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Abstract

This paper describes jMetalPy, an object-oriented Python-based framework for multi-objective optimization with metaheuristic
techniques. Building upon our experiences with the well-known jMetal framework, we have developed a new multi-objective
optimization software platform aiming not only at replicating the former one in a different programming language, but also at taking
advantage of the full feature set of Python, including its facilities for fast prototyping and the large amount of available libraries for
data processing, data analysis, data visualization, and high-performance computing. As a result, jMetalPy provides an environment
for solving multi-objective optimization problems focused not only on traditional metaheuristics, but also on techniques supporting
preference articulation and dynamic problems, along with a rich set of features related to the automatic generation of statistical data
from the results generated, as well as the real-time and interactive visualization of the Pareto front approximations produced by
the algorithms. jMetalPy offers additionally support for parallel computing in multicore and cluster systems. We include some use
cases to explore the main features of jMetalPy and to illustrate how to work with it.
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1. Introduction

Multi-objective optimization problems are widely found in
many disciplines [1, 2], including engineering, economics, lo-
gistics, transportation or energy, among others. They are char-
acterized by having two or more conflicting objective functions
that have to be maximized or minimized at the same time, with
their optimum composed by a set of trade-off solutions known
as Pareto optimal set. Besides having several objectives, other
factors can make this family of optimization problems particu-
larly difficult to tackle and solve with exact techniques, such as
deceptiveness, epistasis, NP-hard complexity, or high dimen-
sionality [3]. As a consequence, the most popular techniques to
deal with complex multi-objective optimization problems are
metaheuristics [4], a family of non-exact algorithms including
evolutionary algorithms and swarm intelligence methods (e.g.
ant colony optimization or particle swarm optimization).

An important factor that has ignited the widespread adop-
tion of metaheuristics is the availability of software tools eas-
ing their implementation, execution and deployment in practi-
cal setups. In the context of multi-objective optimization, one
of the most acknowledged frameworks is jMetal [5], a project
started in 2006 that has been continuously evolving since then,
including a full redesign from scratch in 2015 [6]. jMetal is im-
plemented in Java under the MIT licence, and its source code is
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publicly available in GitHub1.
In this paper, we present jMetalPy, a new multi-objective

optimization framework written in Python. Our motivation for
developing jMetalPy stems from our past experience with jMetal
and from the fact that nowadays Python has become a very
prominent programming language with a plethora of interest-
ing features, which enables fast prototyping fueled by its large
ecosystem of libraries for numerical and scientific computing
(NumPy [7], Scipy [8]), data analysis (Pandas), machine learn-
ing (Scikit-learn [9]), visualization (Matplotlib [10], Holoviews
[11], Plotly [12]), large-scale processing (Dask [13], PySpark
[14]) and so forth. Our goal is not only to rewrite jMetal in
Python, but to focus mainly on aspects where Python can help
fill the gaps not covered by Java. In particular, we place our
interest in the analysis of results provided by the optimization
algorithms, real-time and interactive visualization, preference
articulation for supporting decision making, and solving dy-
namic problems. Furthermore, since Python can be thought of
as a more agile programming environment for prototyping new
multi-objective solvers, jMetalPy also incorporates a full suite
of statistical significance tests and related tools for the sake of
a principled comparison among multi-objective metaheuristics.

jMetalPy has been developed by Computer Science engi-
neers and scientists to support research in multi-objective op-
timization with metaheuristics, and to utilize the provided al-
gorithms for solving real-word problems. Following the same

1jMetal: https://github.com/jMetal/jMetal. As of April 18, 2019,
the papers about jMetal had accumulated more than 1280 citations (source:
Google Scholar)
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open source philosophy as in jMetal, jMetalPy is released un-
der the MIT license. The project is in continuous development,
with its source code hosted in GitHub2, where the last stable
and current development versions can be freely obtained.

The main features of jMetalPy are summarized as follows:

• jMetalPy is implemented in Python (version 3.6+), and its
object-oriented architecture makes it flexible and extensible.

• It provides a set of classical multi-objective metaheuristics
(NSGA-II [15], GDE3 [16], SMPSO [17], OMOPSO [18],
MOEA/D [19]) and standard families of problems for bench-
marking (ZDT, DTLZ, WFG [2], and LZ09 [20]).

• Dynamic multi-objective optimization is supported, includ-
ing the implementation of dynamic versions of NSGA-II and
SMPSO, as well as the FDA [21] problem family.

• Reference point based preference articulation algorithms, such
as SMPSO/RP [22] and versions of NSGA-II and GDE3, are
also provided.

• It implements quality indicators for multi-objective optimiza-
tion, such as Hypervolume [23], Additive Epsilon [24] and
Inverted Generational Distance [25].

• It provides visualization components to display the Pareto
front approximations when solving problems with two ob-
jectives (scatter plot), three objectives (scatter plot 3D), and
many-objective problems (parallel coordinates graph and a
tailored version of Chord diagrams).

• Support for comparative studies, including a wide number of
statistical tests and utilities (e.g. non-parametric test, post-
hoc tests, boxplots, CD plot), including the automatic gen-
eration of LATEX tables (mean, standard deviation, median,
interquartile range) and figures in different formats.

• jMetalPy can cooperatively work alongside with jMetal. The
latter can be used to run algorithms and compute the qual-
ity indicators, while the post-processing data analysis can be
carried out with jMetalPy.

• Parallel computing is supported based on Apache Spark [26]
and Dask [13]. This includes an evaluator component that
can be used by generational metaheuristics to evaluate so-
lutions in parallel with Spark (synchronous parallelism), as
well as a parallel version of NSGA-II based on Dask (asyn-
chronous parallelism).

• Supporting documentation. A website3 is maintained with
user manuals and API specification for developers. This site
also contains a series of Jupyter notebooks4 with use cases
and examples of experiments and visualizations.

2jMetalPy: https://github.com/jMetal/jMetalPy
3jMetalPy documentation: https://jmetalpy.readthedocs.io
4Jupyter: https://jupyter.org

Our purpose of this paper is to describe jMetalPy, and to
illustrate how it can be used by members of the community in-
terested in experimenting with metaheuristics for solving multi-
objective optimization problems. To this end, we include some
implementation use cases based on NSGA-II to explore the
main variants considered in jMetalPy, from standard versions
(generational and steady state), to dynamic, reference-point based,
parallel and distributed flavors of this solver. A experimental
use case is also described to exemplify how the statistical tests
and visualization tools included in jMetalPy can be used for
post-processing and analyzing the obtained results in depth. For
background concepts and formal definitions of multi-objective
optimization, we refer to our previous work in [5].

The remaining of this paper is organized as follows. In Sec-
tion 2, a review of relevant related algorithmic software plat-
forms is conducted to give an insight and rationale of the main
differences and contribution of jMetalPy. Section 3 delves into
the jMetalPy architecture and its main components. Section 4
explains a use case of implementation. Visualization facilities
are described in Section 5, while a use case of experimentation
with statistical procedures is explained in Section 6. Finally,
Section 7 presents the conclusions and outlines further related
work planned for the near future.

2. Related Works

In the last two decades, a number of software frameworks
devoted to the implementation of multi-objective metaheuris-
tics has been contributed to the community, such as ECJ [33],
EvA [34], JCLEC-MO [35], jMetal [5, 6], MOEA Framework
[36], and Opt4J [37], which are written in Java; ParadisEO-
MOEO [38], and PISA [39], developed in C/C++; and PlatEMO
[40], implemented in Matlab. They all have in common the in-
clusion of representative algorithms from the the state of the art,
benchmark problems and quality indicators for performance as-
sessment.

As has been mentioned in the introduction, there is a grow-
ing interest within the scientific community in software frame-
works implemented in Python, since this language offers a large
ecosystem of libraries, most of them devoted to data analysis,
data processing and visualization. When it comes to optimiza-
tion algorithms, a set of representative Python frameworks is
listed in Table 1, where they are analyzed according to their
algorithmic domains, maintenance status, Python version and
licensing, as well as the featured variants, post-processing fa-
cilities and algorithms they currently offer. With the exception
of the Inspyred framework, they are all active projects (i.e., their
public source code have been updated at least one time within
the last six months) and work out-of-the-box with a simple pip
command. All of these frameworks support Python 3.x.

DEAP and Inspyred are not centered in multi-objective opti-
mization, and they include a shorter number of implemented al-
gorithms. Pagmo/PyGMO, Platypus and Pymoo offer a higher
number of features and algorithmic variants, including methods
for statistical post-processing and visualization of results. In
particular, Pagmo/PyGMO contains implementations of a num-
ber of single/multi-objective algorithms, including hybrid vari-
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Table 1: Most popular optimization frameworks written in Python.

Name Status Python License Parallel Dynamic Decision Post-processing Algorithms
version processing optimization making facilities

DEAP 1.2.2 [27] Active ≥2.7 LGPL-3.0 X Statistics GA, GP, CMA-ES, NSGA-II, SPEA2, MO-CMA-ES

Geatpy 1.1.5 [28] Active ≥3.5 MIT GA, MOEA

Inspyred 1.0.1 [29] Inactive ≥2.6 MIT GA, ES, PSO, ACO, SA, PAES, NSGA-II

PyGMO 2.10 [30] Active 3.x GPL-3.0 X
Visualization,
statistics

GA, DE, PSO, SA, ABC, IHS, MC,
CMA-ES, NSGA-II, MOEA/D

Platypus 1.0.3 [31] Active 3.6 GPL-3.0 X
Visualization,
statistics

CMA-ES, NSGA-II, NSGA-III,
GDE3, IBEA, MOEA/D,
OMOPSO, EpsMOEA, SPEA2

Pymoo 0.2.4 [32] Active 3.6 Apache 2.0 X
Visualization,
statistics

GA, DE, NSGA-II, NSGA-III,
U-NSGA-III, reference point (R-NSGA-III)

jMetalPy 1.0.0 Active ≥3.6 MIT X X X
Visualization,
statistics

GA, EA, NSGA-II, NSGA-III,
SMPSO, GDE3, OMOPSO, MOEA/D,
reference point (G-NSGA-II, SMPSO/RP, G-GDE3),
dynamic (NSGA-II, SMPSO, GDE3)

ants, with statistical methods for racing algorithms, quality in-
dicators and fitness landscape analysis. Platypus supports par-
allel processing in solution evaluation phase, whereas Pymoo is
rather focused on offering methods for preference articulation
based on reference points.

The jMetalPy framework we proposed in this paper is also
an active open source project, which is focused mainly on multi-
objective optimization (although a number of single-objective
algorithms are included) providing an increasing number of al-
gorithms and modern methods for statistical post-processing
and visualization of results. It offers algorithmic variants with
methods for parallel processing and preference articulation based
on reference points to provide decision making support. More-
over, jMetalPy incorporates algorithms and mechanisms for dy-
namic problem optimization, which is an additional feature not
present in the other related frameworks. In this way, the pro-
posed framework attempts at covering as many enhancing fea-
tures in optimization as possible to support experimentation and
decision making in both research and industry communities.
Besides these features, an important design goal in jMetalPy
has been to make the code easy to understand (in particular, the
implementation of the algorithms), to reuse and to extend, as is
illustrated in the next two sections.

3. Architecture of jMetalPy

The architecture of jMetalPy has an object-oriented design
to make it flexible and extensible (see Figure 1). The core
classes define the basic functionality of jMetalPy: an Algorithm
solves a Problem by using some Operator entities which ma-
nipulate a set of Solution objects. We detail these classes next.

3.1. Core Architecture

Class Algorithm contains a list of solutions (i.e. population
in Evolutionary Algorithms or swarm in Swarm Intelligence
techniques) and a run() method that implements the behavior
of a generic metaheuristic (for the sake of simplicity, full de-
tails of the codes are omitted):

1 class Algorithm(ABC):
def __init__(self):

3 self.evaluations = 0
self.solutions = List[]

5 self.observable = DefaultObservable()

7 def run(self):
self.solutions = self.create_initial_solutions()

9 self.solutions = self.evaluate(self.solutions)
self.init_progress()

11 while not self.stopping_condition_is_met():
self.step()

13 self.update_progress()

In the above code we note the steps of creating the initial
set of solutions, their evaluation, and the main loop of the algo-
rithm, which performs a number of steps until a stopping condi-
tion is met. The initialization of state variables of an algorithm
and their update at the end of each step are carried out in the
init progress() and update progress() methods, respectively. In
order to allow the communication of the status of an algorithm
while running we have adopted the observer pattern [41], so
that any algorithm is an observable entity which notifies to reg-
istered observers some information specified in advance (e.g.,
the current evaluation number, running time, or the current so-
lution list), typically in the update progress() method. In this
way we provide a structured method, for example, to display in
real-time the current Pareto front approximation or to store it in
a file.

A problem is responsible of creating and evaluating solu-
tions, and it is characterized by its number of decision vari-
ables, objectives and constraints. In case of the number of
constraints be greater than 0, it is assumed that the evaluate()
method also assesses whether the constraints are fulfilled. Sub-
classes of Problem include additional information depending of
the assumed solution encoding; thus, a FloatProblem (for nu-
merical optimization) or an IntegerProblem (for combinatorial
optimization) requires the specification of the lower and upper
bounds of the decision variables.

Operators such as Mutation, Crossover, and Selection, have
an execute(source) method which, given a source object, pro-
duces a result. Mutations operate on a solution and return a new
one resulting from modifying the original one. On the contrary,
crossover operators take a list of solutions (namely, the parents)
and produce another list of solutions (correspondingly, the off-
spring). Selection operators usually receive a list of solutions
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Figure 1: UML class diagram of jMetalPy.

and returns one of them or a sublist of them.
The Solution class is a key component in jMetalPy because

it is used to represent the available solution encodings, which
are linked to the problem type and the operators that can be used
to solve it. Every solution is composed by a list of variables, a
list of objective values, and a set of attributes implemented as
a dictionary of key-value pairs. Attributes can be used to as-
sign, for example, a rank to the solutions of population or a
constraint violation degree. Depending on the type of the vari-
ables, we have subclasses of Solution such as FloatSolution,
IntegerSolution, BinarySolution or PermutationSolution.

3.2. Classes for Dynamic Optimization

jMetalPy supports dealing with dynamic optimization prob-
lems, i.e., problems that change over time. For this purpose, it
contains two abstract classes named DynamicProblem and Dy-
namicAlgorithm.

A dynamic algorithm is defined as an algorithm with a restart-
ing method, which is called whenever a change in the problem
being solved is detected. The code of the DynamicAlgorithm
class is as follows:
1 class DynamicAlgorithm(Algorithm, ABC):

3 @abstractmethod
def restart(self) -> None:

5 pass

The DynamicProblem class extends Problem with methods
to query whether the problem has changed whatsoever, and to
clear that status:
1 class DynamicProblem(Problem, Observer, ABC):

3 @abstractmethod
def the_problem_has_changed(self) -> bool:

5 pass

7 @abstractmethod
def clear_changed(self) -> None:

9 pass

It is worth mentioning that a dynamic problem is also an ob-
server entity according to the observer pattern. The underlying
idea is that in jMetalPy it is assumed that changes in a dynamic
problem are produced by external entities, i.e, observable ob-
jects where the problem is registered.

4. Implementation Use Case: NSGA-II and Variants

With the aim of illustrating the basic usages of jMetalPy, in
this section we describe the implementation of the well-known
NSGA-II algorithm [15], as well as some of its variants (steady-
state, dynamic, with preference articulation, parallel, and dis-
tributed).

NSGA-II is a genetic algorithm, which is a subclass of Evo-
lutionary Algorithms. In jMetalPy we include an abstract class
for the latter, and a default implementation for the former. An
Evolutionary Algorithm is a metaheuristic where the step() method
consists of applying a sequence of selection, reproduction, and
replacement methods, as illustrated in the code snippet below:
1 class EvolutionaryAlgorithm(Algorithm, ABC):

def __init__(self,
3 problem: Problem,

population_size: int,
5 offspring_size: int):

super(EvolutionaryAlgorithm, self).__init__()
7 self.problem = problem

self.population_size = population_size
9 self.offspring_size = offspring_size

11 @abstractmethod
def selection(self, population):

13 pass

15 @abstractmethod
def reproduction(self, population):

17 pass

19 @abstractmethod
def replacement(self, population, offspring):

21 pass

23 def init_progress(self):
self.evaluations = self.population_size

25
def step(self):

27 mating_pool = self.selection(self.solutions)
offspring = self.reproduction(mating_pool)

29 offspring = self.evaluate(offspring)
self.solutions = self.replacement(self.solutions, offspring)

31
def update_progress(self):

33 self.evaluations += self.offspring_size

On every step, the selection operator is used (line 27) to re-
trieve the mating pool from the solution list (the population) of
the algorithm. Solutions of the mating pool are taken for re-
production (line 28), which yields a new list of solutions called
offspring. Solutions of this offspring population must be evalu-
ated (line 29), and thereafter a replacement strategy is applied to
update the population (line 30). We can observe that the eval-
uation counter is initialized and updated in the init progress()
(line 23) and update progress (line 32), respectively.
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The EvolutionaryAlgorithm class is very generic. We pro-
vide a complete implementation of a Genetic Algorithm, which
is an evolutionary algorithm where the reproduction is com-
posed by combining a crossover and mutation operator. We
partially illustrate this implementation next:
1 class GeneticAlgorithm(EvolutionaryAlgorithm):

def __init__(self,
3 problem: Problem[Solution],

population_size: int,
5 offspring_population_size: int,

mutation: Mutation,
7 crossover: Crossover,

selection: Selection,
9 termination_criterion: TerminationCriterion,

population_generator=RandomGenerator(),
11 population_evaluator=SequentialEvaluator()):

...
13

def create_initial_solutions(self):
15 return [self.population_generator.new(self.problem)

for _ in range(self.population_size)]
17

def evaluate(self, solutions):
19 return self.population_evaluator.evaluate(solutions, self.problem)

21 def stopping_condition_is_met(self):
return self.termination_criterion.is_met

23
def selection(self, population: List[Solution]):

25 # select solutions to get the mating pool

27 def reproduction(self, mating_pool):
# apply crossover and mutation

29
def replacement(self, population, offspring):

31 # combine the population and offspring populations

There are some interesting features to point out here. First,
the initial solution list is created from a Generator object (line
14), which, given a problem, returns a number of new solutions
according to some strategy implemented in the generator; by
default, a RandomGenerator() is chosen to produce a number
of solutions uniformly drawn at random from the value range
specified for the decision variables. Second, an Evaluator ob-
ject is used to evaluate all produced solutions (line 19); the de-
fault one evaluates the solutions sequentially. Third, a Termi-
nationCriterion object is used to check the stopping condition
(line 21), which allows deciding among several stopping cri-
teria when configured. The provided implementations include:
stopping after making a maximum number of evaluations, com-
puting for a maximum time, a key has been pressed, or the cur-
rent population achieves a minimum level of quality according
to some indicator. Fourth, the reproduction method applies the
crossover and mutation operators over the mating pool to gen-
erate the offspring population. Finally, the replacement method
combines the population and the offspring population to pro-
duce a new population.

Departing from the implemented GeneticAlgorithm class,
we are ready to implement the standard NSGA-II algorithm and
some variants, which will be described in the next subsections.
Computing times will be reported when running the algorithm
to solve the ZDT1 benchmark problem [42] on a MacBook Pro
with macOS Mojave, 2.2 GHz Intel Core i7 processor (Turbo
boost up to 3.4GHz), 16 GB 1600 MHz DDR3 RAM, Python
3.6.7 :: Anaconda.

4.1. Standard Generational NSGA-II
NSGA-II is a generational genetic algorithm, so the popu-

lation and the offspring population have the same size. Its main
feature is the use of a non-dominated sorting for ranking the
solutions in a population to foster convergence, and a crowd-
ing distance density estimator to promote diversity [15]. These

mechanisms are applied in the replacement method, as shown
in the following snippet:
1 class NSGAII(GeneticAlgorithm):

def __init__(self,
3 problem: Problem,

population_size,
5 offspring_size,

mutation: Mutation,
7 crossover: Crossover,

selection: Selection,
9 termination_criterion: TerminationCriterion,

population_generator=RandomGenerator(),
11 population_evaluator=SequentialEvaluator()

dominance_comparator=DominanceComparator()):
13 ...

def replacement(self, population, offspring):
15 join_population = population + offspring

17 return RankingAndCrowdingDistanceSelection(
self.population_size, self.dominance_comparator).execute(

join_population)

No more code is needed. To configure and run the algorithm
we include some examples, such as the following code:

# Standard generational NSGAII runner
2 problem = ZDT1()

4 max_evaluations = 25000
algorithm = NSGAII(

6 problem=problem,
population_size=100,

8 offspring_population_size=100,
mutation=PolynomialMutation(...),

10 crossover=SBXCrossover(...),
selection=BinaryTournamentSelection(...),

12 termination_criterion=StoppingByEvaluations(max=max_evaluations),
dominance_comparator=DominanceComparator()

14 )

16 progress_bar = ProgressBarObserver(max=max_evals)
algorithm.observable.register(observer=progress_bar)

18
real_time = VisualizerObserver()

20 algorithm.observable.register(observer=real_time)

22 algorithm.run()
front = algorithm.get_result()

24
# Save results to file

26 print_function_values_to_file(front, ‘FUN’)
print_variables_to_file(front, ‘VAR’)

This code snippet depicts a standard configuration of NSGA-
II to solve the ZDT1 benchmark problem. Note that we can de-
fine a dominance comparator (line 13), which by default is the
one used in the standard implementation of NSGA-II.

Figure 2: Screenshot of jMetalPy running a NSGA-II for the ZDT1 benchmark
problem showing the progress and the Pareto front approximation.
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Figure 3: Pareto front approximations when solving the ZDT1 produced by the standard NSGA-II algorithm (left), a steady-state version (center), and G-NSGA-II
(using the reference point [ f1, f2] = [0.5, 0.5], shown in red).

As commented previously, any algorithm is an observable
entity, so observers can register into it. In this code, we register
a progress bar observer (shows a bar in the terminal indicating
the progress of the algorithm) and a visualizer observer (shows
a graph plotting the current population, i.e., the current Pareto
front approximation). A screen capture of NSGA-II running in
included in Figure 2. The computing time of NSGA-II with this
configuration in our target laptop is around 9.2 seconds.

4.2. Steady-State NSGA-II
A steady-state version of NSGA-II can be configured by

resorting to the same code, but just setting the offspring pop-
ulation size to one. This version yielded a better performance
in terms of the produced Pareto front approximation compared
with the standard NSGA-II as reported in a previous study [43],
but at a cost of a higher computing time, which raises up to 190
seconds.

An example of Pareto front approximation found by this
version of NSGA-II when solving the ZDT1 benchmark prob-
lem is shown in Figure 3-center. As expected given the liter-
ature, it compares favorably against the one generated by the
standard NSGA-II (Figure 3-left).

4.3. NSGA-II with Preference Articulation
The NSGA-II implementation in jMetalPy can be easily ex-

tended to incorporate a preference articulation scheme. Con-
cretely, we have developed a g-dominance based comparator
considering the g-dominance concept described in [44], where
a region of interest can be delimited by defining a reference
point. If we desire to focus the search in the interest region de-
limited by the reference point, say e.g. [ f1, f2] = [0.5, 0.5], we
can configure NSGA-II with this comparator as follows:
1 reference_point = [0.5, 0.5]

algorithm = NSGAII(
3 ...

dominance_comparator=GDominanceComparator(reference_point)
5 )

The resulting front is show in Figure 3-right.

