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A Distributed Model Predictive Control Scheme with Robustness

Against Noncompliant Controllers

José M. Maestre1, Paul A. Trodden2 and Hideaki Ishii3

Abstract— A tube-based distributed model predictive control
(DMPC) scheme is proposed for dynamically coupled linear
systems. The control scheme is designed to guarantee local per-
formance even when neighboring controllers are not complying
with the requirements of the algorithm (e.g., they are malicious
or faulty). The resulting conservativeness is minimized, for
controllers aim to minimize their state and input constraint
sets to reduce mutual disturbances. Also, sufficient conditions
for feasibility and exponential stability are given. Finally, these
ideas are illustrated and assessed with respect to other robust
DMPC via a simulated example.

I. INTRODUCTION

In standard MPC, a model of a system is used to build a

finite horizon optimization problem (FHOP) in which the

sequence of inputs to be implemented and the resulting

predicted states are optimized with respect to a performance

index [1]. The FHOP can deal explicitly with complex issues

such as uncertainties, constraints, and delays, which is very

convenient in many industrial applications [2]. When it is

implemented in a distributed fashion, the control architecture

is composed of a set of local MPC controllers —also known as

agents— that exchange information to improve both local and

overall performance. In addition, distributed MPC schemes

must take into account aspects such as the organizational

structure of the system and its information flows, constraints

on the information exchange sources, among others. See for

example [3], [4] for surveys on the topic.

As is common in interactive decision making problems,

incentives may exist for agents to deviate with respect to their

nominal or expected behavior. For example, strategic behavior

in energy demand networks is studied in [5]. Another related

work is [6], where economic incentives are introduced to

promote truthful communication in load frequency control. A

different mechanism design approach is that of [7], where a

hierarchical structure is considered so that a coordinator with

access to agents’ private information computes a control law

adjusted to the best interest of controllers. Also, the incentives

for misbehaving agents might be other than economical, as

it happens for example in cybersecurity problems [8], [9],
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where vulnerabilities in the elements that compose the system

(sensors, communication channels, etc.) are often exploited to

disrupt its normal operation. Even though this is a significant

concern in networked applications such as the smart grid [10]

and consensus problems [11], few attempts have been made

to deal with it in a DMPC framework. For example, heuristic

defense mechanisms for dual decomposition DMPC are

proposed in [12], [13] to minimize the effects of attacks

of the price based coordination mechanism. Finally, it must

be noticed that problems due to mutual interaction can also

arise as a consequence of faulty components [14], [15].

All the aforementioned issues have one thing in common:

the existence of agents that do not operate as expected with

consequences for the overall system that can range from the

loss of performance to instability. This motivates us to extend

the distributed MPC method presented in [16] to deal with

noncompliant controllers, for it does not matter whether the

undesired behavior stems from a malicious attack or is due

to faulty events. In particular, the proposed approach is a

tube-based distributed MPC scheme with guaranteed recursive

feasibility and stability that is based on the optimization and

exchange of the input and state constraint sets to minimize the

mutual disturbances. The presence of noncompliant agents

in the system is dealt with by the robustification of the

disturbances expected by local controllers, so that feasibility

and stability are preserved. A final improvement with respect

to [16] is the relaxation of the conditions required for stability.

The outline of the rest of the paper is as follows: Sections II

and III present, respectively, the preliminaries of the problem

setting and the distributed control problem. Section IV focuses

on the detection and defense against noncompliant agents.

Implementation details of the algorithm are given in Section

V and its main theoretical properties are discussed in Section

VI. Finally, Section VII presents an illustrative example and

Section VIII concludes the paper with closing remarks.

Notation: The sets of non-negative and positive reals are

denoted, respectively, R0+ and R+. The notation [a, b]n

means the n-dimensional product set [a, b]×[a, b]×· · ·×[a, b],
where a, b ∈ R. For a, b ∈ R

n, a ≤ b applies element by

element. The distance of a point x ∈ R
n from a set X ⊂ R

n

is |x|X , infy∈X |x − y|. AX denotes the image of a set

X ⊂ R
n under the linear mapping A : Rn → R

p, and is

given by {Ax : x ∈ X}. For X,Y ⊂ R
n, the Minkowski

sum is X ⊕ Y , {x+ y : x ∈ X, y ∈ Y }; for Y ⊂ X , the

Minkowski difference is X⊖Y , {x ∈ R
n : Y ⊕{x} ⊂ X}.

