
Enhancing semantic consistency in anti-fraud rule-based expert

systems

María del Mar Roldán-García, José García-Nieto, José F. Aldana-Montes

Dept. de Lenguajes y Ciencias de la Computación, University of Málaga, ETSI Informática, Campus de Teatinos, Málaga 29071, Spain

Keywords:

Semantic model

Ontology reasoning

Rule-based expert system

Fraud detection expert systems

a b s t r a c t

In this study, an ontology-driven approach is proposed for semantic conflict detection and classification in

rule-based expert systems. It focuses on the critical case of anti-fraud rule repositories for the inspection

of Card Not Present (CNP) transactions in e-commerce environments. The main motivation is to examine

and curate anti-fraud rule datasets to avoid semantic conflicts that could lead the underpinning expert

system to incorrectly perform, e. g., by accepting fraudulent transactions and/or by discarding harmless

ones. The proposed approach is based on Web Ontology Language (OWL) and Semantic Web Rule Lan-

guage (SWRL) technologies to develop an anti-fraud rule ontology and reasoning tasks, respectively. The

three main contributions of this work are: first, the creation of a conceptual knowledge model for de-

scribing anti-fraud rules and their relationships; second, the development of semantic rules as conflict-

resolution methods for anti-fraud expert systems; third, experimental facts are gathered to evaluate and

validate the proposed model. A real-world use case in the e-commerce (e-Tourism) industry is used to

explain the ontological knowledge design and its use. The experiments show that ontological approaches

can effectively discover and classify conflicts in rule-based expert systems in the field of anti-fraud ap-

plications. The proposal is also applicable to other domains where knowledge rule bases are involved.

3

p

p

f

s

t

t

h

t

t

t

r

a

m

a

e

s

b

h

1. Introduction

Rule-based Expert Systems (RBESs) are the simplest form of ar-

tificial intelligence, which uses rules as the representation for en-

coding knowledge from a fairly narrow area into an automated

system (Durkin, 1998). RBESs mimic the reasoning procedure of

a human expert when solving a knowledge-intensive problem. A

rule-based system consists of a set of IF-THEN rules, a set of facts

and an interpreter controlling the application of the rules, given

the facts. Rule-based systems are very simple models and can be

adapted and applied to a wide set of different problems, when-

ever the domain of knowledge can be expressed in the form of

IF-THEN rules.

In the case of fraud prevention and detection in e-commerce

transactions, RBESs are used to identify customers’ suspicious ac-
� This work is partially funded by FP7 EU project SME-Ecompass under Grant No:

15637 . It is also partially funded by Grants TIN2014-58304 (MINECO) and Regional

rojects P11-TIC-7529/P12-TIC-1519. Authors specially thanks to etravel.com and in

articular to Orestis Papadopoulos to support this work with a set of private rules

or testing and validation. José García-Nieto is recipient of a Post-Doctoral fellow-

hip of “Captación de Talento para la Investigación” at Universidad de Málaga.
∗ Corresponding author.

E-mail addresses: mmar@lcc.uma.es (M.d.M. Roldán-García), jnieto@lcc.uma.es (J.

b

e

c

i

García-Nieto), jfam@lcc.uma.es (J.F. Aldana-
Montes).
ivities by automatically generating risk scoring reports of their

ransactions (Ketkar, Shankar, & Banwet, 2014). They analyze be-

aviors such as repetitive and quick access attempts, domes-

ic/foreign transactions, and abnormal transactions compared with

he customer‘s past behavior. A final decision is then delivered by

he system, commonly: Accept, Reject , or Revise . A small subset of

ules that might contribute to a negative risk assessment could be

s follows (Ward, 2010): A single IP address has been used with

ultiple payment cards in the last few days; the shopper‘s billing

ddress is more than “x” kilometers from the shipping address; the

-mail address has been flagged in a negative database (black list)

of known fraud activity by other merchants participating in the

ame fraud detection strategy; the BIN (Bank Identification Num-

er) on the payment card indicates the transaction comes from a

igh-risk country.

Using a combination of these and many other factors could

enefit e-merchants, who are presently demanding autonomous

xpert systems, to quickly update their rule-bases and flag suspi-

ious transactions (Wong, 2013). In the current market, there ex-

st a series of tools that use rule-based knowledge engines for

http://dx.doi.org/10.1016/j.eswa.2017.08.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.08.036&domain=pdf
http://dx.doi.org/10.13039/100011102
http://dx.doi.org/10.13039/501100003329
http://www.etravel.com
mailto:mmar@lcc.uma.es
mailto:jnieto@lcc.uma.es
mailto:jfam@lcc.uma.es
http://dx.doi.org/10.1016/j.eswa.2017.08.036

r

a

a

e

l

e

t

f

m

t

f

o

P

i

h

b

e

a

o

b

A

s

a

T

c

f

f

e

L

n

r

w

t

u

c

r

s

e

s

a

m

c

2

v

Table 1

Basic OWL-DL semantic syntax used to formally define the proposed

ontology.

Descriptions Abstract syntax DL syntax

Operators intersection (C 1 , C 2 , ���, C n) C 1 �C 2 ����C n
union (C 1 , C 2 , ���, C n) C 1 �C 2 ����C n

Restrictions for at least 1 value V from C ∃ V.C

for all values V from C ∀ V.C

R is Symmetric R ≡ R −

Class Axioms A partial (C 1 , C 2 , ���, C n) A � C 1 �C 2 ����C n
A complete (C 1 , C 2 , ���, C n) A ≡ C 1 �C 2 ����C n

2

t

t

t

i

i

t

i

a

a

r

o

p

a

S

t

t

d

s

q

m

D

t

o

S

f

O

o

a

O

O

a

c

t

c

t

t

u

t

s
isk scoring of e-commerce fraud: Simility, 1 Subuno, 2 Riskfield, 3

nd Trustev. 4 These tools are widely used not only for tracking

nd scoring transactions, but also for reporting statistics of the

-commerce site. However, these tools often concentrate on high

evel and generic sets of rules, without the possibility of consid-

ring new ad hoc rules specific to each e-commerce site. When

hese are provided, they are available only for commercial (non-

ree) versions, which are rarely accessible to SMEs or individual e-

erchants.

In this context, the SME-Ecompass European initiative 5 aims

o provide e-commerce SMEs with accessible tools for specialized

raud prevention and detection. These software facilities are built

n a rule-based expert system for the risk scoring of Card Not

resent transactions (CNP). The knowledge rule base can be eas-

ly updated by the e-merchant by inserting new rules specific to

is/her own e-commerce site. Nevertheless, an increasing num-

er of anti-fraud rules (and their combinations) often provoke the

mergence of conflicting rules with semantic inconsistencies. In

ddition, anti-fraud expert systems face a major challenge as they

perate in hostile conditions, as their anticipated inference capa-

ilities are degraded with a continuously changing environment.

s a consequence, these issues can lead the underpinning expert

ystem to perform inefficiently (Grosan & Abraham, 2011), e.g., by

ccepting fraudulent transactions, while discarding harmless ones.

herefore, a key task in anti-fraud applications is to inspect and

urate knowledge rule bases to avoid semantic inconsistencies, be-

ore delivering a final diagnosis.

With this motivation, an ontology-driven approach is proposed

or semantic inconsistent detection and classification in rule-based

xpert systems. The proposed approach is based on Web Ontology

anguage (OWL) and Semantic Web Rule Language (SWRL) tech-

ologies to develop an anti-fraud rule ontology and to perform

easoning tasks, respectively. The three main contributions of this

ork are:

(i) creating a conceptual knowledge model, in terms of an OWL

ontology, to describe anti-fraud rules and their relationships;

(ii) developing semantic SWRL rules as conflict/inconsistency

detection methods for anti-fraud expert systems;

(iii) gathering experimental facts to evaluate and validate the

proposal.

A real-world use case in the e-commerce (e-Tourism) indus-

ry is used to explain the ontological knowledge design and its

ses. The experiments show that the proposed semantic approach

an effectively discover and classify inconsistencies and conflicts in

ule-based expert systems, in the field of anti-fraud applications.

The remainder of this article is organized as follows. The next

ection presents background concepts and related works in the lit-

rature. In Section 3 , key concepts in a real-world anti-fraud expert

ystem are explained. Section 4 describes the proposed semantic

pproach, giving details of the OWL Ontology and the reasoning

odel. The validation procedure is reported in Section 5 . The main

onclusions and future work are given in Section 6 .

. Background and literature overview

This section describes the main background concepts and re-

iews related works in the specialized literature.
1 In URL https://simility.com/ .
2 In URL http://www.subuno.com/ .
3 In URL http://www.riskified.com/ .
4 In URL http://www.trustev.com/ .
5 SME-Ecompass FP7 European initiative http://www.sme-ecompass.eu/ .

p

c

d

t

b

f

t

.1. Background concepts

- Ontology. Ontologies provide a formal representation of

he real world by defining concepts and relationships between

hem (Gruber, 1993). In the context of the computer and informa-

ion sciences, an ontology defines a set of representational prim-

tives with which to model a domain of knowledge. These prim-

tives are typically concepts (or classes), attributes (or proper-

ies), class members (class instances) and relationships (property

nstances). The definitions of the primitives include information

bout their meaning and constraints on their logically consistent

pplication.

- RDF. Graphical language used to represent information about

esources on the web (Staab & Studer, 2009). It is a basic ontol-

gy language. Resources are described in terms of properties and

roperty values using RDF statements. Statements are represented

s triples, consisting of a subject, predicate and object. The RDF

chema (RDFS) (Staab & Studer, 2009) “semantically extends” RDF

o enable us to talk about classes of resources, and the properties

hat will be used with them.

- SPARQL. It is a query language for ontology models and

atabases, capable of extracting and manipulating information

tored in RDF format. Essentially, SPARQL is a graph-matching

uery language that can be used to extract knowledge from a

odel like the one proposed in this article. Given a data source

, a query is a pattern, which is matched against D. The combina-

ions of values resulting from this matching constitute the result

f the query (Pérez, Arenas, & Gutierrez, 2009).

- OWL. In 2004, the W3C ontology working group (Dean &

chreiber, 2004) proposed OWL as a semantic markup language

or publishing and sharing ontologies. From a formal point of view,

WL is equivalent to a very expressive description logic where an

ntology corresponds to a Tbox (Gruber, 1993). This equivalence

llows the language to exploit description logic researcher results.

WL extends RDF and RDFS. When compared to RDF models,

WL adds more vocabulary for describing properties and classes,

mong others: relationships between classes (e.g. disjointedness),

ardinality (e.g. “exactly one”), equality, richer typing of proper-

ies, characteristics of properties (e.g. symmetry), and enumerated

lasses (McGuinness & Harmelen, 2004).

- OWL-DL. It is a syntactic variant of the SHOIN (D) descrip-

ion logic (Haase & Stojanovic, 2005) with a different terminology

o OWL, which is based on RDF(S). Therefore, it supports data val-

es, data types and data type properties. OWL-DL restricts OWL in

wo distinct ways (Horrocks & Patel-Schneider, 2003): first, some

yntactic constructs, e.g., recursive descriptions in them are not

ermitted; second, classes, individuals and properties (respectively

oncepts, individuals and roles in description logics) must all be

isjoint. In this approach, we use the OWL-DL syntax to formalize

he proposed ontology for our semantic model. A description of the

asic OWL-DL semantic syntax is shown in Table 1 , where an in-

ormal logic syntax is represented (left-hand column) with regards

o the corresponding OWL-DL equivalent (right).

https://simility.com/
http://www.subuno.com/
http://www.riskified.com/
http://www.trustev.com/
http://www.sme-ecompass.eu/

b

t

t

i

fi

r

t

h

t

d

t

p

o

u

w

f

g

f

e

3

t

c

v

h

o

&

p

t

a

r

m

r

e

b

w

c

k

i

d

w

t

c

a

s

a

a

a

I
- SWRL. The Semantic Web Rule Language provides the OWL-

based ontologies with procedural knowledge, which compen-

sates for some of the limitations of ontology inference, par-

ticularly in identifying semantic relationships between individu-

als (Horrocks, Patel-Schneider, Bechhofer, & Tsarkov, 2005). SWRL

uses the typical logic expression “Antecedent ⇒ Consequent” to

represent semantic rules. Both antecedent (rule body) and conse-

quent (rule head) can be conjunctions of one or more atoms writ-

ten as “atom 1 ∧ atom 2 ∧ ���∧ atom n ”. Each atom is attached to one

or more parameters represented by a question mark and a vari-

able (e.g., ? x). The most common uses of SWRL include transfer-

ring characteristics and inferring the existence of new individu-

als (Grosof & Poon, 2004). Further information on SWRL syntax can

be found in the W3C web site. 6

2.2. Literature overview

The use of ontologies and ontology-related technolo-

gies for building knowledge databases for anti-fraud sys-

tems is considered quite beneficial for two main rea-

sons (Alexopoulos, Kafentzis, Benetou, Tagaris, & Georgolios,

2007): (1) Ontologies provide an excellent way of capturing and

representing domain knowledge, principally due to their expressive

power; (2) A number of well-established methodologies, languages

and tools (Gómez-Pérez, Corcho, , & Fernandez-Lopez, 2004)

developed in the field of Ontological Engineering can make the

building of the knowledge base easier, more accurate and more

efficient, especially in the knowledge acquisition stage which is

usually a bottleneck in the whole ontology development process.

In this sense, Alexopoulos et al. (2007) proposed a methodology

for building domain specific ontologies in the e-government do-

main. The main characteristic of this methodology is a generic

fraud ontology that serves as the common basis on which the

various domain-specific fraud ontologies can be built.

At the same time, Fang, Cai, Fu, and Dong (2007) proposed

a novel method built upon ontology and ontology instance sim-

ilarity for checking user behavior in CNP scenarios. Ontology is

widely used to enable knowledge sharing and reuse, so some per-

sonality ontologies can be easily used to represent user behav-

ior. By measuring the similarity of ontology instances, the authors

were able to determine whether an account had been defrauded.

This method decreases the data model cost and makes the system

adaptable to different applications.

From a different perspective, Ramaki, Asgari, and

Atani (2012) presented a technique for detecting abnormal credit

card operations by exploiting an ontology. Specifically, this work

used an ontology graph to model each user‘s transaction behavior

and then store it in the system. During abnormality detection,

only those transactions from a registered record of transactions,

which are similar to entry ones, are selected for computation.

In Hu et al. (2013) , a case study applying semantic technologies

to social benefit fraud detection is described. The authors claim

that design considerations, study outcomes, and lessons learnt

could help in making decisions of how one should adopt seman-

tic technologies in similar contexts. In a nutshell, by leveraging se-

mantic technology, organizations are able to dynamically describe

new fraud cases and facilitate the integration, analysis, and visual-

ization of disparate and heterogeneous data from multiple sources.

In addition, by generating semantic fraud detection rules, they can

manage to convert labor intensive tasks into (semi-) automated

processes.

Finally, in Rajput, Khan, Larik, and Haider (2014) the authors

proposed an effective mechanism to detect suspicious transactions
6 https://www.w3.org/Submission/SWRL/ .
y designing an ontology based expert system. The proposed on-

ology consists of domain knowledge and a set of SWRL rules that

ogether constitute an expert system. The native reasoning support

n the ontology is used to deduce new knowledge from the prede-

ned rules about suspicious transactions.

All these approaches apply a domain ontology, which tries to

epresent the knowledge of an expert in the domain of knowledge

o pre/post rule mining processes. The semantic model proposed

ere seeks to go one step further as it makes use of a domain on-

ology, as well as an ontology representing the e-commerce rules

omain itself. This is done by modeling the attributes and opera-

ors that are employed to build such rules. Furthermore, this ap-

roach is able to exploit the reasoning capabilities of the ontol-

gy to detect semantic conflicts in rules. For the sake of a better

nderstanding, Table 2 outlines the main features of the related

ork with regards to the semantic approach proposed here. These

eatures consist of specifying whether the existing approaches: are

eneral purpose anti-fraud ontologies, focus on CNP transactions,

ocus on user behavior, based on knowledge rule-bases, support an

xpert system, and/or use SWRL reasoning rules.

. Anti-fraud expert system for CNP transactions

Data representing the credit card usage profiles of the cus-

omers consist of variables, each of which discloses a behavioral

haracteristic. A profile allows the merchant to differentiate among

arious business segments. The variables may show the spending

abits of the customer with respect to geographical locations, days

f the month, hours of the day or Merchant Category Codes (Hand

 Blunt, 2009). Credit card data comprises close to 70 variables

er transaction: Transaction ID, transaction type, date and time of

ransaction (to nearest second), amount, currency, local currency

mount, merchant category, card issuer, and chip card verification

esults, are among the most used. Using combinations of these and

any other variables, it is possible to formulate a set of behavior

ules (in the IF-THEN format) that compose rule-based knowledge

ngines for risk scoring in CNP transactions.

An innovative example of a knowledge rule base system has

een recently released in the SME-Ecompass European initiative, 7

hose principal aim is to provide e-commerce SMEs with ac-

essible tools for specialized fraud prevention and detection. This

nowledge rule base can be easily updated by the e-merchants by

nserting new rules specific to their own e-commerce sites. In ad-

ition, based on previous experience, a series of shared black and

hite lists of suspicious attributes are integrated in the application

hat allow the user to consider highly specific fraudulent cases.

In SME-Ecompass‘s anti-fraud services, each newly arrived pur-

hase order (in a given e-shop) flows through the inference engine

nd receives a risk score (RS) depending on its characteristics. This

core reflects the confidence with which the order can be regarded

s fraudulent. Once scoring is completed, the transaction is routed

ccording to the three-event fraud-detection protocol:

• If the risk score is above an upper cut-off point (threshold), the

order is accepted and executed automatically.
• If the risk score is below a lower cut-off point, the order is re-

jected without further notice.
• If the risk score lies between lower and upper cut-off points,

the order is sent to fraud analysts for further investigation (un-

der quarantine).

A fraud assessment rule has a series of main attributes that

re described in Table 3 . The rule logic is on the antecedent side.

t is composed of one or more “Rule Conditions” (RC), which are
7 SME-Ecompass FP7 European Initiative http://www.sme-ecompass.eu/ .

https://www.w3.org/Submission/SWRL/
http://www.sme-ecompass.eu/

Table 2

Summary ontologies’ main features with regards to the proposed approach.

Feature/Ontology Alexopoulos et al. (2007) Fang et al. (2007) Ramaki et al. (2012) Hu et al. (2013) Rajput et al. (2014) Proposal

Generic anfi-fraud � � �
CNP transactions � � � �

User behavior � � � �

Expert systems � �

SWRL reasoning � � �
knowledge rule-base �

Table 3

Main attributes of the fraud assessment rules in the SME-Ecompass knowledge rule base.

Attribute Description

id A unique key, that uniquely identifies the rule

name A name that visually distinguishes the rule

profile_id The profile that owns the particular rule. A profile allows the merchant to differentiate among various business

segments

type Identifies the type of the rule

order The position of the rule relative to the other rules in the same profile

active Whether the rule is active in the system or not. Only active rules are taken into account when evaluating a case

score An integer number that is assigned to the case being evaluated when the rule matches (becomes true)

result “Accept”, “Reject” or “Review”. When present, it will turn the rules into decision rules. Decision rules, when matched,

assign their result to case fraud assessment result irrespective of the score

Table 4

Main attributes used in rule conditions in the SME-Ecompass knowledge rule base.

Attribute Description

id Uniquely identifies the rule condition

condition_group_id Groups rule conditions

left_argument_attribute_id The reference to the left operand. The left operand will always be a session attribute

operator The operator that will be used to operate the left operand over the right one. This will be a string

representation of the operator as described in Table 5

argument_type Literal, List or Attribute. This defines the type of the right operand, which might be: a custom

value (Literal), a reference to a List or a reference to a session attribute

literal_argument_value If the right operand is a custom value and its argument_type is Literal, then this attribute will

hold the actual custom value. This will be a string representation of the value

literal_argument_data_type If the right operand is a custom value, it will be specified by the datatype. The datatype is

specified with one of the string values, as cataloged in Table 5 : “String”, “Country”, “Number”,

“Date”, “Flag”, “Email”

right_argument_attribute_id A foreign key to the session attribute that will be used as the right operand of the condition. This

will take a value only if the argument_type column has the value “Attribute”

right_argument_list_id A foreign key to the “List” that will be used as the right operand of the condition. This will take a

value only if the argument_type column has the value “List”

Table 5

List of possible operators to be used in rule conditions, with regards to the datatype in the SME-Ecompass

knowledge rule base.

Datatype Operators

String Equals, NotEquals, Contains, DoesNotContain, Matches, DoesNotMatch, EndsWithAnyFromList,

IncludedInList, NotIncludedInList, DoesNotWithAnyFromList, ContainsAnyFromList,

DoesNotContainAnyFromList

Number Equals, NotEquals, GreaterThan, LessThan, GreaterThanOrEquals, LessThanOrEquals

Flag Equals, NotEquals

Email Equals, NotEquals, Contains, DoesNotContain, Matches, DoesNotMatch, IncludedInList

NotIncludedInList, EndsWithAnyFromList, DoesNotEndWithAnyFromList

ContainsAnyFromListOperator, DoesNotContainAnyFromListOperator

Date Equals, NotEquals, Before, After, SameDate, DifferentDate

Country Equals, NotEquals, IncludedInList, NotIncludedInList

j

t

e

i

a

p

b

o

r

a

a

i

t

t

t

i

“

s

g

F

a
oined in “Condition Groups” (CG). The condition group will re-

urn a true or false value depending on the true or false value that

ach one of its rule conditions returns, i.e., by internally comput-

ng the boolean operator AND. In order for a rule to return true,

t least one condition group should return true, that is, by com-

uting the boolean operator OR. A rule condition is specified by a

oolean condition between the left and right operands. If the value

f the left operand matches the value of the right one, then the

ule condition will return true. Otherwise, it will return false. The

ttributes involved in the rule conditions are described in Table 4

nd the set of possible operators to be used are shown in Table 5 ,
n accordance with their corresponding data types. To illustrate

his, Fig. 1 shows the structure of a typical rule where some condi-

ion groups are formulated in the antecedent side. In this example,

he first condition group is composed of several condition rules,

n which the attribute “BIN Country” is operated with regards to

Device Country” and “Similar Countries to GB”. In the consequent

ide, the preliminary result and the score of the rule are specified.

The complete rule-based expert system comprises a well-

rounded set of fraud assessment rules (like the one explained in

ig. 1), and the final score is then computed as an aggregation of

ll the partial scores of the rules. Finally, the three-event fraud-

Fig. 1. Example of anti-fraud rule with condition groups (CG) and rule conditions

(RC) in which the attribute “BIN Country” is operated with regards to “Device Coun-

try” and “Similar Countries to GB” (GB = Great Britain).

4

O

a

s

s

t

o

f

a

t

c

fi

i

b

o

t

o

t

a

c

t

a

8 URL link https://github.com/KhaosResearch/AFRO .
detection protocol is applied to recommend a final decision: “Ac-

cept”, “Reject” or “Review”. In the example of Fig. 1 , assuming a

lower cut-off point of 0, the score is -50 and the result is “Reject”.

4. Semantic approach

In general, in anti-fraud detection services, the analytic algo-

rithms must examine the transactional data in real time in order to

quickly detect whether a transaction is suspicious, or not, by apply-

ing a set of rules. The user can define his/her own rules and insert

them in the expert knowledge rule base. It is logical to think that

the number of rules will be large and therefore some kind of fil-

tering and post-processing task must be carried out after inserting

a new rule. For example, pairs of rules for which items in the an-

tecedent are semantically correlated can be simplified as one sin-

gle association rule, either more comprehensive or more specific,

depending on the domain.

In this context, the semantic web offers a series of useful meth-

ods for processing a set of rules by bringing information from

the specific domain of knowledge, to filter and analyze the rules.

Specifically, the semantic knowledge can be provided by a domain

ontology, so semantic methods based on this ontology can be used

for cleaning redundant and inconsistent rules.

To this end, the semantic model proposed is driven by an OWL

ontology that covers all the concepts and relationships concern-

ing the anti-fraud assessment rules, although focusing on the real-

world case of SME-Ecompass anti-fraud service.

The proposed ontology has been designed by following the

standard Ontology 101 development process (Noy & McGuin-

ness, 2001) comprising seven steps:

1. Determine the domain and scope of the ontology : As a start-

ing point, the ontology definition is based on the relational

database that constitutes the data model of the SME-Ecompass

anti-fraud service. In this model, the anti-fraud rules are related

to a user profile as explained in Section 3 .

2. Consider reusing existing ontologies : To the best of our

knowledge, there are no existing similar ontologies for model-

ing anti-fraud rules. Moreover, we could not find an ontology

or vocabularies for modeling associate rules, so the proposed

ontology here has been designed from scratch.

3. Enumerate important terms in the ontology : Important terms

in the ontology were extracted from the expert rule-based

relational schema. Examples of such terms are: profile, rule,

condition group, rule condition, operator, email, country, date,

score, result, argument type, etc. These terms are described in

Tables 3–5 .
4. Define classes and the class hierarchy : The initial list of on-

tology classes is obtained from the list of important terms. A

general overview of the ontology class diagram is illustrated in

Fig. 2 , where the main classes are: Rules, ConditionGroups, Rule-

Conditions and Operators . A set of subclasses is also defined to

create a class hierarchy, to classify rules and to compare them.

For example, Inconsistent_condition_groups is a subclass of Con-

ditionGroups whose members are inconsistent condition groups.

5. Define the properties of classes and slots : In order to link

related classes and to define their attributes, objects and data

properties are identified. Examples of object and data proper-

ties are reported in Tables 6–9 with their definitions in descrip-

tion logic (as specified in Table 1): a condition group has con-

ditions, a rule has condition groups, a rule condition has op-

erators, etc. Some additional object properties are included to

relate rules, for example: two rules can be contradictory and

two rules can be the same.

6. Define the facets of the slots : This step includes the definition

of cardinality constraints and value restrictions. In order to clas-

sify and to compare condition groups and rules, several value

restrictions are needed. For example, a ConditionGroups1 is a

condition group whose individuals are those with only 1 con-

dition. Similarly, Rules2 are those rules whose individuals have

two condition groups.

7. Create instances : Instances (individuals in OWL) correspond to

the specific rule obtained from the expert rule base. Individuals

are obtained by mapping the relational database to RDF in ac-

cordance with the ontology. Furthermore, operators of rule con-

ditions are also included as ontology individuals. For example:

Contains, DoesNotMatch, IncludedInList, NotEqual , etc., are indi-

viduals of the class Operator . In addition, to detect contradic-

tory rule conditions, the opposite operator of each operator has

to be specified. Instances of the object property oppositedOper-

ators are: (Matches, DoesNotMatch), (Contains, DoesNotContain) ,

etc.

.1. Ontology knowledge model

The proposed ontology, called “afro.owl ” (Anti Fraud Rules

ntology), resulting from the development process described

bove has a total number of 19 classes (groups of individuals

haring the same attributes), 12 object properties (binary relation-

hips between individuals), and 16 data properties (individual at-

ributes), 99 restriction axioms and 16 individuals. The complete

ntology is available in the GitHub repository. 8

For simplicity, we describe here a representative subset of the

our main classes including some of their most interesting object

nd data properties. These classes are: ConditionGroups, RuleCondi-

ions, Operators , and Rules . Each class requires a set of properties or

onditions in order to be conceptualized. An individual that satis-

es those properties is considered a member of that class.

- ConditionGroups . This class represents the condition groups

n the antecedent part of a rule. Each condition group has a num-

er of conditions expressed as data property in Table 6 , as well as

bject properties oriented to consider overlapping, same, and tau-

ological condition groups. This entity can be classified depending

n its number of conditions. Therefore, ConditionGroups1, Condi-

ionGroups2, ConditionGroups3, ConditionGroups4, ConditionGroups5

nd ConditionGroups6 are subclasses of ConditionGroups . Finally, in-

onsistent_condition_groups is also modeled as a subclass of Condi-

ionGroups .

- RuleConditions . It specifies a boolean condition with a left

nd right operand. If the value of the left operand matches the

https://github.com/KhaosResearch/AFRO

Fig. 2. General overview of the “afro” ontology. Solid arrows mark sub class of. Dotted arrows mark specific properties.

Table 6

ConditionGroups: object and data properties.

Object properties Description logic

hasCondition ∃ hasCondition.Thing � ConditionGroups

	 � ∀ hasCondition.RuleConditions

overlappedConditionGroups ∃ overlappedConditionGroups.Thing � ConditionGroups

	 � ∀ overlappedConditionGroups ConditionGroups

sameConditionGroups TransitiveProperty sameConditionGroups

∃ sameConditionGroups.Thing � ConditionGroups

	 � ∀ sameConditionGroups ConditionGroups

tautologicalConditionGroups ∃ tautologicalConditionGroups.Thing � ConditionGroups

	 � ∀ tautologicalConditionGroups.ConditionGroups

Data Properties Description Logic

hasNumberOfConditions ∃ hasNumberOfConditions.Datatype Literal � ConditionGroups

Table 7

RuleConditions: object and data properties.

Object properties Description logic

hasOperator ∃ hasOperator.Thing � RuleConditions

	 � ∀ hasOperator Operators

inconsistentRuleConditions ∃ inconsistentRuleConditions.Thing � RuleConditions

	 � ∀ inconsistentRuleConditions.RuleConditions

sameRuleConditions TransitiveProperty sameRuleConditions

∃ sameRuleConditions.Thing � RuleConditions

	 � ∀ sameRuleConditions.RuleConditions

Data Properties Description Logic

hasArgumentDataType ∃ hasArgumentDataType.Datatype Literal � RuleConditions

hasArgumentType ∃ hasArgumentType.Datatype Literal � RuleConditions

hasLeftArgumentAttributeID ∃ hasLeftArgumentAttributeID.Datatype Literal � RuleConditions

hasLiteralArgumentDataType ∃ hasLiteralArgumentDataType.Datatype Literal � RuleConditions

hasLiteralArgumentValue ∃ hasLiteralArgumentValue.Datatype Literal � RuleConditions

hasRightArgumentAttributeID ∃ hasRightArgumentAttributeID.Datatype Literal � RuleConditions

hasRightArgumentListID ∃ hasRightArgumentListID.Datatype Literal � RuleConditions

v

(

f

e

s

o

l

n

t

d

o

a
alue of the right one, then the rule condition will return true

otherwise, false). Object and data properties of rule conditions are

ormally described in Table 7 .

- Operators . This class is modeled with just one object prop-

rty: oppositedOperators as described in Table 8 , but comprising a

et of members related to operators with data types for boolean

perations in rule conditions, as specified in Table 5 .
- Rules . This class represents the anti-fraud rules. Each rule be-

ongs to a profile, contains one or more condition groups and has a

ame, a result, a score, an URL and an attribute to indicate whether

he rule is active, or not (see Table 9). Furthermore, the overlappe-

Rules and contradictoryRules properties relate two rules which are

verlapping or contradictory, respectively (see Section 4.2). Rules

re classified in accordance with their number of condition groups.

Table 8

Operators: object properties.

Object properties Description logic

oppositedOperators ∃ oppositedOperators.Thing � Operators

	 � ∀ oppositedOperators.Operators

Table 10

Additional subclasses to enhance the reasoning tasks.

Subclass Description logic

ConditionGroups1 ≡ hasValue .hasNumberOfConditions ”1”

� ConditionGroups

ConditionGroups2 ≡ hasValue .hasNumberOfConditions ”2”

� ConditionGroups

ConditionGroups3 ≡ hasValue .hasNumberOfConditions ”3”

� ConditionGroups

ConditionGroups4 ≡ hasValue .hasNumberOfConditions ”4”

� ConditionGroups

ConditionGroups5 ≡ hasValue .hasNumberOfConditions ”5”

� ConditionGroups

Rules1 ≡ hasValue .hasNumberOfConditionGroups ”1”

� Rules

Rules2 ≡ hasValue .hasNumberOfConditionGroups ”2”

� Rules

Rules3 ≡ hasValue .hasNumberOfConditionGroups ”3”

� Rules

Rules4 ≡ hasValue .hasNumberOfConditionGroups ”4”

� Rules

Rules5 ≡ hasValue .hasNumberOfConditionGroups ”5”

� Rules

Rules6 ≡ hasValue .hasNumberOfConditionGroups ”6”

� Rules

R
^
^
^
^
^
^
^
^
^
^
^
^
^
^
-

i

w

r
Therefore, Rules1, Rules2, Rules3, Rules4, Rules5 and Rules6 are sub-

classes of Rules . Finally, InconsistentRules and TautologicalRules are

also subclasses of Rules.

4.2. Semantic rules

The semantic rules are built on top of the OWL ontology to de-

duce new information from the existing knowledge. It is worth

clarifying that semantic rules are formulated in SWRL and used

to perform semantic reasoning tasks (to detect errors in anti-fraud

rules), whereas anti-fraud rules, as explained in Section 3 , are used

to compose the knowledge rule base of the anti-fraud expert sys-

tem (to identify suspicious CNP transactions).

In the proposed inference model, after a deep inspection of the

existing anti-fraud rules, a series of OWL subclasses and axioms

have been defined to classify condition groups with 1,2,3,4 and 5

conditions, as well as rules with 1,2,3,4,5, and 6 condition groups,

based on the data properties hasNumberOfConditions and hasNum-

berOfConditionGroups (see Table 10). These subclasses have been

explicitly defined in the ontology for practical and efficiency is-

sues, since using data properties to consider the number of con-

dition groups/conditions led the reasoner to explore an extensive

number of combinations, hence to perform inefficiently.

Then, a set of SWRL rules have been defined to infer possible

mistakes in the anti-fraud rule dataset. They are intended to dis-

cover anti-fraud rules that are: duplicated (same rules), overlap-

ping, inconsistent, tautological and contradictory. In this way, the

SWRL rules are evaluated by the reasoner after classifying rules

and condition groups in accordance with axioms in Table 10 .
• Same rules . Those anti-fraud rules that belong to the same

profile and have the same antecedent and consequent parts, but

with different IDs (i.e. duplicated). To detect them, it is necessary

to previously check the existence of same condition groups (also

same conditions) in the antecedent part. Rules with the same con-

ditions have the same parameters, but with different IDs. In all

likelihood, the human-expert (unintentionally) duplicated the con-

ditions in the rule database. An example of SWRL code to detect

“same rules” with two condition groups is:
Table 9

Rules: object and data properties.

Object properties Description log

hasConditionGroup ∃ hasCondition

	 � ∀ hasCond

contradictoryRules ∃ hasOperator.

∃ contradictory

overlappedRules ∃ overlappedRu

	 � ∀ overlapp

sameRules TransitivePrope

∃ sameRules.Th

	 � ∀ sameRu

Data Properties Description Log

hasName ∃ hasName.Dat

hasNumberOfConditionGroups ∃ hasNumberO

hasProfileId ∃ hasProfileId.D

hasResult ∃ hasResult.Da

hasScore ∃ hasScore.Dat

hasURL ∃ hasURL.Datat

isActive ∃ isActive.Data
ules2(?x) ^ Rules2(?y)
hasConditionGroup(?x, ?a)
hasConditionGroup(?x, ?b)
hasConditionGroup(?y, ?c)
hasConditionGroup(?y, ?d)
sameConditionGroups(?a, ?c)
sameConditionGroups(?b, ?d)
hasId(?a, ?ida) ^ hasId(?b, ?idb)
hasId(?c, ?idc) ^ hasId(?d, ?idd)
hasId(?x, ?idx) ^ hasId(?y, ?idy)
hasProfileId(?x, ?p) ^ hasProfileId(?y, ?p)
hasResult(?x, ?r) ^ hasResult(?y, ?r)
hasScore(?x, ?s) ^ hasScore(?y, ?s)
lessThan(?idx, ?idy) ^ notEqual(?ida, ?idb)
notEqual(?idc, ?idd)
> sameRules(?x, ?y)

This example uses sameConditionGroups(?x, ?y) , which

s the consequent of others SWRL rules formulated in accordance

ith the number of condition groups in the antecedent part. The

eason is that it should consider all the combinations of properties
ic

Group.Thing � Rules

itionGroup.ConditionGroups

Thing � RuleConditions

Rules.Thing � Rules

les.Thing � Rules

ed_rules.Rules

rty sameRules

ing � Rules

les.Rules

ic

atype Literal � Rules

fConditionGroups.Datatype Literal � Rules

atatype Literal � Rules

tatype Literal � Rules

atype Literal � Rules

ype Literal � Rules

type Literal � Rules

t

w

C
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
-

s

l

t

R
^
^
^
^
^
^
^
^
-

fi

a

b

r

r

P
R
I

S
R

P
R
I

S
R

t

^
^
^
^
^
-

R
^
^
^
^

a

t

t

f
A

i
c

R
^
^
^
^
^
^
^
^
^
^
-
i

C
^
^
^
-

R
^
^
-

t

o satisfy the required inference task. An example of a SWRL rule

ith 4 condition groups is as follows:

onditionGroups4(?x)
ConditionGroups4(?y)
hasCondition(?x, ?a)
hasCondition(?x, ?b)
hasCondition(?x, ?c)
hasCondition(?x, ?d)
hasCondition(?y, ?e)
hasCondition(?y, ?f)
hasCondition(?y, ?g)
hasCondition(?y, ?h)
sameRuleConditions(?a, ?e)
sameRuleConditions(?b, ?f)
sameRuleConditions(?c, ?g)
sameRuleConditions(?d, ?h)
hasId(?a, ?ida) ^ hasId(?b, ?idb)
hasId(?c, ?idc) ^ hasId(?d, ?idd)
hasId(?e, ?ide) ^ hasId(?f, ?idf)
hasId(?g, ?idg) ^ hasId(?h, ?idh)
hasId(?x, ?idx) ^ hasId(?y, ?idy)
lessThan(?idx, ?idy)
notEqual(?ida, ?idb)
notEqual(?ida, ?idc)
notEqual(?ida, ?idd)
notEqual(?idb, ?idc)
notEqual(?idb, ?idd)
notEqual(?idc, ?idd)
notEqual(?ide, ?idf)
notEqual(?ide, ?idg)
notEqual(?ide, ?idh)
notEqual(?idf, ?idg)
notEqual(?idf, ?idh)
notEqual(?idg, ?idh)
> sameConditionGroups(?x, ?y)

Similarly, this rule uses the function

ame_rule_conditions(?x, ?y) , which checks all the

eft arguments and operators to detect those anti-fraud rules in

he knowledge base that share the same condition.

The SWRL code to obtain “same rule conditions” is as follows:

uleConditions(?x) ^ RuleConditions(?y)
hasId(?x, ?idx)
hasId(?y, ?idy)
hasLeftArgumentAttributeID(?x, ?lai)
hasLeftArgumentAttributeID(?y, ?lai)
hasLiteralArgumentValue(?x, ?lav)
hasLiteralArgumentValue(?y, ?lav)
hasOperator(?x, ?o)
hasOperator(?y, ?o) ^ lessThan(?idx, ?idy)
> sameRuleConditions(?x, ?y)

• Overlapping rules . Those rules that belong to the same pro-

le and the antecedent part of one of them is contained in the

ntecedent part of the other. Therefore, the overlapping rule can

e deleted. In the example below, the rule with ID 5648 can be

emoved from the rule database because it is overlapped by the

ule with ID 5656.
rofileID:164;
uleID:5648;
F-Part: "Credit Card Hash"

IsIncludedInList
"Black list - credit card hash";

core: 0;
esult: Reject

rofileID:164;
uleID:5656;
F-Part: "Credit Card Hash"
IsIncludedInList
"Black list - credit card hash"

OR
"Bin Country" NotEqual "Andorra";

core: 0;
esult: Reject

The SWRL code to infer the existence of overlapping rules of

his example is as follows:

hasProfileId(?x, ?p)
hasProfileId(?y, ?p)
hasResult(?x, ?r) ^ hasResult(?y, ?r)
hasScore(?x, ?s) ^ hasScore(?y, ?s)
lessThan(?idx, ?idy)
> overlappedRules(?x, ?y)

ules1(?x) ^ Rules3(?y)
hasConditionGroup(?x, ?a)
hasConditionGroup(?y, ?b)
same_condition_groups(?a, ?b)
hasId(?x, ?idx) ^ hasId(?y, ?idy)

• Inconsistent rules . Rules with inconsistent conditions

nd/or condition groups. