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Abstract

This paper presents a new distributed Differential Evo-
lution (dDE) algorithm and evaluates it according to the
standard procedure set in the special session of continu-
ous optimization of CEC’05. We statistically validate our
results in continuous optimization versus several other effi-
cient techniques. Our distributed Differential Evolution is
simple and accurate, at the same time amenable, to be ap-
plied to a wide variety of problems, especially for noisy and
multimodal functions.

Keywords: Distributed Differential Evolution, Non-
Parametric Tests, CEC’05 Function Test Suite

1. Introduction

Evolutionary Algorithms [5, 10] are methods inspired
by biological processes that perform stochastic search to
solve problems modeled as discrete and continuous vari-
ables. Among the many EA families we are interested in
Differential Evolution (DE). DE was first introduced by
Price et al. [17] and has been applied on a wide range of
problems. The ability to treat non-differentiable and multi-
modal optimization functions has made DE more and more
popular in there last years. The power of DE comes from
its simple structure and its inherent high performance.

The temporal complexity of some problems can be han-
dled by regular evolutionary methods, but the exploration of
the search space performed by them is also time-consuming.
Therefore, parallel models have been very useful tools to
improve the performance of such techniques during the
search process. DE methods can be easily parallelized in
a distributed model, since they are based in the evolution
of a population of individuals. This population could be
partitioned into small subsets known as islands, each sub-
set evolving independently from each other. Besides, the

islands are spatially structured and exchange information
among them to hopefully increase the accuracy and effi-
ciency of the resulting algorithm. When run in a parallel
computer, the time reduction is an additional advantage [1].

The advance in the hardware technology, along software
has allowed to link computers by means of a network to
create a powerful tool for low-cost computing. Each com-
puter runs an island with a DE algorithm evolving a set of
individuals. The periodical migration of individuals in a
given topology leads to a high exploration ability in DE,
since the foreign solutions add diversity to the island pop-
ulations [9, 12, 19]. The performance of a new distributed
DE is shown here on a hybrid test suite of functions pro-
vided in the special session of continuous optimization of
CEC’05. Statistical comparisons with all participant algo-
rithms in this standard set of results show the high accuracy
and efficiency of our parallel DE.

The remainder of this paper is organized as follows. In
Section 2, we explain briefly the DE algorithm. In Section 3
we focus on the parallel model and the migration policy de-
veloped for this work. An experimental study is described
in Section 4, where our proposal is compared against a se-
ries of algorithms which are the state-of-art in continuous
optimization. The paper ends with a brief summary and
general conclusion included in Section 5.

2. Differential Evolution: Background

DE is a stochastic population-based algorithm designed
to solve optimization problems over continuous domains.
The population is a set of individuals (tentative solutions)
which evolve simultaneously through the search space of
the problem. The individuals are real-value vectors that,
combined with others from the population, generate new in-
dividuals. The task of generating new individuals is carried
out by the differential operators. The mutation is an essen-
tial operator to DE since it adds the weighted difference of
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two individuals of the population to a third member.
Formally, an individual is a vector vi

g =
(vi

g(1), vi
g(2), . . . , vi

g(D)) where vi
g(j) ∈ R (1 ≤

i ≤ N, 1 ≤ j ≤ D) and D is the number of variables, g is
the current generation and N is the number of individuals
in the population. A mutant individual wi

g+1 is generated
by the following equation (1):

wi
g+1 = vr1

g + μ · (vr2
g − vr3

g ) (1)

where r1, r2, r3 ∈ {1, 2, . . . , i − 1, i + 1, . . . , N} are ran-
dom integers mutually different, and also different from the
index i, the mutation constant μ > 0 stands for the ampli-
fication of the difference between the individuals vr2

g and
vr3

g , and it avoids the stagnation of the search process.
In order to increase even more the diversity in the popu-

lation, each mutated individual undergoes a crossover oper-
ation with the target individual vi

g , by means of which a trial
individual ui

g+1 is generated. We use a uniform crossover
also named binomial crossover [14] where each position of
the trial individual has the same probability of being chosen
from the target individual or from the mutant individual. A
randomly chosen position is taken from the mutant individ-
ual to prevent that the trial individual replicates the target
individual.

ui
g+1(j) =

{
wi

g+1(j) if r(j) ≤ Cr or j = jr,

vi
g(j) otherwise.