For X ⊂ R
n and a ∈ R

n, X⊕a means X⊕{a}. The column

vectors of zeros and ones are denoted 0 and 1 respectively,

the length of which will be clear from the context.



II. PRELIMINARIES

We consider a set N =
{
1, . . . ,M

}
of coupled systems

whose dynamics in discrete time can be described as

x+
i = Aiixi +Biiui + wi, (1)

where xi ∈ R
ni , ui ∈ R

mi , wi ∈ R
ni are the state, input

and disturbances of system i ∈ N . Hence, Aij ∈ R
ni×nj

and Bij ∈ R
ni×mj . The successor state is denoted as x+

i .

Assumption 1: Each (Aii, Bii), i ∈ N is stabilizable.

The local disturbance vector includes disturbances due to

interactions with neighboring agents and a safety term ws
i to

account for possible noncompliant events. That is,

wi =
∑

j∈Ni

(Aijxj +Bijuj) + ws
i ,

where the set of neighbours of subsystem i are defined as

Ni ,
{
j ∈ N \ {i} : [Aij Bij ] 6= 0

}
.

Assumption 2: Unexpected disturbances are bounded by a

closed polytope that contains the origin in its interior, i.e.,

ws
i ∈ W

s
i , which can be described by rs inequalities as

W
s
i ,

{
ws

i ∈ R
ni : Cs

iw
s
i ≤ gsi

}
,with gsi ∈ R

rsi
0+.

Also, let x = (x1, . . . , xM ), u = (u1, . . . , uM ), and w =
(ws

1, . . . , w
s
M ) be respectively the aggregated state, input, and

disturbance vectors. Then, the overall system model becomes

x+ = Ax+Bu+ w,

where the overall state and input matrices A and B are

composed accordingly.

A. Constraints and invariance

Each system i ∈ N is subject to local polytopic state and

input constraints, i.e., xi ∈ Xi and ui ∈ Ui, that contain the

origin in their interiors and are defined respectively by rxi
and rui linear inequalities as

Xi(ai) ,
{
xi ∈ R

ni : Cx
i xi ≤ ai

}
, ∀ai ∈ R

rxi
0+,

Ui(bi) ,
{
ui ∈ R

mi : Cu
i ui ≤ bi

}
, ∀bi ∈ R

rui
0+,

with ai ≤ 1, bi ≤ 1. In particular, Xi , Xi(1) and

Ui , Ui(1) define hard constraint sets on the system

variables while Xi(ai) and Ui(bi) are tightened versions

that the local controllers may decide to use to minimize

mutual disturbances. Since input and state local constraints

and unexpected disturbances are assumed to be polytopic, it

can be seen that

wi ∈ Wi , W
s
i ⊕W

0
i = W

s
i ⊕

⊕

j∈Ni

Wij ,

where W
0
i =

⊕

j∈Ni
Wij is defined as the set of nominal

disturbances, with Wij = AijXj ⊕ BijUj being the contri-

bution of subsystem j to the disturbance of subsystem i. The

set W0
i contains the origin in its interior and can be described

by a set of rw
0

i inequalities

W
0
i , W

0
i (g

0
i ) ,

{
wi ∈ R

ni : Cw0

i wi ≤ gi
}
, ∀gi ∈ R

rw
0

i

0+ ,

where Cw0

i is defined so that W0
i (1) is formed from the full

sized constraint sets, i.e.,

W
0
i (1) =

⊕

j∈Ni

Wij(1) =
⊕

j∈Ni

AijXj(1)⊕BijUj(1). (2)

Also, Wi is described by a set of rwi inequalities:

Wi , Wi(gi) ,
{
wi ∈ R

ni : Cw
i wi ≤ gi

}
, ∀gi ∈ R

rwi
0+.

