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A B S T R A C T

Reverse engineering of biochemical networks remains an important open challenge in computational systems 
biology. The goal of model inference is to, based on time-series gene expression data, obtain the sparse topo-
logical structure and parameters that quantitatively understand and reproduce the dynamics of biological sys-
tems. In this paper, we propose a multi-objective approach for the inference of S-System structures for Gene 
Regulatory Networks (GRNs) based on Pareto dominance and Pareto optimality theoretical concepts instead of 
the conventional single-objective evaluation of Mean Squared Error (MSE). Our motivation is that, using a multi-
objective formulation for the GRN, it is possible to optimize the sparse topology of a given GRN as well as the 
kinetic order and rate constant parameters in a decoupled S-System, yet avoiding the use of additional penalty 
weights. A flexible and robust Multi-Objective Cellular Evolutionary Algorithm is adapted to perform the tasks of 
parameter learning and network topology inference for the proposed approach. The resulting software, called 
MONET, is evaluated on real-based academic and synthetic time-series of gene expression taken from the 
DREAM3 challenge and the IRMA in vivo datasets. The ability to reproduce biological behavior and robustness 
to noise is assessed and compared. The results obtained are competitive and indicate that the proposed approach 
offers advantages over previously used methods. In addition, MONET is able to provide experts with a set of 
trade-off solutions involving GRNs with different typologies and MSEs.

1. Introduction

In computational systems biology, the inference of biochemical
networks from time-series of gene expression data remains an im-
portant open challenge (Iglesias-Martinez et al., 2016). The main goal is
to obtain the sparse topological structure and parameters that quanti-
tatively understand and reproduce the dynamics of biological systems.
However, although it is possible to computationally predict genetic
interaction networks, their precision depends on the characteristics of
the model used, as well as the availability and quality of the expression
data, in terms of the noise they contain.

In this study, we focus on the S-System model (Savageau, 2010) as it
provides a good compromise between biological relevancy and math-
ematical flexibility. The S-System models the dynamics of a network by
means of an Ordinary Differential Equations (ODE) system, which is
powerful enough to capture complex dynamics of genetic regulations.
In the inference of GRNs modeled by S-System, there are two major
challenges that have to be addressed: (1) detecting the sparse

topological architecture that is commonly seen in biological networks,
and (2) tuning the kinetic order and rate constant parameters from a
limited amount of gene expression data that usually show a significant
percentage of noise. These make GRN to be a complex global optimi-
zation problem (Kikuchi et al., 2003), which requires the use of efficient
optimization algorithms to deal with (Hitoshi Iba, 2016; Palafox et al.,
2013; Noman et al., 2015).

In this regard, most of existing approaches have applied sums of
magnitude of kinetic orders as a penalty term in aggregative evaluation
functions based on conventional Mean Squared Error (MSE) (Lee and
Hsiao, 2012; Liu and Wang, 2008a; Palafox et al., 2013). However, this
requires having to tune at least one suitable penalty weight in the fit-
ness evaluation. To the best of our knowledge, until now no proposals
have been published for avoiding penalty weights when inferring GRNs.

With this motivation, in this paper we adopt the following hy-
pothesis: A Multi-Objective Optimization approach, based on Pareto dom-
inance and Pareto optimality theoretical concepts, may exhibit a successful
performance for the inference of S-System structures for GRNs, by exploiting
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2. Related works

Gene regulatory networks have been modeled with different tools,
such as: Boolean networks (Akutsu, 2003), by means of which gene
states are represented as members of a binomial domain, and Bayesian
networks (Friedman et al., 2004), which assign conditional prob-
abilities to the regulation parameters of each gene. Other recent pro-
posals focused on combinations of specific machine learning models,
such as: Boosting approaches with kernel-based autoregressive models
(Lim et al., 2013), formal on/off with non-parametric models based on
decision tress (Huynh-Thu and Sanguinetti, 2015), and recurrent neural
network based hybrid models (Khalid Raza and Mansaf Alam, 2016).

In this study, we concentrate on the S-System model (Savageau,
2010) as it provides a good compromise between biological relevancy
and mathematical flexibility. The S-System models the dynamics of a
network by means of an Ordinary Differential Equations (ODE) system,
which is powerful enough to capture complex dynamics of genetic
regulations. However, ODE-based models require a large number of
parameters to be tuned to properly reconstruct a target network.
Therefore, its application is, to date, limited to small/medium sized
networks, because of the course of dimensionality (Hitoshi Iba, 2016).
Even for small networks, current approaches are able to find correct
regulations, but show poor behavior when inferring topological struc-
tures.

In order to deal with these issues, recent studies (Lee and Hsiao,
2012; Palafox et al., 2013) have used a decoupled version to dis-
associate forms that are useful in the reconstruction of small networks.
For the inference of correct parameters in an S-System, researchers have
traditionally used global optimization search techniques, such as: Ge-
netic Algorithms (GAs) (Kikuchi et al., 2003; Sirbu et al., 2010; Spieth
et al., 2005b), Differential Evolution (DE) (Noman and Iba, 2007) and
Particle Swarm Optimization (PSO) (Lee and Hsiao, 2012; Palafox et al.,

2013; Nobile and Iba, 2015). These approaches have successfully per-
formed in finding correct regulations, but they have also shown a
number of false regulations. Therefore, dealing with small/medium
sized networks is still an open problem.

Other similar studies employed multi-objective approaches for the
inference of GRNs, like those presented in (Chen and Zou, 2016), (Liu
and Wang, 2008b) (Spieth et al., 2005a), and (Sirbu et al., 2010). Un-
fortunately, most of these proposals are preliminary applications of
multi-objective Evolutionary Algorithms with different objectives
(sometimes using aggregative formulations (Chen and Zou, 2016) (Liu
and Wang, 2008b)), but considered neither a decoupled S-System
model nor topology regularization. The later approach (Sirbu et al.,
2010) used a completely different multi-objective model, as it only
considered the MSE of each gene as objective, so (as argued by the
authors) only networks with two genes could be tackled.

