systems and Services in Telecommunica-
tions, TELSIKS, 2017, pp. 128–131, http://dx.doi.org/10.1109/TELSKS.2017.
8246245.

[41] X. Liao, Z. Gao, W. Ji, Y. Wang, An enforcement of real time scheduling
in spark streaming, in: 2015 Sixth International Green and Sustainable
Computing Conference, IGSC, IEEE, 2015, pp. 1–6.

[42] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized
streams: Fault-tolerant streaming computation at scale, in: Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
ACM, 2013, pp. 423–438.

[43] D. Kakadia, Apache Mesos Essentials, Packt Publishing Ltd, 2015.
[44] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.

Graves, J. Lowe, H. Shah, S. Seth, et al., Apache hadoop yarn: Yet another
resource negotiator, in: Proceedings of the 4th Annual Symposium on
Cloud Computing, ACM, 2013, p. 5.

[45] J.A. Blakeley, P.-A. Larson, F.W. Tompa, Efficiently updating materialized
views, in: ACM SIGMOD Record, vol. 15(2), ACM, 1986, pp. 61–71.

[46] X. Qian, G. Wiederhold, Incremental recomputation of active relational
expressions, IEEE Trans. Knowl. Data Eng. 3 (3) (1991) 337–341.

[47] S. Salloum, R. Dautov, X. Chen, P.X. Peng, J.Z. Huang, Big data analytics on
apache spark, Int. J. Data Sci. Anal. 1 (3–4) (2016) 145–164.

[48] K. Thein, Apache kafka: Next generation distributed messaging system, Int.
J. Sci. Eng. Technol. Res. 3 (47) (2014) 9478–9483.

[49] J. Kreps, N. Narkhede, J. Rao, et al., Kafka: A distributed messaging system
for log processing, in: Proceedings of the NetDB, 2011, pp. 1–7.

[50] A.I. Stojnev, D.H. Stojanović, Software systems for processing and anal-
ysis of big data and event streams, in: Advanced Technologies, Systems
and Services in Telecommunications (TELSIKS), 2017 13th International
Conference on, IEEE, 2017, pp. 128–131.

[51] A. Nebro, J.J. Durillo, M. Vergne, Redesigning the jmetal multi-objective
optimization framework, in: Proceedings of the Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO Companion ’15, ACM, 2015, pp. 1093–1100.

[52] A.J. Nebro, C. Barba-González, J.G. Nieto, J.A. Cordero, J.F.A. Montes, Design
and architecture of the jMetaISP framework, in: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, ACM, 2017, pp.
1239–1246.

[53] G. Reinelt, TSPLIB—A Traveling salesman problem library, ORSA J. Comput.
3 (4) (1991) 376–384.

http://refhub.elsevier.com/S0167-739X(19)31569-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb28
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb29
http://dx.doi.org/10.1109/TEVC.2004.831456
http://dx.doi.org/10.1109/TEVC.2004.831456
http://dx.doi.org/10.1109/TEVC.2004.831456
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb31
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb31
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb31
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb32
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb35
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb37
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb37
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb37
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb37
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb37
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb37
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb37
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb39
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb39
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb39
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb39
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb39
http://dx.doi.org/10.1109/TELSKS.2017.8246245
http://dx.doi.org/10.1109/TELSKS.2017.8246245
http://dx.doi.org/10.1109/TELSKS.2017.8246245
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb43
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb46
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb46
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb46
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb47
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb47
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb47
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb48
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb48
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb48
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb51
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb51
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb51
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb51
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb51
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb51
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb51
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb52
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb52
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb52
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb52
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb52
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb52
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb52
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb53
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb53
http://refhub.elsevier.com/S0167-739X(19)31569-9/sb53

	On the design of a framework integrating an optimization engine with streaming technologies
	Introduction
	Background concepts and technologies
	Dynamic multi-objective optimization
	Streaming data processing technologies
	Spark streaming
	Spark structured streaming
	Kafka streams
	Flink


	The jMetalSP framework
	First version of jMetalSP
	Second version of jMetalSP

	New architectural design
	Use case: transportation problem with real-world data
	TSP matrix data
	Algorithm data

	Experiments
	Dynamic bi-objective TSP optimization
	Computational performance
	Test 1: 10,000 messages each 1 second
	Test 2: 10,000 messages each 0.1 second


	Discussion
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