Again, Cw
i is defined so that Wi = Wi(1) is formed from

the full sized constraint sets Xi(1) and Ui(1), i.e.,

Wi(1) = W
s
i ⊕

(
⊕

j∈Ni
Wij(1)

)

= W
s
i ⊕

(
⊕

j∈Ni
AijXj(1)⊕BijUj(1)

)

.
(3)

According to Assumption 1, it is possible to find, for each

i, a local feedback Ki that stabilizes the local subsystem so

that all the eigenvalues of Aii + BiiKi are within the unit

circle. Hence, there also exists a polytopic robust positively

invariant (RPI) set, Ri, which satisfies:

(Aii +BiiKi)Ri ⊕Wi ⊆ Ri. (4)

In particular, Ri can be represented by rRi inequalities as

Ri(qi) ,
{
xi ∈ R

ni : CR
i xi ≤ qi

}
,

and qi ∈ R
rRi
0+ . Moreover, following the previous definition

of Wi(1), we can normalize Ri(qi) so that Ri(1) is the RPI

set that corresponds to the original disturbance set Wi(1),
i.e.,

(Aii +BiiKi)Ri(1)⊕Wi(1) ⊆ Ri(1).

Finally, it is assumed that the strength of couplings is

limited in such a way that the invariant set is compatible with

local state and input constraint sets [17].

Assumption 3: For all i ∈ N , Ri(1) ⊆ interior(Xi(1))
and KiRi(1) ⊆ interior(Ui(1)).

B. Control objective

The goal of local controllers is to minimize the following

global infinite-horizon cost

∞∑

k=0

∑

i∈N

ℓi
(
xi(k), ui(k)

)
=

∞∑

k=0

∑

i∈N

(x⊤
i Qixi + u⊤

i Riui),

(5)

where ℓi(xi, ui) is the stage cost defined by positive definite

weighting matrices Qi and Ri.

III. DISTRIBUTED OPTIMAL CONTROL PROBLEM

Local controllers regulate a nominal subsystem without

interactions z+i = Aiizi + Biivi, with zi and vi being

the corresponding nominal state and input. To this end,

vi = κ̄i(zi), where κ̄i(zi) is a MPC-based control law that

implements the first element of the optimized sequence v∗
i (zi).

The MPC optimization also minimizes mutual disturbance

sets by optimizing the corresponding parameters ai and bi
in such a way that local performance is not affected. This

information is transmitted to neighbors, which benefit from

a decrease of their local uncertainty.



Regarding the real subsystem, the following input is

applied:

u∗
i = κi(xi, zi) = κ̄i(zi) +Ki(xi − zi), (6)

where the second term is included to reduce mismatch

between the nominal and perturbed trajectories.

A. Tube-based distributed optimal control problem

At nominal state zi, an optimized sequence of controls

vi = (vi(0), . . . , vi(N − 1)) is obtained by local controller i
by solving a FHOP P̄i(zi; ai, bi, qi) defined as

min
(vi,ai,bi)

V f
i

(
zi(N)

)
+

N−1∑

j=0

ℓi
(
zi(j), vi(j)

)
+ρa‖ai‖1+ρb‖bi‖1,

where V f
i is a terminal cost and ρa > 0 and ρb > 0 are

constant weighting parameters. The optimization is subject

to the following constraints: (ai, bi) ∈ [0, 1]r
x
i × [0, 1]r

u
i and

vi ∈ Vi(zi; ai, bi, qi), where Vi(zi; ai, bi, qi) is defined by

zi(j + 1) = Aiizi(j) +Biivi(j), j = 1, . . . , N − 1, (7a)

zi(0) = zi, (7b)

zi(j) ∈ Xi(ai)⊖Ri(qi), j = 0, . . . , N − 1, (7c)

vi(j) ∈ Ui(bi)⊖KiRi(qi), j = 0, . . . , N − 1, (7d)

zi(N) ∈ X
f
i (ai, bi; qi). (7e)

Here, X
f
i (ai, bi; qi) is a terminal set and qi is a parameter

rather than an optimization variable. The domain zi ∈ Zi(qi)
for which P̄i(zi; ai, bi, qi) has a feasible solution can be

computed using standard methods [17] and is defined as

{
zi : ∃(ai, bi) ∈ [0, 1]r

x
i ×[0, 1]r

u
i s.t. Vi(zi, ai, bi; qi) 6= ∅

}
.

B. Parametric terminal set and cost design

Recursive feasibility and closed-loop stability is attained

following a standard terminal cost/constraint approach by

means of V f
i and X

f
i [17]. The terminal cost function is

defined as V f
i (zi) = (1/2)z⊤i Pizi, with Pi > 0 satisfying

Φ⊤
i PiΦi − Pi ≤ −Qi − (Kf

i )
⊤RiK

f
i ,

where Φi , Aii +BiiK
f
i .

The terminal constraint set X
f
i is constructed to be invariant

for local nominal dynamics when they are stabilized by a

feedback vi = Kf
i zi and admissible for tightened constraints,

i.e.,

X
f
i ⊆ Xi(ai)⊖Ri(qi), (8a)

Kf
i X

f
i ⊆ Ui(bi)⊖KiRi(qi). (8b)

The terminal set X
f
i has to be recomputed as Xi(ai)

and Ui(bi) change. To this end, an inner approximation

X f
i (ai, bi; qi) to the maximal constraint admissible set X

f
i

is parameterized by the state and input constraint vectors ai
and bi as in [16].

IV. NONCOMPLIANT AGENTS

A noncompliance happens when an agent j violates its

broadcasted limits aj and bj , which provide its neighbors with

information regarding the bounds of their local disturbance

sets. This can render the computations of neighbors infeasible.

It is possible to employ the sets exchanged to perform a

noncompliance detection based on a set-membership approach.

To this end, neighbors in Ni are classified to be in either one

of following disjoint sets:

• Compliant neighbor set NC
i , which comprises neighbor-

ing subsystems whose announced disturbance sets can

be trusted, which allows reducing conservatism.

• Uncertain compliance neighbor set NUC
i , which com-

prises neighboring subsystems whose disturbance sets

are compatible with the received disturbances. Initially,

all agents are considered in this group.

• Noncompliant neighbor set NNC
i , which comprises

agents not to be trusted so that the controller should

be prepared for the worst possible case (i.e., that of

maximum coupling).

Note that Ni = NC
i ∪NUC

i ∪NNC
i , with NC

i ∩NNC
i =

NC
i ∩NUC

i = NUC
i ∩NNC

i = ∅.

To reduce conservatism we limit the number of noncom-

pliant agents:

Assumption 4: The maximum number of noncompliant

agents in the neighborhood is known to be bounded by NNC
max.

A. Noncompliance Detection

Given that we can measure xi and x+
i , it is possible to

detect any noncompliance with respect to the transmitted

values if

wi = x+
i −Aiixi −Biiui /∈ Wi

holds. Any noncompliance not fulfilling this condition goes

undetected, although it does not compromise the local

controller, for the disturbance received can be tolerated.

B. Identification

Under our approach, constrained disturbance sets are

broadcasted to neighbors and maximum disturbance sets are

known by each agent from the beginning. The challenge is

to classify neighbors using this information and measuring

only aggregate disturbances. Three situations are possible:

1) Neighbors not compatible with disturbance: It is

possible to identify whether a disturbance is compatible with

a neighbor j ∈ Ni by checking whether

wi /∈ Wi ⊕ W̃ij ⊕
⋃

A⊆NNC

i
∪NUC

i
\{j}:|A|=NNC

max
−1

⊕

l∈A

W̃il

holds. The fulfillment of this condition implies that j is not

compatible with the disturbance received, for there is no set

of neighbors A ⊆ NNC
i ∪ NUC

i with |A| = NNC
max − 1 that

can generate the disturbance received in combination with

that of j. This condition should be checked for all neighbors.

If the number of agents compatible with the disturbance is

lower than or equal to NNC
max, then noncompliant agents can

be identified.



2) Neighbors responsible of disturbance: A neighbor j is

responsible for the unexpected disturbance received if

wi /∈ Wi ⊕
⋃

A⊆NNC

i
∪NUC

i
\{j}:|A|=NNC

max

⊕

l∈A

W̃il

holds. That is, there is no set of noncompliant neighbors A ⊆
NNC

i \ {j} that is compatible with the disturbance received.

If this condition is fulfilled, then a noncompliant agent is

identified. Once NNC
max noncompliant agents are identified,

the rest can be taken as compliant agents and be moved to

NC
i .

3) Neighbors compatible with disturbance: The compli-

ance of neighbor j is uncertain, i.e., the disturbance received

can be generated by combinations of neighbors that can

involve j. In this case, j remains in NUC
i .

C. Robustification against malicious agents

The maximum impact that a noncompliant neighbor j can

have into the disturbances of subsystem i is given by

W̃ij = (AijXj(1)⊕BijUj(1))⊖ (AijXj(aj)⊕BijUj(bj)).
(9)

To avoid problems, agent i can use the set Ws
i introduced

in Assumption 2 to get an additional degree of robustness.