3. Background concepts

With the aim of making this paper more self-contained, a series of
definitions in the context of multi-objective optimization are presented.

3.1. Pareto dominance definition

Optimization problems often need to be addressed by considering
two or more objective functions at the same time, being all of them
equally important. They are the so called Multi-Objective Optimization
Problems (MOP), and a formal definition of them is as follows. Without
loss of generality, we assume that minimization is the goal for all the
objectives.

Definition 3.1 (Multi-objective optimization problem). Find a vector
= …x x x x* [ *, *, , *]n1 2 which satisfies the m inequality constraints

= …g x i m( ) 0, 1, 2, ,i , the p equality constraints
= = …h x i p( ) 0, 1, 2, ,i , and minimizes the vector function
= …f x f x f x f x( ) [ ( ), ( ), , ( )]k

T
1 2 , where = …x x x x[ , , , ]n

T
1 2 is the vector

of decision variables.

The set of all values satisfying the constraints defines the feasible
region Ω and any point x is a feasible solution. We seek the Pareto
optima.

Definition 3.2 (Pareto optimality). for every x and = …I k{1, 2, , }
either =f x f x( ( ) ( *))i I i i or there is at least one i∈ I such that

>f x f x( ) ( *)i i .

This definition states that x * is Pareto optimal if no other feasible
vector x exists which would improve some criteria without causing a
simultaneous worsening in at least one other criterion.

Definition 3.3 (Pareto dominance). A vector = …u u u( , , )k1 is said to
dominate = …v v v( , , )k1 (denoted by u v ) if and only if u is partially
less than v . … … <i k u v i k u v{1, , }, {1, , }:i i i i.

Definition 3.4 (Pareto optimal set). For a given MOP , the Pareto
optimal set is defined as = ¬x x f x f x* { | , ( ) ( )}.

For a given MOP and its Pareto optimal set *, the Pareto front is
defined as = f x x* { ( ), *}.

Obtaining the Pareto front of a MOP is the main goal of multi-ob-
jective optimization. The representation of the Pareto set in the objec-
tive space is the Pareto front, which in general is presented in a graphic
so that the expert in the problem, i.e., the decision maker, can choose
the best trade-off solution. In theory, a Pareto front could contain a
large number of (or even infinitely many) points. In practice, a usable
approximate solution will only contain a limited number of them; thus,
an important goal is that they should be as close as possible to the exact
Pareto front (convergence) and uniformly spread (diversity), otherwise,
they will not be very useful to the decision maker.

time-series of expression data. The inference of GRNs is therefore for-
mulated as a multi-objective optimization problem (MOP) to simulta-
neously minimize two objectives: (1) the MSE using decoupled S-
System, and (2) a Topology Regularization (TR) value. Consequently, it 
is possible to tune the kinetic order and rate constant parameters (in a 
decoupled S-System), at the same time that the sparse topology of a 
given network is obtained, but avoiding the use of penalty weights.

A key contribution of this study is presented as a result of our hy-
pothesis, since we can now take advantage of the different learning 
procedures induced by the subfamily of multi-objective techniques. 
Moreover, we are now able to provide experts in biology systems with 
sets of trade-off solutions, instead of just one, allowing them to decide 
between a range of network topologies.

To test our hypothesis, a flexible and robust adaption of the Multi-
Objective Cellular Genetic Algorithm (MOCell) (Nebro et al., 2007) has 
been developed to perform the tasks of parameter learning and network 
topology inference, in the scope of GRNs. The main idea underpinning 
this algorithm, called MONET, is its ability to perform a wider ex-
ploration of the search space, which results in robust solutions mod-
eling precise networks. The performance of MONET is evaluated on 
time-series of gene expression data from synthetic and benchmarking 
networks of the DREAM3 challenge (Prill et al., 2010) based on real 
organisms (E. coli and Yeast), as well as the IRMA (Cantone et al., 2009) 
in vivo datasets. The ability to reproduce biological behavior and ro-
bustness to noise are assessed in comparison with other prominent 
techniques in the current state of the art.

This paper is organized as follows: Section 2 presents a series of 
related works in the state of the art. In Section 3, background concepts 
with regards to multi-objective optimization are explained. Models and 
methods are described in Section 4, where the proposed approach is 
also detailed. Section 5 reports the experimentation methodology and 
Section 6 analyzes the results obtained. Finally, Section 7 contains 
concluding remarks and future lines of research.



3.2. Hypervolume

Contrary to single/mono-objective optimization, where assessing
the performance of a metaheuristic mainly requires observing the best
value yielded by an algorithm (i.e., the lower the better, in the case of
minimization), in multi-objective optimization, this is not applicable.
Instead, an approximation set to the optimal Pareto front of the pro-
blem is computed. Two properties are usually required: convergence
and a uniform diversity. A number of quality indicators for measuring
these two criteria have been proposed (Deb, 2001).

In this work, we have concentrated on the hypervolume (IHV)
quality indicator, which takes into account both convergence and di-
versity. IHV calculates the n-dimensional space covered by members of a
non-dominated set of solutions Q, e.g., the region enclosed by the dis-
continuous line in Fig. 1, =Q A B C{ , , }, for problems where all objec-
tives are to be minimized. Mathematically, for each solution i∈Q, a
hypercube vi is constructed with a reference point W and the solution i
as the diagonal corners of the hypercube. The reference point can
simply be found by constructing a vector of worst objective function
values. Thereafter, a union of all hypercubes is found, and its hyper-
volume (IHV) is calculated:

= =I vvolume( )i
Q

iHV 1
| | (1)

Solution fronts with large values of IHV are desirable.

4. Models and methods

In biological networks inference, the main goal is to capture the
dynamics of biological systems from the time-series of gene expression
datasets obtained for a given pool of molecular species, in a given time
period. Such dynamics can be mathematically modeled by the S-System
(Voit, 2000) framework to represent a network as a set of differential
equations:
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where X is a n-dimensional pool of elements and the m-dimensional
independent variables are expressed as Xn+j, j=1, ⋯, m. That is, Xi is
the expression level of the ith gene. Parameters +,i i

N are rate

constants (N= n+m), and ×g h, N N
ij ij are kinetic orders that reg-

ulate the synthesis and degradation of Xi influenced by Xj.

4.1. Decoupled S-system

For the evaluation of S-System models, numerical methods such as
Runge-Kutta have been traditionally applied, since they are highly ac-
curate in finding parameters that lead the model to fit time-series
curves of gene expression data values. However, numerical solutions
depend on each of the n+m variables to update, which often take a
long time to calculate. In addition, evolutionary techniques such as GAs
apply learning models based on the evaluation of S-System for all the
candidate solutions in a population, throughout multiple iterations.
Therefore, in these kinds of approaches, the larger the network, the
harder the required computational effort is, since the complexity of
Runge–Kutta method is inhered to solve a number of recursive si-
multaneous equations in each solution evaluation. To cope with this
issue, we use a decoupling method based on the data collocation ap-
proach proposed by (Tsai and Wang, 2005), by means of which it is
possible to calculate equations referring to independent genes, and
hence to reduce the computational cost per evaluation. In collocation
methods, dynamic variables X in Eq. (2) are spanned by a set of shape
functions:

=
=

X t x j t( ) ( ) ( )
j

N

j
0 (3)

with x(j) being an expansion coefficient of X(t) and ϕj(t) is a set of
polynomial shape functions. The collocation method uses a linear La-
grange polynomial by introducing the experimental data (from time-
series) for each gene when solving the S-System of the target network.
Each new step in the numerical solution of the S-System is formulated
as:

= + ++ +x x f x f x0.5 ( [ , ] [ , ])n n n n1 1,exp (4)

where xn+1,exp(t) are the experimental values in gene expressions da-
taset at time t, f[xn, θ] is the Eq. (2) evaluated for xn, and θ is the set of
tuning parameters {gij, hij, αi, βi|i, j=1 ⋯N} in the S-System. Parameter
η in Eq. (4) is a smoothness rate in order to control the approximation
overshot.

4.2. Problem formulation

For the solution encoding, each candidate solution generated by
MONET is arranged in a vector of real variables representing the tuning
parameters: kinetic orders (gij, hij) and rate constants (αi, βi), in the S-
System model. Fig. 2 (bottom-left) represents the structure of tunning
parameters encoded within a solution vector.

4.2.1. Time-series estimation error
For the evaluation of candidate solutions, a widely used criterion is

the discrepancy between the gene expression levels calculated nu-
merically and those observed from time-series of system dynamics.
(Tominaga et al., 2000) standardized the use of the Mean Squared Error
(MSE) as the fitness function to evaluate each candidate solution in the
S-System. MSE is formulated as a minimization function:

=
= = =

f
X t X t

X t
( ) ( )

( )i

N

k

M

t

T
k i k i

k i

MSE

1 1 1

,
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,
exp

,
exp

2

(5)

where X t( )k i,
cal and X t( )k i,

exp are the expression levels of gene i in the kth
set of time courses at time t in the calculated and experimental data,
respectively. M is the set of time-series considered in the evaluation,
whereas T is the number of sampling points in the experimental data
(gene expression values). The main goal is to find an optimized set of
parameters θ that minimizes fMSE.

Fig. 1. The hypervolume (delimited by the dotted line) enclosed by the non-
dominated solutions.



4.2.2. Attaining the network topology
MSE is an efficient measure to capture the efficient fitting of time-

series curves by means of sampling values in optimization procedures.
However, one of the major difficulties in the S-System based inference
process lies in obtaining the proper topological structure of gene in-
teractions that generates the observed dynamics. S-System model
parameters show a high degree of freedom, which results in a great
number of local minima in the search space of solutions that mimics the
time courses very closely. Therefore, as experimented in (Kikuchi et al.,
2003), a method attempting to reproduce the time dynamics often gets
stuck on local optimum solutions and fails to obtain the true topological
structure of the network.

In this regard, the use of pruning or penalty terms based on the
Laplacian regularization in the basic MSE fitness function, is useful for
attaining a sparse network topology in the canonical optimization
problem (Kikuchi et al., 2003). However, because of high dimension-
ality, such fitness functions can be applied to small networks only.

Following the same notion, in (Noman and Iba, 2007) an additional
pruning term for the fitness function is proposed, which aims at cap-
turing the topological structure of the network as follows:

= +
=

f f c K(| |)i i
j

N I

i j
MSE

1

2

,
(6)

where fi
MSE is Eq. (5) but only referring to gene i and Ki,j are obtained by

sorting kinetic orders gij and hij all together in ascending order of their
absolute values (|Ki,1|≤ |Ki,2|≤ ⋯ ≤|Ki,2N|). I is the maximum al-
lowed cardinality degree of the network and c is a penalty constant.
This penalty term (second term of Eq. (6)), includes the maximum al-
lowed number of gene interactions (edges) in the network and penalizes
only when the number of genes that directly affect the ith gene is higher
than the maximum cardinality I. As a consequence, this penalization
will cause most of the genes to disconnect when their affecting kinetic
orders have low values. This will decrease the number of false positives,
while keeping the high number of true positives by gradually updating
the relative importance of each considered kinetic order gij and hij,
taking into account the cardinality. The performance of variable se-
lection strongly depends on the regularization parameters of the |Ki,1|
penalty terms. There are other similar penalty terms applied in the
literature in which synthetic and degradative regulations are con-
sidered separately (Kimura et al., 2005). However, the penalty term
considering both synthetic and degradative regulations together as
described in Eq. (6) was found to be more effective in identifying the
topological structure and correct parameter values than the one used in

(Kimura et al., 2005).

