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Abstract

Motivation: Multiple sequence alignment (MSA) is an NP-complete optimization problem found in computational 
biology, where the time complexity of finding an optimal alignment raises exponen-tially along with the number of 
sequences and their lengths. Additionally, to assess the quality of a MSA, a number of objectives can be taken into 
account, such as maximizing the sum-of-pairs, maximizing the totally conserved columns, minimizing the number of 
gaps, or maximizing struc-tural information based scores such as STRIKE. An approach to deal with MSA problems 
is to use multi-objective metaheuristics, which are non-exact stochastic optimization methods that can pro-duce high 
quality solutions to complex problems having two or more objectives to be optimized at the same time. Our 
motivation is to provide a multi-objective metaheuristic for MSA that can run in parallel taking advantage of multi-

core-based computers.

Results: The software tool we propose, called M2Align (Multi-objective Multiple Sequence Alignment), is a parallel 
and more efficient version of the three-objective optimizer for sequence alignments MO-SAStrE, able of reducing the 
algorithm computing time by exploiting the comput-ing capabilities of common multi-core CPU clusters. Our 
performance evaluation over datasets of the benchmark BAliBASE (v3.0) shows that significant time reductions can 
be achieved by using up to 20 cores. Even in sequential executions, M2Align is faster than MO-SAStrE, thanks to 
the encod-ing method used for the alignments.

Availability and implementation: M2Align is an open source project hosted in GitHub, where the source code 
and sample datasets can be freely obtained: https://github.com/KhaosResearch/M2Align.

Contact: antonio@lcc.uma.es

1 Introduction

Multiple sequence alignment (MSA) (Bacon and Anderson, 1986) is

the process of aligning three or more biological sequences (DNA,

RNA, protein), and constitutes a widely used technique in several

areas of computational biology, such as: homology searches,

genomic annotation, protein structure prediction, gene regulation

networks, or functional genomics. MSA is an NP-complete

optimization problem (Wang and Jiang, 1994), where the time com-

plexity of finding an optimal alignment raises exponentially along

with the number of sequences and their lengths.

Another issue in MSA is to provide an efficient method to meas-

ure the alignment accuracy, as there is not a consensus on how to do

it. There are scores based on nucleotide or amino acid information,

such as the totally conserved columns (TCC) percentage and the
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Gaps and Non-gaps percentage. In this category, we also find Sum-

Of-Pairs (SOP) and the weighted SOP function with affine gap penal-

ties (WSP), which use distance matrices [e.g. Point Accepted

Mutation (PAM) (Dayhoff et al., 1978) and Blocks Substitution

Matrix (BLOSUM) (Henikoff and Henikoff, 1992)]. Other scores are

based on Supplementary Material like homologies or protein struc-

tures. For instance, STRIKE (Kemena et al., 2011) uses the molecular

contacts from protein structures to calculate the accuracy of align-

ments. Our interest is to optimize two or more of these scores at the

same time, thus giving place to a multi-objective formulation of MSA.

Metaheuristics are non-exact stochastic optimization algorithms,

which are able to face complex optimization problems with-

out requiring problem-specific information. When applied to

multi-objective problems, these algorithms can produce a front of

trade-off solutions in a single run (called Pareto Front), yielding to

alternative hypotheses that can be useful from different biological

points of view.

The use of multi-objective optimization in some fields of

Bioinformatics has shown to have relevant benefits compared to

single-objective approaches (Handl et al., 2007). Metaheuristics,

particularly the evolutionary algorithm subfamily, have been applied

to optimize multi-objective MSAs, such as in Abbasi et al. (2015),

da Silva et al. (2011), Kaya et al. (2014), Ortu~no et al. (2013),

Rani and Ramyachitra (2016), Rubio-Largo et al. (2015, 2016),

Seeluangsawat and Chongstitvatana (2005), Soto and Becerra

(2014) and Zhu et al. (2016).

One of these algorithms is MO-SAStrE (Ortu~no et al., 2013), a

multi-objective optimizer for sequence alignments that uses three

objectives to evaluate the MSA accuracy: STRIKE score, TCCs, and

percentage of non-gaps. However, metaheuristics like MO-SAStrE

work by evaluating iteratively thousands of MSA solutions, what

can be very time-consuming. Since biologists frequently need to

compute multiple alignments for different scale (small, medium and

large) input datasets, reducing run times is of high importance, so an

approach is to apply parallelism to take advantage of modern multi-

core computers.