Proposition 1: A subsystem i is robust against NNC
max

noncompliant controllers if

W
s
i ⊇

⋃

A⊆NNC

i
∪NUC

i
:|A|=NNC

max

⊕

j∈A

W̃ij

holds.

The proof is omitted but the rationale of the proposition

is clear: robustness is guaranteed as long as unexpected

disturbances stay within the safety set W
s
i . According to

Proposition 1, since agent i does not know which are the

malicious agents A ⊆ Ni, it has to be prepared for all the
(

|Ni|

min(NNC
max, |Ni|)

)

possibilities that can arise when there is a maximum of NNC
max

noncompliant agents in the neighborhood.

V. DISTRIBUTED CONTROL ALGORITHM AND

IMPLEMENTATION

In this section, we present an algorithm with defense

mechanisms against noncompliant neighbors. In particular, it

combines a set-membership detection mechanism to classify

neighbors either as compliant/noncompliant and the optimal

control problem Pi(zi; qi) to provide robustness.

Algorithm 1:

Initial data: Sets Xi(1), Ui(1), Wi(1), Ri(1),
X

f
i (ai, bi; qi) ; matrices Ki and Kf

i , reconfiguration

period T ; maximum number of noncompliant controllers in

the neighborhood NNC
max.

Initialization: At k = 0, set xi = zi = xi(0), qi = 1,

p = 0, and NUC
i = Ni and NC

i = NNC
i = ∅.

Online routine:

1) At time k and state (xi, zi), solve Pi

(
zi; qi

)
to obtain

v∗i = κ̄i(zi) and (a∗i , b
∗
i ).

2) Apply ui = v∗i +Ki(xi − zi) to subsystem i.
3) Measure x+

i , compute z+ = Aiizi +Biiv
∗
i and w̃i =

x+
i −Aiixi −Biiui.

4) If w̃i /∈ W
0
i

a) Set A = ∅.

b) For each neighbor j ∈ NUC
i

• If j is responsible for w̃i, N
UC
i = NUC

i \ {j},

NNC
i = NNC

i ∪ {j}.

• Else if w̃i is compatible with j, A = A ∪ {j}.

c) If |A| ≤ NNC
max, NNC

i = NNC
i ∪ A, NUC

i =
NUC

i \ A.

d) If |NNC
i | = NNC

max, NC
i = Ni \N

NC
i , update W

s
i

and compute Wi(g
+
i ).

5) If k = pT ,

a) Transmit a∗i , b∗i to subsystems j ∈ Ni.

b) Compute Wi(g
+
i ).

c) Set p = p+ 1.

6) Compute Ri(q
+
i ).

7) Set (xi, zi) = (x+
i , z

+
i ), set k = k + 1, go to Step 1.

A. Implementation: the polytopic case

Here, we provide implementation details of the algorithm.

1) Computing Wi(g
+
i ): Given a safety disturbance set

W
s
i(g

s
i ) described by {ws

i : C
s
iw

s
i ≤ gsi}, the local disturbance

set Wi(gi) –defined by {wi : C
w
i wi ≤ gi}– can be calculated

by updating g+i as

g+il = max{Cw
ilw

l : wl ∈ W
s}

+
∑

j∈Ni

max{Cw
ilAijx

l
j : x

l
j ∈ Xj(a

∗
j )}

+
∑

j∈Ni

max{Cw
ilBiju

l
j : u

l
j ∈ Uj(b

∗
j )}.

for each entry l of g+i .

2) Computing Ri(q
+
i ) given Wi(g

+
i ): Step 6 requires the

on-line calculation of a new a minimal RPI set to reduce

conservatism and take advantage of the updated information

regarding the disturbance set Wi(g
+
i ) and the knowledge

regarding the state. To this end, the LP proposed in [18] is

used, which allows computing an updated q+i to form the

minimal RPI set characterized by the given set of inequalities

CR
i that contains the state. In particular, Ri(1) is assumed

to be designed off-line by a proper method as those in [19],

[18]. Then, given Wi(g
+
i ), it suffices to solve the following

LP to calculate q+i :

q+i = c∗i + d∗i where (c∗i , d
∗
i ) = arg max

{cil,dil,ξ
l
i,ω

l
i}

∀l∈{1,...,rRi }

rRi∑

l=1

cil + dil

subject to, for all l ∈ {1, . . . , rRi },

cil ≤ CR
il (Aii +BiiKi)ξ

l
i,

CR
il (x

+
i − z+i ) ≤ CR

i ξli,

CR
i ξli ≤ ci + di,

dil ≤ CR
il ω

l
i,

Cw
i ωl

i ≤ g+i .