4.2.3. Proposed multi-objective formulation
As mentioned, in single-objective approaches (Noman and Iba,

2007; Liu and Wang, 2008a; Palafox et al., 2013), the common objec-
tive is to minimize an error function, often based on MSE, together with
an additional penalty term, but following an aggregative formulation,
as shown in Eq. (6). This formulation requires additional weight factors
to be set to find a good trade-off between the different terms. Never-
theless, this goal can be formulated as a bi-objective optimization
problem by considering these two terms separately, although following
a Pareto dominance scheme as follows:

• Objective 1: fMSE (Eq. (5)), which aims to estimate the kinetic and
order parameters from a limited amount of gene expression data.

• Objective 2: = = =f K(| |)i
N

j
N I

i j
Topology

1 1
2

, (second term of Eq. (6)),
to detect the sparse topological structure that is most commonly
seen in biological networks.

In this way, we can now take advantage of specific learning models
of Pareto optimality-based techniques (Deb, 2001) to deal with the
inference of gene regulatory networks, which will result in sets of non-
dominated solutions with different choices of time course estimations
and node topologies. In addition, we avoid the use of additional weight
factors that could bias the search procedure to one of the different
terms, as usually is seen in single-objective approaches.

The use of Pareto-based algorithms has the advantage of providing a
set of trade-off (i.e. non-dominated) solutions according the two con-
sidered objectives. The set of optimal non-dominated solutions is
known as the Pareto optimal set, and its representation in the objective
space is named the Pareto front. In general, the use of multi-objective
optimization metaheuristics, such as evolutionary algorithms, does not
guarantee to find the Pareto front but an approximation to it. These
techniques incorporate internally strategies and mechanisms aimed at
producing the best Pareto front approximation (Deb, 2001).

4.3. The MONET approach

The MONET approach consists of an adaption of MOCell (Nebro
et al., 2007), a multi-objective cellular Genetic Algorithm (cGA), to the
inference of GRNs by using the proposed multi-objective formulation.
The main characteristic of cellular GAs is that each solution belongs to a
cell (or neighborhood) and can only be recombined with a reduced

Fig. 2. Graphical representation of the
operation of MONET. The MOCell al-
gorithm evolves by applying the re-
production operators: neighborhood
selection, crossover, mutation, archive
storage, and replacement. The new
candidate solutions are used to set the
S-System. After the evaluation of solu-
tions, the Pareto front approximation is
constituted by using those non-domi-
nated solutions stored in the archive.



1: pop ⟵ initializePopulation()
2: pareto_front ⟵ initializeParetoFront() // In archive
3: while not StopCondition() do
4: for all individuals in pop do
5: n_list ⟵ Get_Neighbourhood(position(individual))
6: parents ⟵ Selection(n_list)
7: offspring ⟵ Recombination(pc,parents)
8: offspring ⟵ Mutation(pm,offspring)
9: Evaluate_Fitness(offspring)
10: Replacement(position(individual),offspring,aux_pop)
11: Update_Pareto_Front(pareto_front,offspring)
12: end for
13: pop ⟵ aux_pop
14: pop ⟵ Feedback(pareto_front)
15: end while
16: return pareto_front

As MOCell is a multi-objective adaption of cGA, it requires the ex-
istence of a structure to manage the non-dominated solutions found
with the aim of directing the search towards the Pareto optimal set. To
this end, an additional population (the external archive) is incorporated
to MOCell to gather the non-dominated solutions found throughout the
optimization procedure. To this end, MOCell creates an empty Pareto
front (line 2) and, after the replacement operation, the generated off-
spring is included in the external archive (line 11), if appropriate. After
each generation, the old population is replaced by the auxiliary one
(line 13), and a feedback procedure is invoked to replace a number of
randomly chosen individuals with a number of solutions from the ar-
chive (line 14). Finally, the “archived” Pareto front is returned as al-
gorithm's output (line 16).

It is worth noting that, in the case of cGA, the resulting offspring
replaces the individual at the current position if the former is better
than the latter. Nevertheless, as is usual in multi-objective optimization,
we need to define the concept of “best individual”. Our approach is

therefore to replace the current individual if it is dominated by the
offspring or the two are non-dominated and the current individual has
the worst crowding distance (as defined in (Deb, 2001)) in a population
composed of the neighborhood plus the offspring. This criterion is also
used to decide whether the offspring solutions are added to the external
archive (line 11 in Algorithm 3.5), or not. For inserting individuals in
the Pareto front, the solutions in the archive are ordered according to
the crowding distance. Then, when a new non-dominated solution is
inserted, if the Pareto front archive is already full, the solution with the
worst (lowest) crowding distance value is removed.

Fig. 2 shows a conceptual overview of the MONET operation. For
each new candidate solution, the vector of variables representing the
kinetic orders and rate constants are used to set the decoupled S-
System, whose outputs are obtained in form of predicted time-series.
Therefore, the MSE (objective 1) of the predicted time-series is com-
puted with regards to the gene expression data. In the case of topology
regularization (objective 2), it is calculated by just using the kinetic
orders, as explained in Section 4.2. In this way, the two objective values
are assigned to the evaluated solution.

5. Experiments

For the integration of MONET, we have adapted the implementation
of MOCell provided in the jMetal framework (http://jmetal.
sourceforge.net/) (Durillo and Nebro, 2011). The parameter settings
were performed as recommended in the research study in which MO-
Cell was initially proposed (Nebro et al., 2009), although adapting
some of them to the special case of GRNs instances, after a series of
preliminary experiments. Specifically, a population size of 100 in-
dividuals and a global number of 1,000,000 function evaluations are set
as the stopping condition; SBX crossover and polynomial mutation are
used as the operators for crossover and mutation, respectively; the
distribution indexes for these two operators are ηc=5 for crossover,
and ηm=5 for mutation; the crossover probability is pc=0.9 and the
mutation probability is pm=1/n, being n the number of decision
variables of the tackled problem (i. e., kinetic orders/rate constants).

A series of 25 independent runs were performed in experiments for
each GRN problem instance. The computational framework used con-
sisted of a Condor (http://research.cs.wisc.edu/htcondor/) middleware
platform, managing a maximum number of 200 cores, which acts as a
distributed task scheduler (each task dealing with one independent
run). After the experiments, a series of ROC-based performance metrics
were computed that will vary depending on the different datasets and
comparative analysis carried out. Nevertheless, with the aim of se-
lecting the most accurate Pareto front approximation out of the 25 in-
dependent runs, we focused on a quality indicator to reduce the pro-
vided scores (two objectives) of set optimal solutions (Pareto front) to
one single score. Specifically, the hypervolume indicator (Zitzler et al.,
2008) was used to validate the optimization provided by the MONET
approach, from the multi-objective point of view. In this way, those
resulting Pareto fronts with best hypervolume were selected to provide
candidate solutions for the forthcoming analysis and discussions.

6. Results

This section reports the results obtained in the scope of artificial
network with noise-free/noisy data, as well as for benchmarking in-
stances from DREAM3 Challenge and in vivo IRMA datasets. Comments
with regards to computational effort are also given.

6.1. Inference from artificial noise-free/noisy data

For the first set of experiments, we used an artificial network firstly
used by (Hlavacek and Savageau, 1996) that consisted of five elements’
interactions. This network has been widely used in early (Kikuchi et al.,
2003; Kimura et al., 2005; Liu and Wang, 2008a; Noman and Iba, 2007)

number of solutions (the surrounding cells or neighbors). The main idea 
behind this limitation is to perform a wider exploration of the search 
space. In this way, the algorithm is able to avoid premature con-
vergence to local optima, which will result in robust solutions in terms 
of kinetic order and rate constant parameters of an S-System model 
when reconstructing precise networks.

In MOCell, as well as in cGA, the population is structured in a 
regular grid of d dimensions (d = 1, 2, 3), and a neighborhood is de-
fined on it (see the 2D grid representation in Fig. 2-left). The pseudo-
code of MOCell can be observed in Algorithm 3.5. This algorithm 
iteratively considers as current each individual (solution vector) in the 
grid (line 5), which may only interact with other individuals belonging 
to its neighborhood, so its parents are chosen among from its neighbors 
(line 6) with a given criterion. Crossover and mutation operators are 
applied to the individuals in lines 7 and 8, with probabilities pc and pm, 
respectively. Afterwards, the algorithm computes the fitness value of 
the new offspring individual (or individuals) (line 9), and inserts it (or 
one of them) into the equivalent place of the current individual in a new 
auxiliary population following a given replacement policy. After each 
generation (or loop), the auxiliary population is assumed to be the 
population for the next generation. This loop is repeated until a stop 
condition is met (line 3). A maximum number of computed fitness 
evaluations is considered to be the stop condition.

According to the canonical cGA, in MOCell all the cells can be up-
dated in parallel, yielding the so-called synchronous MOCell. The al-
ternative is the asynchronous version, in which the cells are updated 
one at a time in sequential order. An asynchronous MOCell can be 
easily obtained from Algorithm 3.5, assuming that the cells are se-
quentially updated, so the auxiliary population is not needed in the 
algorithm. In this study, we have used an asynchronous version of 
MOCell, called aMOCell4 in (Nebro et al., 2007), in which the cells are 
updated sequentially (asynchronously).

Algorithm 3.5. Pseudocode of MOCell.

http://jmetal.sourceforge.net/
http://jmetal.sourceforge.net/
http://research.cs.wisc.edu/htcondor/


and in recent studies (Sirbu et al., 2010; Lee and Hsiao, 2012; Palafox
et al., 2013) to validate algorithmic proposals, so that we decided to
experiment with it, to also be able to compare with previous works. The
true system of this network is modeled in the S-System as follows:

=
=
=
=
=

X X X X X
X X X X
X X X X X
X X X X X
X X X X

g g h

g h

g h h

g g h

g h

1 1 3 5 6 1 1

2 2 1 7 2 2

3 3 2 8 3 2 3

4 4 3 5 6 3 4

5 5 4 7 5 5

13 15 11

21 22

32 32 33

43 45 44

54 55 (7)

Fig. 3 illustrates the gene network corresponding to the S-System of
Eq. (7). In this network, X1 is an mRNA produced from gene 1. This

gene also produces the enzyme protein X2, and X3 is an inducer protein
catalyzed by X2. X4 is an mRNA produced from gene 4 and X5 is a
regulator protein it produces. The mRNA production processes of genes
1 and 4 assume a positive interaction from the inducer protein X3 and a
negative interaction from the regulator one X5. Variables X6, X7, and X8

are considered to be independent in the system and represent a pool of
nucleic acid, amino acid and substrate, respectively.

From this network, we generated four new instances with different
levels of Gaussian White noise. This was done to evaluate the robust-
ness of the evaluated algorithm on different conditions of noise.
Specifically, we added noise to the original data by applying the fol-
lowing procedure:

= +
= ×

X t
X X t N

X t

( ): Data
Noisy( ) ( ) (0, )

Mean[ ( )] (8)

where ρ is the noise rate applied to the data. Therefore, as ϵ increases,
Noisy(X) distorts the information of the original data. For these ex-
periments, we set σ=1 and ρ=1%, 2%, 5%, and 10% noise rates,
depending on the level of noise in each generated instance. Each dataset
comprised 3 time-series with 5×20 time points of gene expression. We
followed a similar configuration of search region limits as previously
fine-tuned in previous approaches (Palafox et al., 2013; Sirbu et al.,
2010; Tsai and Wang, 2005) for the same datasets. We bounded the
kinetic orders gij and hij to [−3, 3], and the rate constants α and β to [0,
10].

A first observation of the results can be taken from Fig. 4 (left),
where the approximated Pareto fronts with best hypervolume com-
puted by MONET for each dataset with different levels of noise are
plotted. As mentioned, these Pareto fronts are generated from the ar-
chived non-dominated solutions, with respect to the two objectives
used: MSE and Topology Regularization (TR). In the case of noiseless
(0%) and 1% noisy datasets, the MSE values obtained are close to re-
sults in other studies in the state of the art (Sirbu et al., 2010) for the
same datasets. In addition, we now gain some quantitative insights of
the network structure by examining the topology regularization ob-
jective. In this regard, adding 2% noise to the data affects the accuracy
of the inference, yet most of the values are kept within an acceptable
range. For a 2% noise ratio, the inference is still successful in finding
the correct regulations. This means the MONET is robust for this
amount of noise. Some of the False Positive (FP) values increased,
which is to be expected with increased noise. In the case of 5% and 10%
levels of noise, the integrity of the data is significant hampered. In these
cases, the number of FPs and FNs (False Negatives) increased, although
MONET was still able to recover the correct interactions of the network.

Fig. 3. Synthetic network used to test noise-free/noisy data.

Fig. 4. The Pareto front approximations with best hypervolume obtained by
MONET, for datasets with different levels of noise, are plotted at left. Graphic at
right contains the approximated Pareto front corresponding to noiseless (0%
noisy) dataset in a separate plot.

Fig. 5. Sensitivity and specificity with regards to MSEs values (Objective 1) of
obtained non-dominated solutions of MONET for noiseless (0% noisy) dataset.



Continuing with this figure, a second observation concerns the front
shapes. Fig. 4 (right) shows a sub-graphic in which the best Pareto front
(according to hypervolume) obtained by MONET for the dataset with
0% level of noise is separately plotted. In this front, we can observe that
the MSEs obtained are within a short range of values
([6.4e−4 ⋯3.8e−3]), whereas those values of topology regulariza-
tion (Obj. 2) are within a relatively wider range
([1.0e−2 ⋯1.9e+0]). This led us to check that non-dominated solu-
tions in this front are able to model different network topologies, al-
though showing very close and low square error (MSEs) values when
fitting the time-series curves. In fact, this observation is clearer in Fig. 4
(top), where all fronts are plotted within the same range of values.

Although evaluating the algorithm's performance based only on
fitness functions is helpful (sometimes mandatory) when the inferred
model is unknown, it could produce over-fitting in the learning pro-
cedure after a large number of iterations. Fig. 5 plots the fitness values
in terms of MSE computed by MONET after these experiments with
regards to their sensitivity ( = +Sn

TP
TP FN ) and specificity ( = +Sp

TN
TN FP )

values. This way, a TP (True Positive) denotes the existence of the right
interaction between two genes inhibition and activation, whereas a TN
(True Negative) indicates the absence of interactions. As we can ob-
serve, those solutions with low fitness values usually induce high sen-
sitivities, although with low specificities. That is, these solutions usually
select correct interactions (TPs), but also wrong ones (FPs). Therefore,
an additional regularization function is required to avoid additional
false interactions.

For further validation and comparison of the results, Table 1 shows
the best sensitivity and specificity values obtained by MONET predic-
tions for the experimented network with different levels of noise. In this
table, the predictions of a series of single-objective inference techniques
in the state of the art (Sirbu et al., 2010), when dealing with the same
datasets, are also shown. These techniques are: a method using an Ar-
tificial Neural Network as a model and GA for parameter inference
(GA+ANN), a hybrid GA with an Evolution Strategy (GA+ES), a
Differential Evolution with AIC-based fitness (DE+AIC), a method
using Genetic Local Search (GLSDC), and an iterative algorithm based
on GA (PEACE1). In addition, the Accuracy ( = +

+ + +Acc TP TN
TP FP TN FN ) va-

lues are also calculated in order to provide overall results, hence to
establish as fair as possible comparisons. According to this, MONET
obtained the most accurate predictions (shaded in gray) for all datasets
with scaling degrees of noise, excepting for 1% of noisy level, for which
GA+ANN obtained the best prediction. In general, MONET is com-
petitive and robust against noise. One of the reasons this approximation
worked better than the compared single-objective approaches could be
due to its topology regularization, which guides the algorithm to avoid
large numbers of parameters, thus keeping regulations small and pre-
venting FPs from emerging even with increased noise in the data
(Palafox et al., 2013).

6.2. Results on DREAM3 networks

The second set of experiments consisted in evaluating our multi-
objective approach in the context of the standard benchmark DREAM3

in silico challenges2 of GRNs inference proposed by (Prill et al., 2010).
This benchmark comprises two networks of E. coli (Eschericia coli) plus
three networks of Yeast (Saccharomyces cerevisiae) with two versions of
10 and 100 sized genes for each of them. Networks of size 10 involve 4
time-series of 21 time points of samples, and networks of 100 genes
involve 46 time-series of 21 time points. These data were generated
from a thermodynamic model simulation phase for gene expression that
also entailed the addition of Gaussian noise. The time-series correspond
to different random conditions initially set for the thermodynamical
model. The structure of the networks were given from the actual Es-
chericia coli and Saccharomyces cerevisiae GRNs, which exhibit hetero-
geneous patters of sparsity and topology. In the DREAM3 challenge, the
target graphs are directed and not labeled with inhibitors or inductors.

To measure the performance of algorithms, we have followed the
protocol suggested in this challenge that comprises standard metrics:
the Receiver Operating Characteristic curve (ROC), the area under ROC
curve (AUROC) and the area under the precision-recall curve (AUPR).
The performance of MONET for the inference of network structures
sizes 10 and 100 are given in Tables 2 and 3, respectively. In addition,
the best predictions obtained separately throughout all executions are
displayed in row MONETBestRuns. In these tables, a series of state-of-the-
art results are also incorporated, which comprise those of LASSO and
the teams that exclusively used the same set of time-series data in the
DREAM3 challenge, namely: Teams 236 and 190. The LASSO imple-
ments a baseline linear least squares regression: =+x xt i t

T
i1, , performed

on each dimension node i=1 ⋯ p subject to li penalty on the βi para-
meters. An edge (i, j) is then assigned for each nonzero βij coefficient.