Our proposal lies in this context. Specifically, we have imple-

mented M2Align, a faster and more efficient version of the algo-

rithm MO-SAStrE, able to solve MSA problems in parallel.

As the original MO-SAStrE, our version has the following

characteristics:

• It is based on the Non-dominated Sorting Evolutionary

Algorithm II or NSGA-II (Deb et al., 2002).
• The evolutionary variation operators are single point crossover

and closed gap shifting.
• The objectives to optimize are non-gaps percentage, TCCs and

STRIKE.
• The initial population of NSGA-II is filled with pre-alignments

obtained with representative MSA tools: ClustalW, MUSCLE,

Kalign, Mafft, RetAlign, TCOFFEE, ProbCons and FSA.

Unlike the original MO-SAStrE, our solution incorporates the fol-

lowing features:

• M2Align is written in Java (MO-SAStrE is implemented in

Matlab), so it can run in any computer having a Java JDK

installed.
• The algorithm in M2Align can be executed in parallel on multi-

core systems.
• The solution encoding, instead of matrices of integers, is based

on the one presented in (Rubio-Largo et al., 2015), which only

stores gap information (see the Supplementary Material). As a

consequence, the memory requirements are significantly reduced

and the genetic operators (crossover and mutation) can be more

efficiently implemented.
• If PDB structures are not available, M2Align provides SOP and

WSP scores as alternatives to STRIKE.
• M2Align is an Open Source project hosted in GitHub (https://

github.com/KhaosResearch/M2Align), thus facilitating their use

by interested users. Information about how to download, com-

pile and run it is included in the project site.

2 Materials and methods

2.1 The NSGA-II algorithm
M2Align and MO-SAStrE are versions of NSGA-II (Deb et al.,

2002), the most well-known and used multi-objective metaheuristic,

although they are adapted to tackle with the MSA. NSGA-II follows

the scheme of a generational evolutionary algorithm, as is depicted

in Figure 1. Initially, a population of N tentative solutions is created

and then an auxiliary population, also of size N, is filled by applying

the selection, crossover and mutation evolutionary operators to the

solutions of the original population. Then, both populations are

merged into one and the best N solutions of it are selected to consti-

tute the population for the next generation of the algorithm.

The term best applied to compare solutions in multi-objective

optimization is tricky in the situations in which none of them is bet-

ter than the other in all the objectives (these solutions are referred as

non-dominated). The approach taken by NSGA-II is to make a dom-

inance ranking, in the sense that those non-dominated solutions in

the combined population has a rank of 1; the rest of non-dominated

solutions have a rank of 2, and so on. The solutions are then sorted

by rank, and the ones with better ranks are included in the next

population. This scheme allows to guide the search towards the

Pareto front (i.e. the set of those solutions that are non-dominated

with respect to any other in the search space).

If we take a look on the example in Figure 1, we can observe that

the group of solutions having a rank of 3 does not fit into the next

population, so an additional mechanism must be applied to select

some of them. The idea is to apply a density estimator to promote

the diversity of the solutions in the population; NSGA-II uses an esti-

mator known as crowding distance (defined in Supplementary

Material).

These steps are repeated until a stopping condition is fulfilled,

typically by performing a fixed number of iterations. The output of

the algorithm execution will be an approximation of the Pareto

front.

It is important to note that before the merging and ranking steps,

all the solutions of the auxiliary population must be evaluated. This

can be computationally expensive in the case of large MSA prob-

lems, which suggests that an approach to accelerate the execution of

the algorithm is to perform all the evaluations in parallel.

2.2 Multi-objective formulation and biological

justification
As commented before, M2Align is configured to optimize three ob-

jectives: STRIKE, percentage of TCCs and percentage of non-gaps.

These three objectives are to be maximized.

STRIKE uses structural information from the Protein Data Bank

(PDB) to estimate the contacts between amino acids by using a scor-

ing matrix; this score allows to identify the accuracy of alignments

with better precision than other scores such as PAM or BLOSUM.

The percentage of TCCs is a widely accepted score because complete
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columns indicate more conserved regions in sequences. The last

score, the percentage of non-gaps, has sense because the number of

gaps can be overused to improve the number of alignments, so the

idea is to reducing this percentage is to find more compact and real-

istic alignments. More details about these scores can be found in

(Ortu~no et al., 2013).

2.3 Strategy to generate the initial population
The usual approach to create the initial population in evolutionary

algorithms is to fill it with randomly generated solutions, but in

MO-SAStrE the adopted approach is to use a set of pre-computed

alignments performed by other MSA tools. In M2Align, we follow a

similar strategy, i.e. by adding pre-computed solutions to the initial

population and creating new alignments by applying a genetic cross-

over operator to pairs of randomly selected solutions to fill the rest

of the population.

For our experiments, we have focused on the the BAliBASE data-

set (v3.0) (Thompson et al., 2005). For every problem instance in

this benchmark, a number of alignments by using eight representa-

tive MSA tools have been generated, namely: ClustalW, MUSCLE,

Kalign, Mafft, RetAlign, TCOFFEE, ProbCons and FSA. Their spe-

cific versions and features are detailed in Table 1

2.4 Solution encoding
With the aim of reducing the high memory cost and execution time

that requires classical character or numerical representations, as

done in MO-SAStrE (Ortu~no et al., 2013), we have implemented a

fast and low-memory cost codification of the alignments based on

groups of gaps, similar to the one proposed by Rubio-Largo et al.

(2015). This MSA representation only stores the positions (begin,

end) of the groups of gaps into the sequences. Figure 2 illustrates an

example.

Thus, given a sequence S, it is encoded to S0 in this way: s
0
:

[(Bgg1,Egg1),(Bgg2,Egg2),. . .,(Bggn,Eggn)]where n is the

number of groups of gaps of the sequence S, and Bggx and Eggx
represent the initial and final position into the sequence S of the

group of gaps x, respectively. This codification reduces the time of

execution of both genetic crossover and mutation operators, since

numerical operations are applied on the gap lists instead of manipu-

lating large sequence of characters.

2.5 Genetic operators for MSA
We have implemented the same mutation and crossover operators

used by MO-SAStrE (Ortu~no et al., 2013). The mutation operator is

Closed Gap Shifting, where a random set of closed gaps are shifted

to another random position in a sequence. The crossover operator is

the Single-Point Crossover adapted to alignments (da Silva et al.,

2010). This operator randomly selects a position from the parent 1

by splitting it into two blocks (P1a and P1b) and the parent 2 is tail-

ored so that the right piece can be joined to the left piece of the first

parent (P1a) and vice versa. Then, the selected blocks are crossed be-

tween these two parents, generating two new individuals with the

combination of the blocks: [P1a þ P2b] and [P1a þ P1b]. Finally,

with the aim of reducing the number of gaps into the alignment, the

columns containing only gaps are removed. These two operators are

illustrated in Figure 3.

2.6 Parallel approach
As commented before, a natural strategy for parallelizing NSGA-II

is to perform all the function evaluations of the new created solu-

tions at the same time. However, the rest of the steps will be still

executed sequentially, so the ratio between parallel and sequential

computations must be clearly favorable to the former to obtain sig-

nificant time reductions.

Fig. 1. Working scheme of the NSGA-II algorithm

Table 1. Methods used to generate the initial population of the al-

gorithms. These eight tools are applied to build initial MSAs for the

BAliBASE datasets

Tool Version Type

ClustalW (Thompson et al., 1994) 2.1 Progressive

MUSCLE (Edgar, 2004) 3.8.31 Progressive

Kalign (Lassmann and Sonnhammer, 2005) 2.04 Progressive

Mafft (Katoh et al., 2002) 7.245 Progressive

RetAlign (Nov�ak et al., 2010) 1.0 Progressive

TCOFFEE (Notredame et al., 2000) 11.00 Consistency-based

ProbCons (Do et al., 2005) 1.12 Consistency-based

FSA (Roberts et al., 2009) 1.15.9 Consistency-based

Fig. 2. Example of alignment (left) and how it is encoded in M2Align (right)
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For this reason, we have made a study to identify those op-

erations that contribute in a significant way to the overall execu-

tion time. For this purpose, Figure 4 shows the average serial

time profiles for the algorithm NSGA-II when solving the BAliBASE

instance BB20001. In this figure, we detail the time percentages

spent on the following operations of the algorithm: solution

evaluation, replacement, reproduction (given a set of selected par-

ents, crossover and mutation operators are applied to generate

new individuals), creation of the initial population, and selection

operator.