4.4. Dynamic NSGA-II
The approach adopted in jMetalPy to provide support for

dynamic problem solving is as follows: First, we have devel-
oped a TimeCounter class (which is an Observable entity) which,

given a delay, increments continuously a counter and notifies
the registered observers the new counter values; second, we
need to define an instance of DynamicProblem, which must
implement the methods for checking whether the problem has
changed and to clear the changed state. As DynamicProblem
inherits from Observer, instances of this class can register in a
TimeCounter object. Finally, it is required to extend Dynami-
cAlgorithm with a class defining the restart() method that will
be called when the algorithm detects a change in a dynamic
problem. The following code snippet shows the implementa-
tion of the DynamicNSGAII class:
1 class DynamicNSGAII(NSGAII, DynamicAlgorithm):

def __init__(self, ...):
3 ...

self.completed_iterations = 0
5

def restart(self) -> None
7 # restart strategy

9 def update_progress(self):
if self.problem.the_problem_has_changed():

11 self.restart()
self.evaluator.evaluate(self.solutions, problem)

13 self.problem.clear_changed()
self.evaluations += self.offspring_size

15
def stopping_condition_is_met(self):

17 if self.termination_criterion.is_met:
self.restart()

19 self.evaluator.evaluate(self.solutions, problem)
self.init_progress()

21 self.completed_iterations += 1

As shown above, at the end of each iteration a check is
made about a change in the problem. If a change has occurred,
the restart method is invoked which, depending on the imple-
mented strategy, will remove some solutions from the popula-
tion and new ones will be created to replace them. The resulting
population will be evaluated and the clear changed() method
of the problem object will be called. As opposed to the stan-
dard NSGA-II, the stopping condition method is not invoked
to halt the algorithm, but instead to notify registered observers
(e.g., a visualizer) that a new resulting population has been pro-
duced. Then, the algorithm starts again by invoking the restart()
and init progress() methods. It is worth noting that most of
the code of the original NSGA-II implementation is reused and
only some methods need to be rewritten.

To illustrate the implementation a dynamic problem, we
next show code of the FDA abstract class, which is the base
class of the five problems composing the FDA benchmark:
1 class FDA(DynamicProblem, FloatProblem, ABC):

def __init__(self):
3 super(FDA, self).__init__()
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self.tau_T = 5
5 self.nT = 10

self.time = 1.0
7 self.problem_modified = False

9 def update(self, *args, **kwargs):
counter = kwargs[’COUNTER’]

11 self.time = (1.0 / self.nT) * floor(counter * 1.0 / self.tau_T)
self.problem_modified = True

13
def the_problem_has_changed(self) -> bool:

15 return self.problem_modified

17 def clear_changed(self) -> None:
self.problem_modified = False

The key point in this class is the update() method which,
when invoked by an observable entity (e.g., an instance of the
aforementioned TimeCounter class), sets the problem modified
flag to True. We can observe that this flag can be queried and
reset.

The code presented next shows how to configure and run
the dynamic NSGA-II algorithm:

# Dynamic NSGAII runner
2 problem = FDA2()

time_counter = TimeCounter(delay=1))
4 time_counter.observable.register(problem)

time_counter.start()
6

algorithm = DynamicNSGAII(
8 ...

termination_criterion=StoppingByEvaluations(max=
10 max_evals)

)
12 algorithm.run()

After creating the instances of the FDA2 benchmark prob-
lem [21] and the time counter class, the former is registered
in the latter, which runs in a concurrent thread. The dynamic
NSGA-II is set with stopping condition which returns a Pareto
front approximation every 25,000 function evaluations. An ex-
ample of running of the dynamic NSGA-II algorithm when solv-
ing the FDA2 problem is shown in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.0

0.2

0.4

0.6

0.8

1.0

1

FDA2
Pareto front approximation

Figure 4: Pareto front approximations when solving the dynamic FDA2 prob-
lem produced by the dynamic version of NSGA-II.

4.5. Parallel NSGA-II with Apache Spark
In order to evaluate a population, NSGA-II (and in general,

any generational algorithms in jMetalPy) can use an evaluator
object. The default evaluator runs in a sequential fashion but,
should the evaluate method of the problem be thread-safe, so-
lutions can be evaluated in parallel. jMetalPy includes an eval-
uator based on Apache Spark, so the solutions can be evaluated

in a variety of parallel systems (multicores, clusters) following
the scheme presented in [45]. This evaluator can be used as
exemplified next:

# NSGAII runner using the Spark evaluator
2 algorithm = NSGAII(

...
4 evaluator=SparkEvaluator()

)

The resulting parallel NSGA-II algoritm combines parallel
with sequential phases, so speed improvements cannot be ex-
pected to scale linearly. A pilot test on our target laptop indi-
cates speedup factors in the order of 2.7. However, what is in-
teresting to note here is that no changes are required in NSGA-
II, which has the same behavior as its sequential version, so the
obtained time reductions are for free.

4.6. Distributed NSGA-II with Dask

The last variant of NSGA-II we present in this paper is a
distributed version based on an asynchronous parallel model
implemented with Dask [13], a parallel and distributed Python
system including a broad set of parallel programming models,
including asynchronous parallelism using futures.

The distributed NSGA-II adopts a parallel scheme studied
in [43]. The scheme is based on a steady-state NSGA-II and the
use of Dask’s futures, in such a way that whenever a new solu-
tion has to evaluated, a task is created and submitted to Dask,
which returns a future. When a task is completed, its corre-
sponding future returns an evaluated solution, which is inserted
into the offspring population. Then, a new solution is produced
after performing the replacement, selection, and reproduction
stages, to be sent again for evaluation. This way, all the proces-
sors/cores of the target cluster will be busy most of the time.

Preliminary results on our target multicore laptop indicate
that speedups around 5.45 can obtained with the 8 cores of the
system where simulations were performed. We will discuss on
this lack of scalability and other aspects of this use case in the
next subsection.

4.7. Discussion

In this section we have presented five different versions of
NSGA-II , most of them (except for the distributed variant) re-
quiring minor changes on the base class implementing NSGA-
II. Not all algorithms can be adapted in the same way, but some
of the variations of NSGA-II can be implemented in a straight-
forward manner. Thus, we include in jMetalPy examples of dy-
namic, preference-based, and parallel versions of some of the
included algorithms, such as SMPSO, GDE3, and OMOPSO.