VI. RECURSIVE FEASIBILITY AND STABILITY

Given xi ∈ zi⊕Ri, a feasible solution v
∗
i (zi) for Pi(zi; qi)

guarantees that x+
i ∈ z+i ⊕ Ri and the satisfaction of the

local true state and input constraints. Moreover, the sequence

ṽi(z
+
i ) = {v∗i (1; zi), . . . , v

∗
i (N − 1; zi),K

f
i z

∗
i (N ; zi)}

(10)

is also feasible for Pi(z
+
i ), which provides the controlled

system with recursive feasibility as long as the constraint

and invariant sets remain constant, i.e., the constraints

of the true subsystem are satisfied for all future x+
i ∈

(Aiixi +Biiκi(xi, zi))⊕Wi.

Nevertheless, the fact that the RPI set changes, i.e.,

Ri(q
+
i ) 6= Ri(qi), demands special attention to avoid the

loss of recursive feasibility, for ṽi(z
+
i ) may not be feasible

for Pi(z
+
i ; q

+
i ). Here we make a conservative assumption that

requires that a feasible solution can always be found for the

initial setup of the control scheme.

Assumption 5: Problem Pi(zi;1) is feasible.

A. Conditions for recursive feasibility

Next, we discuss the different situations that can come up

after the update of Ri:

• Ri(q
+
i ) ⊆ Ri(qi): every decrease Ri makes the domain

of the optimization problem Zi larger, as shown in [16].

Hence, the sequence is still feasible in future optimiza-

tions. Since the optimization promotes the reduction

of Xi(ai) ⊖Ri(qi) and Ui(bi) ⊖KiRi(qi) until these

constraints become active, ai and bi must decrease,

which reduces Wji for any j with i ∈ Nj and allows

Ri(qj), aj and bj to decrease and hence reduce Wij

and Ri(qi). In this way, exponential stability towards

the origin can be achieved if all agents comply with the

scheme, as it was shown in [16] provided that ai and bi
are non-increasing over time. If there are noncompliant

agents, then agents state must remain inside a bounded

region around the origin.

• Ri(q
+
i ) ⊃ Ri(qi): Ri(q

+
i ) = Ri(qi) should always be

a feasible solution for the minimal RPI calculation step,

that is, this case should not happen. Nevertheless, let

us assume this situation for the sake of analysis. In

this case, the sequence ṽi(z
+
i ) may not be feasible for

Pi(z
+
i ) and two situations can arise:

– A new solution can be found for Pi(z
+
i ) in such

a way that ai and bi are lower or equal to the last

broadcasted values. In this case, neighbors are not

affected and everything is handled internally by the

local controller.

– A new solution can be found for Pi(z
+
i ) but ai

and bi must be increased with respect to the last

transmitted values. For example, in the worst case

the controller can resort to the initial case, which

is assumed to be feasible. Here, it is necessary

to communicate the new values before taking any

control action. An iterative process could take

place until agents converge on the values of their

new bounds, which in the worst case are those

corresponding to full sized constraints.

VII. ILLUSTRATIVE EXAMPLE

A modification of the four-truck system presented in [20]

is used as test bench. Here, trucks have mass m1 = 3kg,

m2 = 2kg, m3 = 3kg, and m4 = 6kg and dynamics
[
ṙi
v̇i

]

=

[
0 1

− 1
mi

∑

j∈Ni
kij − 1

mi

∑

j∈Ni
hij

]

︸ ︷︷ ︸

Aii

[
ri
vi

]

+

[
0
100

]

︸ ︷︷ ︸

Bii

ui +
∑

j∈Ni

[
0 0

1
mi

∑

j∈Ni
kij

1
mi

∑

j∈Ni
hij

]

︸ ︷︷ ︸

Aij

[
rj
vj

]

︸ ︷︷ ︸
wi

where ri, vi, ui and wi are respectively the displacement of

truck i with respect to its equilibrium position, its velocity, the

acceleration, which is the control input, and the disturbance

due to neighbors, which is generated in the following way:

• trucks 1 and 2 are coupled via a spring (stiffness k12 =
0.5Nm−1) and damper (h12 = 0.2Nm−1 s−1);

• trucks 2 and 3 are coupled via a spring (stiffness k23 =
0.75Nm−1) and damper (h23 = 0.25Nm−1 s−1);

• trucks 3 and 4 are coupled via a spring (stiffness k34 =
1Nm−1) and damper (h34 = 0.3Nm−1 s−1);

Initial states are xT
1 = [1.8, 0], xT

2 = [−1, 0], xT
3 = [1, 0]

and xT
4 = [−1, 0]. The goal is to take trucks to the origin

while satisfying state and input constraints Xi(1) and Ui(1),
which are defined as |ri| ≤ 4, |vi| ≤ 1 and |ui| ≤ 1 for trucks

1, 2, and 3; the constraints of truck 4 are simply |r4| ≤ 4,

|v4| ≤ 1 and |u4| ≤ 2. Also, recall that initial disturbance

sets are assumed to be known by all affected agents, which

allow them to compute Wi(1).
Local controllers approximate the continuous-time dy-

namics with a sampling time of 0.1 seconds to obtain a

discrete-time model by using zero-order hold. Cost matrices

are defined as Qi = I and Ri = 100 and ρa = 0.0001,

and the horizon is N = 25. Note that there is no need

for bi in this case study, for there is only state coupling.

Also, a deadbeat controller is used for the tube control law,

Ki, of each truck, so that the minimal RPI set is finitely

determined. Finally, an LQR Kf
i = K∞(Aii, Bi, Qi, Ri) is

used as a terminal controller, which allows us to calculate the

terminal cost matrix Pi as the solution of the corresponding

Lyapunov equation and the maximal parametric terminal set

that guarantees the satisfaction of Xi(ai) and U.

We assume that NNC
max = 1 and set agent 2 as noncompliant.

In particular, we consider that its state remains constant at

xT
2 = [4, 1] and also that it broadcasts that its state constraint

set is empty so that neighbors will not expect any disturbances

from it. Also, given the couplings, agents 1 and 4 are going to

work in a pure decentralized tube MPC mode, for they have

only one neighbor. Hence, we focus exclusively on agent

3, which is the only one that can benefit by applying the

proposed method. Nevertheless, no detection can be carried



out because the disturbance set that agent 3 can receive from

its neighbor 2 is a subset of that generated by agent 4.

In a 50 time step simulation, the cumulated cost of agent

3 when the method proposed in [16] was 8.1859. This result

was obtained allowing agents to reconfigure their disturbance

sets at each time step and without accounting for disturbances

received from agent 2, for this is the information broadcasted

by this agent. When standard decentralized tube MPC is

applied, performance improves slightly and cumulated cost

becomes 8.1830. In this case, agent 3 assumes worst case

disturbances from agents 2 and 4 in its calculations. This

improvement increases when the proposed method is used and

cumulated cost becomes 8.1824. Here, it is considered that

either agent 2 or agent 4 broadcasts false information, which

allows local controller 3 to reduce conservatism. Figure 1

illustrates the conservatism of each approach by plotting

simultaneously the evolution of the state of this agent and the

size of the minimal RPI that corresponds to the information

available from neighbors’ disturbances. Nevertheless, note

that costs can be misleading, for disturbances generated by

the noncompliant neighbor might be beneficial for some

of its neighbors. For this reason we must stress that the

most relevant contribution of the proposed approach is to

preserve theoretical properties such as stability even when

noncompliant neighbors might exist.

Fig. 1. Evolution of the state of agent 3 for the tested methods (up: DMPC
with minimization of dual disturbances [16]; mid: decentralized tube MPC;
down: proposed approach.).

VIII. CONCLUSIONS

A distributed MPC scheme with robustness with respect

to noncompliant agents has been presented. To this end,

local controllers deal explicitly with the possible deviations

of neighbors with respect to their broadcasted bounds. To

avoid resorting to the conservative decentralized tube-based

MPC, it is assumed that there is a maximum number

of noncompliant agents. Also, the proposed scheme has

interesting theoretical properties as recursive feasibility and

stability. In the simulation example, the rationale of the

proposed method has been illustrated by showing how the

conservativeness of the calculations lies between those of

the method presented in [16] and standard decentralized tube

MPC. Future work will extend the theoretical properties of

the scheme, which will also be tested in a larger size example.
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