These figures indicate that the parallel approach used in

M2Align, evaluating the solutions in parallel, is justified since the

evaluation is clearly the most time consuming task.

The parallel scheme adopted in M2Align has also the advantages

of: first, do not requiring any change in the original algorithm and,

second, the behaviour of NSGA-II remains unchanged.

2.7 Implementation details
M2Align has been developed by using the jMetal framework for

multi-objective optimization (Nebro et al., 2015). The object-

oriented architecture of jMetal has allowed to re-use its NSGA-II

implementation.

The developing of M2Align has required to include the codifica-

tion scheme of MSA solutions based on the specification only of the

groups of gaps into the sequences, the crossover and mutation oper-

ators, and the implementation of the scores. To facilitate the specifi-

cation of the particular objectives to be optimized, M2Align

provides a generic MSA problem template that can be easily instan-

tiated with any of the included scores.

The parallelization scheme used in M2Align is also taken from

jMetal. The evaluation of the solutions of the population of a meta-

heuristic is a self-contained procedure in most of jMetal metaheuris-

tics (i.e, they have a evaluatePopulation(List<Solution>)

method), which includes an instance of a class called Evaluator,

being this object the responsible of evaluating all the solutions. The

idea is to use a multi-threaded evaluator that is able to perform all

the solution evaluations in parallel in multi-core based computers.

3 Results and discussion

To assess the performance of M2Align, we have chosen the

Benchmark Alignment dataBASE (BALiBASE v3.0) (Thompson

et al., 2005) which contains 218 sets of sequences (extracted from

the PDB) that are prepared to be aligned by MSA approaches. We

have defined the sets of sequences in six subsets according to their

families and similarities RV11, RV12, RV20, RV30, RV40 and

RV50; each group presents different biological characteristics. The

experiments have been carried out over a multi-core system

Fig. 3. (a) Single point crossover operator: The first parent is cut straight at a randomly chosen position. The second one is tailored so that the right piece can be

joined to the left piece of the first parent and vice-versa. (b) Closed gap shifting mutation operator: closed gaps are randomly chosen and shifted to another pos-

ition. Columns full of gaps are removed if they are found

Fig. 4. Serial execution time profile of NSGA-II when solving an MSA problem

instance
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composed of 20 cores. M2Align has been configured in a similar

way to MO-SAStrE, with a population size of 100 solutions and a

total number of evaluations of 50 000. The mutation and crossover

are defined with a probability of execution of 0.80 and 0.20, re-

spectively. The initial population has been generated using the input

datasets of pre-alignments computed by the MSA techniques speci-

fied in Table 1. The architecture selected for conducting these ex-

periments was a 2-processor Intel Xeon CPU E5-2650 v3 of 10

cores at 2.3GHz and 25MB Cache running CentOS Linux 7.

3.1 Parallel performance
To evaluate the performance of M2Align, we have used two well-

known metrics: speed-up and efficiency. The speed-up is defined by

the sequential time divided by the parallel time, so if the number of

processing units (e.g. cores) is P, this value should be the ideal time

reduction to achieve. Related to the speed-up, the efficiency metric

is computed by dividing the speed-up by the number of cores used;

thus, an efficiency of 100% indicates a speed-up of P.

Table 2 shows the total computing time, speed-up and efficiency

of M2Align when aligning the six families of set of sequences con-

tained in BAliBASE v3.0, using 1 (sequential execution), 4, 10 and

20 cores.

We can observe that significant speed-up and efficiency values

can be obtained. For example, in the case of the RV11 group, the se-

quential time (T1) of 9.05 hours is reduced to 2.54, 1.27 and 0.99 h,

with 4, 10 and 20 cores, respectively. In terms of speed-ups, the val-

ues can be up to 3.56 with 4 cores (efficiency of 89%), 7.15 with 10

cores (efficiency of 72%) and 9.12% (efficiency of 46%), and simi-

lar results are obtained for the rest of the families. More detailed in-

formation is included in the Supplementary Material, which

contains the parallel results for each of the 218 instances of the

benchmark BAliBASE.

With the aim of knowing the performance of the sequential ver-

sion of M2Align over the original version of MO-SAStrE, we have

carried out some executions of both techniques solving a selected

number of BAliBASE datasets, setting the same conditions for a fair

comparison. The tests have been carried out over the same comput-

ing system, using the same parameters and with the same input data-

sets of pre-alignments for the generation of the initial population.

Table 3 shows the execution time (in minutes) of both techniques.

As we can see, M2Align performs a faster execution aligning

each one of these datasets. For example, in the case of the BB30009

instance, MO-SAStrE needs 294.24 minutes, but the sequential ver-

sion of M2Align only requires 0.55 min. The time difference are due

mainly to the gap group based codification of the alignments, which

allows an efficient implementation of the crossover and mutation

operators.

3.2 Comparison with other MSA methodologies
In order to determine the accuracy of M2Align, we have compared

it with other classical MSA techniques detailed in Table 4 by align-

ing all the 218 datasets of BAliBASE v3.0. This table shows the aver-

age scores of the three objectives (STRIKE, TCC and Non-Gaps)

optimized by M2Align, and two scoring functions provided by

BAliBASE, the sum-of-pairs (SP) and total-column (TC) scores,

where unreliable regions are included in the reference. We have also

included the results obtained with 3D-Coffee (Poirot et al., 2004), a

tool that is representative of methods using structural information.

We can see that M2Align generates more accuracy alignments

according to STRIKE and TCC; the Non-Gaps% score is better per-

formed by MO-SAStrE. If we take into account the SP and TC

scores of BAliBASE, M2Align yields the highest scores if we exclude

the BAliBASE reference values. We could not solve all the BAliBASE

problems with the original MO-SAStrE code, so the values of this al-

gorithm in Table 4 have been taken from (Ortu~no et al., 2013) but

the TC score, which was not included in that article.

A more detailed comparison is shown in the Supplementary

Material, where we have added two tables with the scores generated

by M2Align and the other MSA techniques when aligning eight se-

lected instances of BAliBASE v3.0.

The results reported in Table 4 shows that the numerical results

of M2Align and the original MO-SAStrE algorithm are not the

Table 2. Parallel performance evaluation of M2Align (time units are

hours) over 218 instances of the BAliBASE v3.0

Family T1 4 cores 10 cores 20 cores

T4 Sp Ef T10 Sp Ef T20 Sp Ef

RV11 9.05 2.54 3.56 89% 1.27 7.15 72% 0.99 9.12 46%

RV12 4.58 1.34 3.43 86% 0.73 6.29 63% 0.63 7.22 36%

RV20 7.78 2.30 3.38 84% 1.20 6.49 65% 0.94 8.25 41%

RV30 6.55 1.88 3.48 87% 0.99 6.61 66% 0.79 8.28 41%

RV40 9.14 2.70 3.39 85% 1.50 6.11 61% 1.25 7.33 37%

RV50 5.19 1.46 3.54 89% 0.74 7.03 70% 0.59 8.77 44%

T1, Sequential runtime; Sp, Speed-up (T1 divided number of cores); (Ef),

Efficiency (Sp divided by the number of cores).

Table 3. Execution Time in minutes) of the sequential version of

M2Align against the original version of MO-SAStrE when solving

nine BAliBASE datasets

Instance Sequential runtime (min)

MOSAStrE Sequential M2Align

BB11001 24.02 0.44

BB11009 37.50 4.09

BB11011 80.96 3.49

BB11013 31.41 0.41

BB12002 85.14 0.76

BB12004 172.18 2.73

BB12010 183.04 3.92

BB12015 142.65 1.80

BB30009 294.24 0.55

Table 4 Average scores for the 218 BAliBASE problems optimized

by M2Align and 9 classical MSA techniques [the values of MO-

SAStrE have been taken from Ortu~no et al. (2013)]