(2)

As shown in Equation 2, the crossover operator ran-
domly chooses a uniformly distributed integer value jr in
[1, . . . , D] and a random real number r in (0, 1), also uni-
formly distributed for each component j (j = 1, . . . , D) of
the trial individual ui

g+1. Then, the crossover probability
Cr and r are compared just like j and jr. If r is less than
or equal than Cr (or j is equal to jr) then we select the jth

element of the mutant individual to be allocated in the jth

element of the trial individual ui
g+1. Otherwise, the jth ele-

ment of the target individual vi
g becomes the jth element of

the trial individual. Finally, a selection operator decides the
acceptance of the trial individual for the next generation if
and only if it yields a reduction in the value of the evaluation
function, as shown by the following equation (3):

vi
g+1 =

{
ui

g+1 if f(ui
g+1) ≤ f(vi

g),
vi

g(j) otherwise.
(3)

The DE is a simple algorithm and has only a few parame-
ters to tune. However, the success of the performance of the
algorithm is related to a complex interaction of the parame-
ters, especially μ and Cr. The parameters can be set with a
self-adapting technique during the evolutionary process, as
shown by Brest et al. in [7].

3. Parallel Differential Evolution

In this section we present a version of a parallel DE
method. Evolutionary techniques like DE are easily paral-
lelized since the evaluation of each individual of the pop-
ulation is usually an independent task of the algorithms.
The parallel computation is expected to improve the per-
formance and to reduce of computational cost of DE [12].

3.1. Parallelization of Differential Evolution

Our work focus on a study of the the optimization of con-
tinuous multimodal functions by using a parallel version of
DE similar to the suggested by Tasoulis et al. [19] . We use
a distributed model in islands where the population is parti-
tioned in small groups of individuals. The individuals inside
each island evolve independently from the rest of islands,
but each island made occasional communication operations
with the others islands by exchanging solutions.

The exchange of solutions is determined by the migra-
tion rate, that defines the number of individuals that are
sent to (received from) other islands. A neighborhood is de-
fined in the migration policy in order to carry out a guided
exchange of solutions between subpopulations. For the ex-
change of individuals we fix it every certain number of steps
of the evolution process of the island.

The update of the islands could be done in a synchronous
fashion but we use an asynchronical update where the indi-
viduals are received whenever they arrive, with no stops in
the execution.

3.2. Island Based Model of dDE

In Algorithm 1, the pseudocode of our island model dis-
tributed DE is shown. In this algorithm, the whole popu-
lation P is structured in m smaller subpopulations Pp of
np individuals where N =

∑m
i=1ni. Each subpopulation

is randomly initialized, and relatively isolated from the oth-
ers, evolves independently in parallel performing periodical
exchanges of solutions.

The migration policy is determined by a five-tupleM =
〈γ, ρ, φs, φr , τ〉 where γ ∈ N denotes the migration gap
between two successive exchanges of individuals, ρ ∈ N

denotes the migration rate in every exchange, the φs and
φr functions decide how to select the individuals involved
in the exchange, the selection function φs decides what in-
dividuals emigrate, and the replacement function φr de-
termines the individuals to be substituted by the immi-
grants. The topological model is denoted by the function
τ : P → 2P , which selects what subpopulations can send
to (or receive from) individuals.

In our algorithm the individuals to be migrated are ran-
domly (uniformly) chosen by the selection function φs (line
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Algorithm 1 Pseudocode of the Distributed DE

1: pardo for each p ∈ {1, ..., m}
2: initialize(Pp)
3: while not stop condition(gmax) do
4: perform a step of canonical DE // see [14]
5: for each of the ρ individuals to send do
6: v′ig ← φs(Pp)
7: send v′ig to Pj chosen by τ
8: end for
9: /*asynchronous communication*/

10: while individuals are arriving do
11: receive v′ig from Pj

12: replace an individual chosen from φr(Pp) by v′ig
13: end while
14: end while
15: end pardo
16: Output: best solution found

6 in Algorithm 1). Incoming individuals from other islands
replace randomly chosen local individuals, only if the for-
mers are better, by the replacement function φr (line 12
in Algorithm 1). The topology is a unidirectional ring in
which the individuals are exchanged with the nearest neigh-
bor subpopulation.

4. Experimental Study

This section analyzes the behavior of dDE by performing
a set of experiments plus a statistical study on the perfor-
mance of the proposal. We include in our study the canon-
ical DE and also the best-to-date algorithms for the tackled
problems.