We would like to again stress on the readability of the codes,
by virtue of which all the steps of the algorithms can be clearly
identified. Some users may find the class hierarchy Evolution-
aryAlgorithm → GeneticAlgorithm → NSGAII cumbersome,
and prefer to have all the code of NSGA-II in a single class.
However, this alternative design approach would hinder the flex-
ibility of the current implementation, and would require to repli-
cate most of the code when developing algorithmic variants.

In the case of parallel algorithms, an exhaustive performance
assessment is beyond the scope of this paper. The reported
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speedups are not remarkable due to the Turbo Boost feature
of the processor of the laptop used for performing the experi-
ments, but they give an idea of the time reductions that can be
achieved when using a modern multicore computer.

5. Visualization

An advantage of using Python (instead of Java) is its power
related to visualization features thanks to the availability of graphic
plotting libraries, such as: Matplotlib, Holoviews or Plotly.

jMetalPy harnesses these libraries to include three types of
visualization charts: static, interactive and streaming. Table 2
summarizes these implementations. Static charts can be shown
in the screen, stored in a file, or included in a Jupyter notebook
(typically used at the end of the execution of an algorithm).
Similarly, interactive charts are generated when an algorithm
returns a Pareto front approximation but, unlike the static ones,
the user can manipulate them interactively. There are two kinds
of interactive charts: those that produce an HTML page includ-
ing a chart (allowing to apply actions such as zooming, select-
ing part of the graph, or clicking in a point to see its objective
values are allowed) and charts such as the Chord diagram that
allows hovering the mouse over the chart and visualizing rela-
tionships among objective values. Finally, streaming charts de-
pict graphs in real time, during the execution of the algorithms
(and they can also be included in a Jupyter notebook); this can
be useful to observe the evolution of the current Pareto front
approximation produced by the algorithm.

Table 2: Main visualizations included in jMetalPy.

Name Type Backend Description

Plot Static Matplotlib 2D, 3D, p-coords
Interactive Plotly 2D, 3D, p-coords

Streaming
plot

Streaming Matplotlib 2D, 3D

Streaming HoloViews 2D, 3D (for Jupyter)
Chord plot Interactive Matplotlib For statistical purposes
Box plot Interactive Matplotlib For statistical purposes
CD plot Static Matplotlib Demsar’s critical dis-

tance plot
Posterior
plot

Static Matplotlib Bayesian posterior analy-
sis

Figure 5 shows three examples of interactive plots based
on Plotly. The target problem is DTLZ1 [46], which is solved
with the SMPSO algorithm when the problem is defined with
2, 3 and 5 objectives. For any problem with more than 3 objec-
tives, a parallel coordinates graph is generated. An example of
Chord diagram for a problem with 5 objectives is shown in Fig-
ure 6; each depicted chord represents a solution of the obtained
Pareto front, and ties together its objective values. When hov-
ering over a sector box of a certain objective fi, this chart only
renders those solutions whose fi values fall within the value
support of this objective delimited by the extremes of the sector
box. Finally, the outer partitioned torus of the chart represents
a histogram of the values covered in the obtained Pareto front
for every objective.

Figure 5: Examples of interactive plots produced when using SMPSO to solve
the DTLZ1 problem with 2 (top), 3 (middle), and 5 (bottom) objectives.
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Figure 6: Example of Chord diagram for the front obtained by SMPSO when
solving a problem with 5 objectives.

6. Experimental Use Case

In previous sections, we have shown examples of Pareto
front approximations produced by some of the metaheuristics
included in jMetalPy. In this section, we describe how our
framework can be used to carry out rigorous experimental stud-
ies based on comparing a number of algorithms to determine
which of them presents the best overall performance.

6.1. Experimentation Methodology

An experimental comparison requires a number of steps:

1. Determine the algorithms to be compared and the bench-
mark problems to be used.

2. Run a number of independent runs per algorithm-problem
configuration and get the produced fronts.

3. Apply quality indicators to the fronts (e.g., Hypervolume,
Epsilon, etc.).

4. Apply a number of statistical test to assess the statistical sig-
nificance of the performance differences found among the
algorithms considered in the benchmark.

The first three steps can be done with jMetalPy, but also
with jMetal or even manually (e.g., running algorithms using a
script). The point where jMetalPy stands out is the fourth one,
as it contains a large amount of statistical features to provide
the user with a broad set of tools to analyze the results gener-
ated by a comparative study. All these functionalities have been
programmed from scratch and embedded into the core of jMet-
alPy. Specifically, the statistical tests included in jMetalPy are
listed next:

• A diverse set of non-parametric null hypothesis significance
tests, namely, the Wilcoxon rank sum test, Sign test, Fried-
man test, Friedman aligned rank test and Quade test. These
tests have been traditionally used by the community to shed
light on their comparative performance by inspecting a statis-
tic computed from their scores.

• Bayesian tests (sign test and signed rank test), which have
been recently postulated to overcome the shortcomings of
null hypothesis significance testing for performance assess-
ment [47]. These tests are complemented by a posterior plot
in barycentric coordinates to compare pairs of algorithms un-
der a Bayesian approach by also accounting for possible sta-
tistical ties.

• Posthoc tests to compare among multiple algorithms, either
one-vs-all (Bonferroni-Dunn, Holland, Finner, and Hochberg)
or all-vs-all (Li, Holm, Shaffer).

The results of these tests are displayed by default in the
screen and most of them can be exported to LATEX tables. Fur-
thermore, boxplot diagrams can be also generated. Finally,
LATEX tables containing means and medians (and their corre-
sponding standard deviation and interquartile range dispersion
measures, respectively) are automatically generated.

6.2. Implementation Details
jMetalPy has a laboratory module containing utilities for

defining experiments, which require three lists: the algorithms
to be compared (which must be properly configured), the bench-
mark problems to be solved, and the quality indicators to be
applied for performance assessment. Additional parameters are
the number of independent runs and the output directory.

Once the experiment is executed, a summary in the form
of a CSV file is generated. This file contains all the informa-
tion of the quality indicator values, for each configuration and
run. Each line of this file has the following schema: Algorithm,
Problem, Indicator, ExecutionId, IndicatorValue. An example
of its contents follows:
1 Algorithm,Problem,Indicator,ExecutionId,IndicatorValue

NSGAII,ZDT1,EP,0,0.015705992620067832
3 NSGAII,ZDT1,EP,1,0.012832504015918067

NSGAII,ZDT1,EP,2,0.01071189935186434
5 ...

MOCell,ZDT6,IGD+,22,0.0047265135903854704
7 MOCell,ZDT6,IGD+,23,0.004496215669027173

MOCell,ZDT6,IGD+,24,0.005483899232523609

where we can see the header with the column names, followed
by four lines corresponding to the values of the Epsilon in-
dicator of three runs of the NSGA-II algorithm when solving
the ZDT1 problem. The end of the file shows the value of
the IGD+ indicator for three runs of MOCell when solving the
ZDT6 problem. The file contains as many lines as the product
of the numbers of algorithms, problems, quality indicators, and
independent runs.

The summary file is the input of all the statistical tests, so
that they can be applied to any valid file having the proper
format. This is particularly interesting to combine jMetal and
jMetalPy. The last versions of jMetal generates a summary file
after running a set of algorithms in an experimental study, so
then we can take advantage of the features of jMetal (providing
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many algorithms and benchmark problems, faster execution of
Java compared with Python) and jMetalPy (better support for
data analysis and visualization). We detail an example of com-
bining both frameworks in the next section.

6.3. Experimental Case Study

Let us consider the following case study. We are interested
in assessing the performance of five metaheuristics (GDE3, MO-
Cell, MOEA/D, NSGA-II, and SMPSO) when solving the ZDT
suite of continuous problems (ZDT1-4, ZDT6). The quality in-
dicators to calculate are set to the additive Epsilon (EP), Spread
(SPREAD), and Hypervolume (HV), which give a measure of
convergence, diversity and both properties, respectively. The
number of independent runs for every algorithm is set to 25.

We configure an experiment with this information in jMetal
and, after running the algorithms and applying the quality indi-
cators, the summary file is obtained. Then, by giving this file
as input to the jMetalPy statistical analysis module, we obtain
a set of LATEX files and figures in an output directory as well
as information displayed in the screen. We analyze next the
obtained results.

Table 3: Median and Interquartile Range of the EP quality indicator.
NSGAII SMPSO MOEAD GDE3 MOCell

ZDT1 1.29e − 022.69e−03 5.59e − 032.64e−04 2.50e − 029.32e−03 1.31e − 022.96e−03 6.26e − 032.44e−04
ZDT2 1.33e − 022.63e−03 5.47e − 032.82e−04 4.78e − 022.27e−02 1.25e − 023.16e−03 5.72e − 032.72e−04
ZDT3 7.94e − 032.27e−03 5.23e − 031.22e−03 1.02e − 012.68e−02 7.13e − 031.39e−03 5.19e − 031.24e−03
ZDT4 1.42e − 022.43e−03 6.12e − 034.06e−04 4.05e − 014.32e−01 4.08e + 008.64e−01 9.07e − 032.65e−03
ZDT6 1.97e − 023.62e−03 6.79e − 032.85e−04 7.73e − 031.23e−04 1.73e − 023.73e−03 8.43e − 038.69e−04

Table 4: Median and Interquartile Range of the SPREAD quality indicator.
NSGAII SMPSO MOEAD GDE3 MOCell

ZDT1 3.45e − 012.80e−02 6.92e − 021.95e−02 3.56e − 015.41e−02 3.33e − 013.05e−02 7.17e − 021.44e−02
ZDT2 3.63e − 013.84e−02 7.19e − 021.31e−02 2.97e − 019.69e−02 3.33e − 013.95e−02 8.50e − 022.30e−02
ZDT3 7.47e − 011.50e−02 7.10e − 011.07e−02 9.96e − 014.02e−02 7.34e − 011.26e−02 7.04e − 015.88e−03
ZDT4 3.57e − 012.93e−02 9.04e − 021.26e−02 9.53e − 011.32e−01 8.92e − 016.10e−02 1.20e − 013.50e−02
ZDT6 4.71e − 012.76e−02 2.49e − 011.06e−02 2.91e − 016.55e−04 6.73e − 013.90e−02 2.68e − 011.22e−02

Table 5: Median and Interquartile Range of the HV quality indicator.
NSGAII SMPSO MOEAD GDE3 MOCell

ZDT1 6.59e − 013.73e−04 6.62e − 011.09e−04 6.42e − 015.71e−03 6.61e − 011.89e−04 6.61e − 011.72e−04
ZDT2 3.26e − 013.39e−04 3.29e − 011.18e−04 3.12e − 016.94e−03 3.27e − 012.89e−04 3.28e − 011.97e−04
ZDT3 5.15e − 012.53e−04 5.15e − 016.44e−04 4.41e − 012.99e−02 5.15e − 011.28e−04 5.15e − 013.51e−04
ZDT4 6.57e − 013.38e−03 6.61e − 012.10e−04 2.76e − 012.33e−01 0.00e + 000.00e+00 6.58e − 011.87e−03
ZDT6 3.88e − 011.63e−03 4.00e − 019.21e−05 4.00e − 012.92e−06 3.97e − 015.83e−04 3.97e − 011.20e−03

Tables 3, 4, and 5 show the median and interquartile range
of the three selected quality indicators. To facilitate the analy-
sis of the tables, some cells have a grey background. Two grey
levels are used, dark and light, to highlight the algorithms yield-
ing the best and second best indicator values, respectively (note
that this is automatically performed by jMetalPy). From the ta-
bles, we can observe that SMPSO is the overall best performing
algorithm, achieving the best indicator values in four problems
and one second best value.

Nevertheless, it is well known that taking into account only
median values for algorithm ranking does not ensure that their
differences are statistically significant. Statistical rankings are
also needed if we intend to rank the algorithm performance con-
sidering all the problems globally. Finally, in studies involving

a large number of problems (we have used only five for simplic-
ity), the visual analysis of the medians can be very complicated,
so statistical diagrams gathering all the information are needed.
This is the reason why jMetalPy can also generate a second set
of LATEX tables compiling, in a visually intuitive fashion, the
result of non-parametric null hypothesis significance tests run
over a certain quality indicator for all algorithms. Tables 6, 7
and 8 are three examples of these tables computed by using the
Wilcoxon rank sum test between every pair of algorithms (at the
5% level of significance) for the EP, SPREAD and HV indica-
tors, respectively. In each cell, results for each of the 5 datasets
are represented by using three symbols: – if there is not statisti-
cal significance between the algorithms represented by the row
and column of the cell; O if the approach labeling the column
is statistically better than the algorithm in the row; and N if the
algorithm in the row significantly outperforms the approach in
the column.

Table 6: Wilcoxon values of the EP quality indicator (ZDT1, ZDT2, ZDT3,
ZDT4, ZDT6).

SMPSO MOEAD GDE3 MOCell
NSGAII N N N N N O O O O N – – N O N N N N N N
SMPSO O O O O O O O O O O O O – O O
MOEAD N N N O O N N N N O

GDE3 N N N N N

Table 7: Wilcoxon values of the SPREAD quality indicator (ZDT1, ZDT2,
ZDT3, ZDT4, ZDT6).

SMPSO MOEAD GDE3 MOCell
NSGAII N N N N N O N O O N – N N O O N N N N N
SMPSO O O O O O O O O O O – O N O O
MOEAD N O N N O N N N N N

GDE3 N N N N N

Table 8: Wilcoxon values of the HV quality indicator (ZDT1, ZDT2, ZDT3,
ZDT4, ZDT6).

SMPSO MOEAD GDE3 MOCell
NSGAII O O O O O N N N N O O O O N O O O – O O
SMPSO N N N N N N N – N N N N N N N
MOEAD O O O N N O O O O N

GDE3 O O N O –

The conclusions drawn from the above tables can be but-
tressed by inspecting the distribution of the quality indicator
values obtained by the algorithms. Figure 7 shows boxplots
obtained with jMetalPy by means of the Hypervolume values
when solving the ZDT6 problem. Whenever the boxes do not
overlap with each other we can state that there should be statis-
tical confidence that the performance gaps are relevant (e.g., be-
tween SMPSO and the rest of algorithms), but when they do (as
we can see with GDE3 and MOCell) we cannot discern which
algorithm performs best.

The boxplots and tables described heretofore allow observ-
ing the dispersion of the results, as well as the presence of
outliers, but they do not allow to get a global vision of the
performance of the algorithms in all the problems. This mo-
tivates the incorporation of principled methods for comparing
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Figure 7: Boxplot diagram of the HV indicator for the ZDT6 problem.

multiple techniques over different problem instances, such as
those proposed by Demsar [48] in the context of classification
problems and machine learning models. As anticipated pre-
viously, our developed framework includes Critical Distance
(CD) plots (Figure 8, computed for the HV indicator) and Pos-
terior plots (Figure 9, again for the HV indicator). The former
plot is used to depict the average ranking of the algorithms com-
puted over the considered problems, so that the chart connects
with a bold line those algorithms whose difference in ranks is
less than the so-called critical distance. This critical distance
is a function of the number of problems, the number of tech-
niques under comparison, and a critical value that results from
a Studentized range statistic and a specified confidence level.
As shown in Figure 8, SMPSO, MOCell, GDE3 and NSGA-II
are reported to perform statistically equivalently, which clashes
with the conclusions of the previously discussed table set due
to the relatively higher strictness of the statistic from which the
critical distance is computed. A higher number of problems
would be required to declare statistical significance under this
comparison approach.

Figure 8: CD plot of the HV indicator.

Finally, we end up our experimental use case by showing
the Posterior plot that allows comparing pair of algorithms by
using Bayesian sign test (Figure 9). When relying on Bayesian
hypothesis testing we can directly evaluate the posterior prob-
ability of the hypotheses from the available quality indicator
values, which enables a more intuitive understanding of the
comparative performance of the considered algorithms. Fur-
thermore, a region of practical equivalence (also denoted rope)
can be defined to account for ties between the considered multi-
objective solvers. The plot in Figure 9 is in essence a barycen-
tric projection of the posterior probabilities: the region at the
bottom-right of the chart, for instance, delimits the area where:

θr ≥ max(θe, θl), (1)

with θr = P(z > r), θe = P(−r ≤ z ≤ r), θl = P(z < −r),
and z denoting the difference between the indicator values of
the algorithm on the right and the left (in that order). Based on
this notation, the figure exposes, in our case and for r = 0.002,
than in most cases z = HV(NSGA-II) − HV(SMPSO) fulfills
θl ≥ max(θe, θr), i.e. it is more probable, on average, than the
HV values of SMPSO are higher than those of NSGA-II. Par-
ticularly these probabilities can be estimated by counting the
number of points that fall in every one of the three regions, from
which we conclude that in this use case 1) SMPSO is practically
better than NSGA-II with probability 0.918; 2) both algorithms
perform equivalently with probability 0.021; and 3) NSGA-II
is superior than SMPSO with probability 0.061.

Figure 9: Posterior plot of the HV indicator using a Bayesian sign test.

7. Conclusions and Future Work

In this paper we have presented jMetalPy, a Python-based
framework for multi-objective optimization with metaheuris-
tics. It is released under the MIT license and made freely avail-
able for the community in GitHub. We have detailed its core
architecture and described the implementation of NSGA-II and
some of its variants as illustrative examples of how to operate
with this framework. jMetalPy provides support for dynamic
optimization, parallelism, and decision making. Other salient
features involves visualization (static, streaming, and interac-
tive graphics) for multi- and many-objective problems, and a
large set of statistical tests for performance assessment. It is
worth noting that jMetalPy is still a young research project,
which is intended to be useful for the research community inter-
ested in multi-objective optimization with metaheuristics. Thus,
it is expected to evolve quickly, incorporating new algorithms
and problems by both the development team and by external
contributors.

Specific lines of future work include evaluating the perfor-
mance of parallel and distributed metaheuristics in clusters, as
well as applying them to solve real-world problems.
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[47] A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: a
tutorial for comparing multiple classifiers through bayesian analysis, The
Journal of Machine Learning Research 18 (1) (2017) 2653–2688.
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