Method M2Align

objectives

BAliBASE

Scores

STRIKE TCC (%) Non-gaps (%) SP TC

ClustalW 1.54 1.70 55.39 0.67 0.29

Muscle 1.76 1.90 52.48 0.72 0.36

Kalign 1.75 1.85 48.04 0.73 0.36

RetAlign 1.72 2.10 49.38 0.71 0.33

Tcoffee 1.75 1.87 45.35 0.77 0.41

ProbCons 1.74 1.85 44.21 0.77 0.42

3D-Coffee 1.80 1.64 42.27 0.72 0.39

Mafft 1.80 1.97 49.70 0.77 0.43

FSA 1.37 1.40 31.36 0.68 0.32

BAliBASE 1.79 1.94 52.16 1.00 1.00

MO-SAStrE 2.37 2.44 58.51 0.79 —

M2Align 2.44 2.45 58.13 0.81 0.46

Deleted Text: ,
Deleted Text: P
Deleted Text: ,
Deleted Text:  hours
Deleted Text: hours 
Deleted Text: ours
Deleted Text: utes
Deleted Text: O
Deleted Text: M
Deleted Text: paper
Deleted Text: File


same. There are some reasons explaining this fact. On the one hand,

M2Align is implemented in Java and takes the NSGA-II algorithm

provided by the jMetal framework, while MO-SAStrE is imple-

mented in MatLab and uses the NSGA-II provided by that tool; this

implies that some components (e.g. the random number generator)

will not be the same. On the other hand, the description of the cross-

over and mutation operators in the MO-SAStre paper is very high

level, remaining some implementation details unexplained. As a con-

sequence, both algorithms do not have the same behaviour when

solving MSA problems.

4 Discussion

The obtained parallel performance of M2Align on the BAliBASE

problems indicates that important time reductions can be obtained

with up to 20 cores, but the efficiency decreases with a higher num-

ber of cores. The main reason is that the working of M2Align alter-

nates a parallel step (evaluating the solutions) with a sequential one

(the rest of the algorithm). Furthermore, the parallel scheme is syn-

chronous, which implies that the parallel step finishes when all the

solutions have been evaluated. In the case of MSA, the solutions can

have different length so their evaluation time may not be the same,

what hinders having all the cores busy the 100% of the time (this ef-

fect is accentuated the greater the number of cores). Anyway, we

have to consider that we are not altering the behaviour of the ori-

ginal algorithm and, in some cases, the speed-up with 20 cores can

be higher than 11 (see problem BB20007 in Table 3 in the

Supplementary Material), what it is an interesting outcome in prac-

tical terms.

We have made some pilot tests with more complex MSAs [we in-

clude an experiment in Section 4 in the Supplementary Material

using problems included in Capella-Gutiérrez et al. (2009)], and in

these situations the following issues must be taken into account:

• The number of gaps in the MSA has a strong influence in the per-

formance of M2Align due to the encoding scheme used.
• Medium scale problems are difficult to solve in a reasonable

amount of time using our multi-core computing system.

Medium and large scale MSAs are a challenge to tools such as

M2Align. Dealing with these problems would require to change the

underlying MO-SAStrE/NSGA-II algorithm and to use a more

powerful parallel computing system. Some strategies to consider are

incorporating local search strategies and using an asynchronous ver-

sion of NSGA-II (Durillo et al., 2008) to avoid the bottleneck of the

sequential part of the algorithm and to have the cores working most

of the time.

5 Conclusions

The alignment of multiple biological sequences can be a computa-

tional intensive task when the sequences are long and numerous, so

an approach to cope with it is to take advantage of the parallelism

potential provided by current multi-core computers.

We have proposed a tool called M2Align which includes a re-

implementation of the MO-SAStrE MSA algorithm, but with a num-

ber of significant improvements, being the most remarkable one the

parallel execution of this algorithm. Other differences include an ef-

ficient MSA encoding and the fact that M2Align is an Open Source

project that is hosted in GitHub repository.

The results obtained reveal that significant time reductions can

be achieved by using up to 20 cores when solving the datasets

included in the BAliBASE 3.0 benchmark. Our experiments also in-

dicate that our implementation of MO-SAStrE is clearly more effi-

cient than the original one. Finally, a comparison against a set of

alignment techniques reveals that M2Align provides the best overall

results in the STRIKE and TCC scores.
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