4.1 Test Functions

The CEC’05 benchmark is proposed in the technical re-
port of Suganthan et al. in [18]. The test suite includes 25
functions, some of which are shifted and/or rotated versions
of classical functions, plus others that are a hybridization of
some of those functions. The first five functions are uni-
modal, while the rest are multimodal functions. We are in-
terested in the last set of 20 functions because of its high dif-
ficult level. The set is divided in three groups, the first two
groups are basic functions and expanded functions, respec-
tively. The third group contains hybrid merging functions.
All functions have the optimum shifted to a value different
from zero named bias. The shifted function to a bias is use-
ful to avoid a symmetric search space that the algorithms
could exploit in its benefit.

4.2. Parameter Setting

Note that a preliminary study of the algorithm dDE was
performed to tune the set of parameters. The population P
was set to 20 individuals and was partitioned in two sub-
populations (islands), each one having 10 individuals. The
migration gap and migration rate were set to γ = 100 and
ρ = 1, respectively. As previously mentioned, one ran-
domly selected individual is sent from one of the island to
the other in a non-blocking policy of migration. The val-
ues of the parameters μ and Cr are adjusted to each of the
functions of the suite, and they are shown in Table 1.

Table 1. Parameters μ and Cr of dDE to each
function of the suite test

Func.
30 50

µ Cr µ Cr
f6 5.0E-01 4.0E-01 5.0E-01 4.5E-01
f7 5.0E-01 5.0E-01 5.0E-01 5.0E-01
f8 5.0E-01 5.0E-01 5.0E-01 5.0E-01
f9 9.0E-01 1.0E-02 9.0E-01 1.0E-02
f10 5.0E-01 2.0E-01 4.0E-01 5.0E-01
f11 9.0E-01 5.0E-01 9.0E-01 1.0E-01
f12 5.0E-01 1.0E-01 5.0E-01 1.0E-01
f13 9.0E-01 1.0E-03 9.0E-01 1.0E-03
f14 9.0E-01 1.0E-03 9.0E-01 1.0E-03
f15 1.0E-01 1.0E-03 9.0E-01 1.0E-03
f16 9.0E-01 1.0E-02 9.0E-01 2.0E-01
f17 9.0E-01 5.0E-01 9.0E-01 5.0E-01
f18 5.5E-01 4.0E-01 5.5E-01 4.0E-01
f19 5.0E-01 5.0E-01 5.0E-01 5.0E-01
f20 5.5E-01 5.0E-01 5.5E-01 5.0E-01
f21 5.0E-01 1.0E-02 5.0E-01 1.0E-01
f22 5.0E-01 5.0E-01 5.0E-01 5.0E-01
f23 5.0E-01 1.0E-01 5.0E-01 1.0E-02
f24 9.0E-01 9.0E-01 9.0E-01 9.0E-01
f25 9.0E-01 9.0E-01 9.0E-01 9.0E-01

The results shown in this work were obtained from 25
independent runs of the algorithm. The 20 benchmark func-
tions were solved running the algorithm a total of 104 ∗ D
evaluations, where the number of dimensions D considered
were 30 and 50. The skeleton architecture in C++ of the
MALLBA Library [2] was used to fast develop the imple-
mentation dDE algorithm. The distributed communication
platform is implemented with the MPICH library (v.1.5.2)
that is executed over machines running Linux. All machines
used in the experiments have the following specification:
Pentium IV at 2.4 GHz with 1 GB of RAM and Linux SuSE
operative system with kernel version 2.4.19-4GB.

4.3 Comparative Study

This section performs a preliminary comparative study
of a canonical version of DE and our dDE to determinate
their respective advantages. Later, we perform a (statisti-
cally grounded) comparison of one of our models (selected
as the best in this previous comparison) with the best exist-
ing algorithms (from CEC’05).
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To provide well-grounded results, we have applied the
Shapiro and Wilk test of normality with error probability
p = 0.05 in order to check whether the results follow a
normal distribution or not. Then using the Levene test we
checked the heterocedasticity of these results. Both tests ob-
tained in all cases confidences (p) lower than 0.05. There-
fore, although we can assure the independency of the sam-
ples since all executions were independently made, the re-
sults violate the normality and heterocedasticity. For this
reason, non-parametric tests are applied in the following
comparisons.

4.3.1 Comparative Study of dDE with a Canonical
Version of DE

As a first analysis, we compare here the canonical version of
DE (seqDE) with our island model DE (dDE). In the former,
a whole population of 20 individuals evolves without sepa-
rate structures. In the latter, the population (20 individuals)
is split into two and four subpopulations, hence constituting
two different versions of dDE: dDE2 with two islands of 10
individuals each one, and dDE4 with four similar islands of
5 individuals.