Additional results obtained from recent studies in the literature have
been also incorporated, which follow the same experimental procedure
and metrics, although implementing heterogeneous algorithms with
different learning procedures. A first set of results are obtained from
(Fan et al., 2017), where three variants of Bayesian Network Spline
with Nonparametric Regression and Topology information are eval-
uated in the context of DREAM3 size-10 networks, showing prominent
performance. These variants are Bayesian Lasso (BL), Bayesian Group
Lasso (BGL) and BGL with spike and slab priors (BGL_pro), and their
corresponding AUROC and AUPR are included in 2 . Another inter-
esting results are obtained from citepasoco-grn-2018, where a hybrid
multi-agent genetic algorithm with random forests based on fuzzy
cognitive maps is proposed and evaluated in the context of DREAM3
Yeast2 network with 10 and 100 genes. In this last approach, an AUROC
and AUPR values of 0.509 and 0.352 are obtained (respectively) for
Yeast2 10-size, while an AUROC of 0.508 and AUPR of 0.044 are re-
gistered for Yeast2 100-size.

The AUROC and AUPR metrics in Table 2 indicate that MONET is
highly competitive with regards to the techniques compared in the
scope of size 10. Concretely, the proposed approach achieved superior
AUROC results for all networks except for Ecoli2 and Yeast2 (AUROC),
although with close values to the best ones. In the case of AUPR,
MONET obtained outperforming results for Ecoli1, Yeast1, and Yeast2.

Table 1
Sensitivity (Sn), Specificity (Sp) and Accuracy (Acc) values computed by MONET for the experimented dataset with different levels of noise, in comparison with
related approaches in the state-of-the-art.

Noise 0% 1% 2% 5% 10%
Algorithm Sn Sp Acc Sn Sp Ac. Sn Sp Acc Sn Sp Acc Sn Sp Acc

GA+ANN 0.74 0.81 0.77 1.00 0.89 0.94 0.89 0.78 0.83 0.77 0.78 0.77 0.71 0.72 0.71
GA+ES 0.64 0.89 0.76 0.72 0.93 0.82 0.70 0.89 0.79 0.54 0.83 0.68 0.83 0.75 0.79
DE+AIC 0.58 0.81 0.69 0.63 0.86 0.74 0.68 0.89 0.78 0.69 0.86 0.77 0.54 0.86 0.70
GLSDC 0.72 0.67 0.69 0.74 0.65 0.69 0.73 0.76 0.74 0.74 0.76 0.75 0.65 0.68 0.66
PEACE1 0.55 0.82 0.68 0.36 0.8 0.58 0.36 0.77 0.56 0.44 0.78 0.61 0.96 0.08 0.52
MONET 0.84 0.82 0.83 0.92 0.81 0.86 0.92 0.78 0.85 0.92 0.72 0.82 0.84 0.78 0.81

2 Available at URL http://dreamchallenges.org.

http://dreamchallenges.org


We especially note that our multi-objective approach exhibited ex-
cellent AUROC and AUPR values for Ecoli1 and Yeast1. It is worth
mentioning that other approaches in the literature used additional
knowledge concerning the network structure to generate guiding op-
erators, hence enhancing the inference process. For instance, the Ecoli2
network shows a star topology with several central hubs that regulate
many genes (Prill et al., 2010), so this information is used to establish
thresholds and cluster strategies that could lead inference methods to
perform successfully, but only in the scope of this benchmarking net-
work. In contrast, in the case of MONET only objective functions are
used to numerically discern the network topology and the interactions
strength according to S-System parameters in non-dominated solutions.
This is a key advantage for actual experiments, where the network
structure is commonly unknown and only gene expression data are
available to train inference methods.

From a graphical perspective, the Pareto fronts with best hypervo-
lume obtained by MONET for the datasets of the DREAM3 challenge are
plotted in Fig. 6. In this figure, the plot at top-left contains the Pareto
fronts corresponding to the Ecoli1 dataset obtained by MONET in all
independent runs. These last plots are given just to show that obtained
fronts are in close ranges and no extreme outliers were obtained for
these datasets, although this observation is generalized for all the da-
tasets used in this study.

In the case of the DREAM3 size-100 networks, Table 3 shows that
MONET is again highly competitive with regards to the approach of
Team 236, which was the only team that used time-series datasets for
size-100 challenge. Specifically, MONET obtained outperforming
AUROC values for networks Ecoli1, Yeast2 and Yeast3. Team 190 did
not submit predictions for the size-100 networks. An interesting ob-
servation in this table is that, for all the algorithms, the resulting

Table 2
AUROC and AUPR for MONET, LASSO, Team 236, Team 190 (DREAM3 challenge), BL, BGL, and BGL_prior run on DREAM3 size-10 networks.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

LASSO 0.500 0.119 0.547 0.531 0.528 0.244 0.627 0.305 0.582 0.255
Team 236 0.621 0.197 0.650 0.378 0.646 0.194 0.438 0.236 0.488 0.239
Team 190 0.573 0.152 0.515 0.181 0.631 0.167 0.577 0.371 0.603 0.373
BL 0.494 0.245 0.688 0.532 0.620 0.298 0.441 0.297 0.409 0.201
BGL 0.533 0.207 0.781 0.609 0.552 0.274 0.534 0.287 0.464 0.219
BGL_prior 0.623 0.242 0.787 0.614 0.636 0.279 0.503 0.254 0.498 0.234
MONET 0.647 0.184 0.513 0.200 0.801 0.469 0.522 0.354 0.623 0.324
MONETB 0.761 0.328 0.603 0.322 0.801 0.469 0.595 0.423 0.623 0.324

Table 3
AUROC and AUPR for MONET, LASSO, Team 236 (DREAM3 challenge) run on DREAM3 size-100 networks.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

LASSO 0.519 0.016 0.512 0.057 0.507 0.016 0.530 0.044 0.506 0.044
Team 236 0.527 0.019 0.546 0.042 0.532 0.035 0.508 0.046 0.508 0.065
MONET 0.525 0.014 0.533 0.012 0.522 0.018 0.485 0.038 0.517 0.058
MONETB 0.532 0.034 0.542 0.015 0.522 0.018 0.524 0.047 0.517 0.058

Fig. 6. The Pareto front approximations with best hypervolume obtained by MONET, for the datasets of the DREAM3 challenge, are plotted. Graphic at top-left
contains the approximated Pareto fronts corresponding to Ecoli1 dataset obtained by MONET in all the independent runs.



AUROC values are kept with a high precision and similar to those ones
obtained for size-10 networks, whereas AUPR values declined in gen-
eral, with percentages lower than 7%. A reason of this deterioration in
AUPR may be because of the lower density of size-100 networks, where
the number of non-edge elements is larger than the number of edges.

Finally, in comparison with those results of (Liu and Liu, 2018) for
Yeas2 100-size network (only network with available results), MONET
obtained better AUROC (0.524) and AUPR (0.047) values than the
hybrid technique proposed in that work (with AUROC 0.508 and AUPR
0.044). All these results lead us to suggest that MONET shows compe-
titive performance with regards to original works in the context of
DREAM3 Challenge, as well as to modern algorithmic proposals in the
current literature.

6.3. Results on the IRMA network

To further test MONET we used time course gene expression data
from the In Vivo IRMA (In vivo Reverse-engineering and Modeling
Assessment) network (Cantone et al., 2009), which was synthesized in
the yeast Saccharomyces cerevisiae. The network has 5 genes (CBF1,
GAL4, SWI5, GAL80, and ASH1) and 6 regulatory interactions and can
be switched on or off by culturing cells in galactose or glucose, re-
spectively. The expression levels of the genes in the network were
measured using quantitative RT-PCR at different time points in two
different sets of experiments. In the first set, cells were stimulated with
galactose and the network was switched on, whereas in the second set
the network was switched off by adding glucose. The IRMA network is
well studied and is a gold standard network.

Table 4 shows the results of the GRNs reconstructed by the best
method used for performance comparison of in-silico data (BL_prior),
including the most prominent techniques found in the literature for
IRMA network. These techniques are BGRMI, Jump3 (both from
(Iglesias-Martinez et al., 2016)), KFLR, CMI2NI, and TIGRESS (from
(Pirgazi and Khanteymoori, 2018)), for which the AUPR values are used
for comparison (AUROC values are not available for these techniques).
As shown in this table, BGRMI obtained the highest AUPR for the
Switch-On dataset, although with similar results to those of MONET,
which performs the second best method. Conversely, in the case of
Switch-Off dataset, MONET obtains the best AUPR values, followed by
KFLR and Jump3. These results suggest MONET is highly competitive,
not only on in silico datasets, but also on in vivo experimental data.

6.4. Computational effort

MONET used, on average, computing times of 1 minute for net-
works with 5 genes and 60 observations, 3 minutes for networks with
10 genes and 81 observations (DREAM3-10 size), and 30 hours for
networks with 100 genes and 210 observations (DREAM3-100 size).
These computational times are in the range of other approaches in the
state of the art in which model-based inference methods are applied to
similar datasets (Huynh-Thu and Sanguinetti, 2015; Palafox et al.,
2013; Sirbu et al., 2010). It is worth noting that the extra amount of

time required to infer a DREAM3 size-100 network is due to the high
number of observations, although such a high number is not usually
encountered in real datasets, where the number of observations is ty-
pically much lower than the number of genes.

7. Conclusions

Inferring the interaction network of genes is a fundamental step
towards understanding how a cell or an organism can respond to its
environment. In the last decade, the computational biology community
have made reasonable efforts to develop new techniques to solve this
problem. However, there is still a demand for unified frameworks to
increase the accuracy and decrease the number of false predictions in
correct interaction for small networks.

Our hypothesis is that a multi-objective Pareto dominance-based
approach would allow us to obtain a low concentration error when
fitting genetic time-series, at the same time as a sparse topology of the
network is enhanced. As a result of this approach, we are now able to
design and use a sub-class of multi-objective evolutionary optimization
algorithms, thereby taking advantage of their different learning pro-
cedures.

Experiments on simulated and synthetic data show that MONET is
always competitive and often outperforms state-of-the-art GRN in-
ference procedures. In noisy time-series, Table 1 shows how MONET
outperforms practically all compared algorithms, so it is able to keep an
accurate percentage of correct predictions even with a 10% level of
noise, with sensitivity 0.84 and specificity 0.78. It has good scalability
with respect to the number of genes and maintains its good perfor-
mance when inferring large networks. In addition, for standard
benchmarks in DREAM3 and in vivo IRMA network, MONET also ex-
perimented competitive performance in comparison with other current
approaches in the state of the art.

As future work, an important direction to take is the adaption of
specific algorithmic operators to the special case of GRNs modeling and
inference. The design of crossover, mutation and local search operators
that include additional knowledge based on complementary data, such
as: microRNA expression, chromatin or protein-protein interactions,
could guide the search strategy of the algorithmic proposal and enhance
its potential for biologically meaningful hypothesis generation on real
datasets. In this sense, the use of pruning or regularization mechanisms
to prevent small values (of interactions) from increasing could lead the
algorithm to decrease the creation of false positives, while promoting a
sparse set of parameters. In addition, the use of generalized Boolean
models for network inference would enable more sophisticated forms of
logical update in transition of elements, hence allowing transitory state
datasets.

From another perspective, inferring large scale gene networks from
perturbation data is computationally challenging, so few computational
tools have been proposed in the literature to deal with this issue
(Shojaie et al., 2014). In this sense, the development of archiving
strategies in MONET to compute and evaluate overlapping and con-
sensus graphs among non-dominated solutions in the Pareto front ap-
proximation, could lead to the generation of competitive techniques for
the inference of GRNs, also on gene expression time-series datasets with
high degree of perturbation.
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Algorithm Switch-on Switch-off

BL_prior 0.625 –
TIGRESS 0.714 0.452
GENIRF 0.672 0.327
CMI2NI 0.721 0.456
KFLR 0.896 0.721
Jump3 0.685 0.682
BGRMI 0.904 0.574
MONET 0.827 0.734
MONETB 0.901 0.741

Table 4
AUPR performances on IRMA network.
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