We have applied a Wilcoxon Signed-Rank test [20] to
the mean error values (out of 25 independent runs) obtained
for each 20 functions by these three algorithms regarding
the two dimensions considered (30 and 50 variables). In
Table 2, the results of applying this test are organized as
follows: once the rankings are calculated they are differen-
tiated between positive and negative, included in columns,
R+ to indicate the mean ranks where the first algorithm gets
higher values than the second algorithm, and the column
R- showing the opposite situation, where the second algo-
rithm gets higher values than the first one. We must notice
that the lower values correspond to the algorithms with bet-
ter behavior since we are minimizing the function fitness.
The fifth column shows the p-values obtained by the test in
all the comparisons, which indicates the existence of statis-
tically significant differences between the compared algo-
rithms, regarding the confidence level used (0.05). In order
to clarify this, an asterisk character (∗) is allocated in the
last column (SD) to point out the existence of significant
differences in the corresponding comparison.

Table 2. Signed-Rank Test of seqDE, dDE2

and dDE4 in terms of the mean error value,
and significance level of 95% (p=0.05)

Algorithm Dimension R+ R- p-value SD

seqDE vs. dDE2
30 105 48 0.185
50 110 61 0.295

seqDE vs. dDE4
30 66 105 0.408
50 107 103 0.956

dDE2 vs. dDE4
30 15 156 0.002 ∗
50 31 140 0.018 ∗

We can observe in Table 2 that there does not exist a
significant difference between the canonical and distributed
models of DE, although the best mean rank is always ob-
tained by dDE2. In addition, when comparing both dis-
tributed DE algorithms (dDE2 and dDE4) the differences
are statistically significant, obtaining dDE2 the best mean
rank and overcoming the dDE4 in all the dimensions.

Figure 1 shows the median performances (mean error)
through the evolution steps of a typical execution of seqDE,
dDE2 and dDE4, plotted when solving f6 with dimension
30. Analyzing this figure, we can observe that both dis-
tributed versions of DE show a delayed convergence than
the canonical one, probably generated by the migration pol-
icy in the formers. This migration operation promotes the
diversity of individuals in the subpopulations, which can
improve the final results in dDE2. However, an excessive
diversity, in contrast with a lower number of individuals in
each subpopulation, can degrade the final results in dDE4.
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Figure 1. Number of function evaluations vs.
the error (f(x)− f(x∗), where x is the best so-
lution found so far and x∗ is the best solution
known). Median performance of 25 runs of f6

with dimension 30.

Therefore, the statistical results got in this previous ana-
lisys are useful to suggest the selection of dDE2 as the base
proposal to beat other existing algorithms.

4.3.2 Comparison with CEC’05 Algorithms

In this section, we compare the results obtained by our
distributed DE, using the two islands model (dDE2), with
other algorithms following the CEC’05 standard protocol.
The list of such algorithms includes several real-coded al-
gorithms within the evolutionary computation paradigms;
some of them have been improved by using hybridization
techniques. The list comprises the following algorithms:

• BLXMA [11], Real-Coded Memetic Algorithm

• BLX-GL50[8], Hybrid Real-Coded Genetic Algorithm

• CoEVO[13], Cooperative Evolution
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• DE[15], clasical DE

• G-CMA-ES[4], Evolution Strategy Adapting a Covariance
Matrix

• K-PCX[16], Steady-State Optimization Algorithm

• L-CMA-ES [3], Covariance Matrix Algorithm Improved
with a Local Search

• SPC-PNX[6], Steady-State Genetic Algorithm

Table 3 shows the results obtained by dDE2 in terms of
the mean error (out of 25 independent runs) for each mul-
timodal function found in CEC’05 with dimension 30, in
order to compare these results with results of other past and
future studies following the same experimentation protocol.

Table 3. Results in terms of mean error values
reached by dDE2, dimension 30

Funct. Mean Error Funct. Mean Error
f6 2.16E+02 f16 2.26E+02
f7 3.76E-02 f17 1.50E+02
f8 2.10E+01 f18 8.22E+02
f9 1.19E-01 f19 8.27E+02
f10 9.04E+01 f20 8.22E+02
f11 3.90E+01 f21 5.00E+02
f12 7.27E+03 f22 5.16E+02
f13 9.12E-01 f23 5.74E+02
f14 1.28E+01 f24 2.24E+02
f15 1.43E+02 f25 2.12E+02

In order to compare these results with the ones obtained
by the CEC’05 algorithms (with dimension 30), we have
followed the same statistical protocol as explained in the
previous section (Section 4.3.1). In Table 4 the results of
applying a Wilcoxon Signed-Rank test to dDE2 versus each
listed algorithm (CEC’05) are shown. In this table, R+ cor-
responds to the mean ranks obtained by dDE2, and R- cor-
responds to the mean ranks of each compared algorithm.
As we can observe, dDE2 shows the best rank in almost all
comparisons and is significantly better than CoEvo and DE.
Concretely, the difference showed by our algorithm with re-
gards to the regular DE (CEC’05) leads us to claim the real
improvement obtained by dDE2 since both algorithms per-
form basic operations of Differential Evolution.

Table 4. Signed-Rank Test of dDE2 vs.
CEC’05 algorithms with dimension 30 and
significance level of 95% (p=0.05)

Algorithm R+ R- p-value SD
G-CMA-ES 121 69 0.2950

K-PCX 89 121 0.5500
BLXMA 76 114 0.4450

BLX-GL50 65 125 0.2270
SPC-PNX 62 128 0.1840

L-CMA-ES 60 150 0.0929
DE 32 178 0.0064 ∗

CoEvo 5 205 0.0001 ∗

In this comparison, our dDE2 is similarly ranked on top
of all algorithms (that are very specialized). These last
results are still improved in the following experiments, in
which the multimodal functions are tackled at dimension
50. Table 5 shows the results obtained by dDE2 in terms
of mean error values (out of 25 independent runs) for each
function with dimension 50.

Table 5. Results in terms of mean error values
reached by dDE, dimension 50

Funct. Mean Error Funct. Mean Error
f6 1.18E+02 f16 1.51E+02
f7 3.80E-03 f17 1.46E+02
f8 2.12E+01 f18 8.39E+02
f9 7.96E-02 f19 8.55E+02
f10 2.05E+02 f20 8.41E+02
f11 5.11E+01 f21 7.27E+02
f12 2.96E+04 f22 5.00E+02
f13 1.80E+00 f23 7.09E+02
f14 2.26E+01 f24 3.46E+02
f15 1.04E+02 f25 2.68E+02

In Table 6, the results (dimension 50) of applying the
Wilcoxon Signed-Rank test to dDE2 versus each listed al-
gorithm (of CEC’05) are shown. In this case, only two al-
gorithms (G-CMA-ES and L-CMA-ES) have ever been ap-
plied to these problems of high complexity. We can observe
here that dDE2 obtains the best mean rank in comparison
with both CMA-ES versions, even being statistically better
than L-CMA-ES. Concerning G-CMA-ES, the imposition
of a high significance level (95%) in the statistical test does
not allow to show a significant difference from our dDE2,
but it could be easily reached by using a significance level
of 90%.

Table 6. Signed-Rank Test of dDE2 vs.
CEC’05 algorithms with dimension 50 and
significance level of the 95% (p=0.05)

Algorithm R+ R- p-value SD
G-CMA-ES 59 151 0.0859
L-CMA-ES 52 158 0.0478 ∗

Therefore, we can state that our dDE2 shows a compet-
itive performance mainly in high dimensionality problems
where only specialized versions of CMA-ES obtained re-
sults until now. The high specialization of CMA-ES for
these problems and its complex implementation contrast
with the wide applicability of our proposal and with its easy
implementation and understanding.
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5 Conclusions

In this work we have experimentally studied, in terms
of the quality of solutions, the performance of a two island
distributed Differential Evolution (dDE2) whose population
is structured in two subpopulations running in parallel, with
a certain migration policy and island topology. Using the
natural behavior of exploitation (and early convergence) ob-
served in the basic DE, and incorporating a diversification
mechanism by means of migrant particles, we can provide it
with a higher search capacity in order to improve its global
performance. The resulted algorithm (dDE2) was tested on
the benchmark of multimodal functions provided in the spe-
cial session of continuous optimization of CEC’05 and used
its protocol of experimentation to ensure fairness and future
comparisons. Our proposal shows a highly competitive per-
formance in comparison with the canonical version of DE
and a four islands version of DE (dDE4), and even improves
on all the existing algorithms using the CEC’05 protocol of
evaluation. With dimension 30, dDE2 is the second best al-
gorithm and statistically equivalent to the best. However,
with dimension 50 our proposal beats all the algorithms,
and shows a competitive performance in comparison with
two well-known specialized variants of CMA-ES.

As future work, we plan to experiment with different
variations of the parallel configuration as well as the evalu-
ation of other novel large-scale functions test suite.
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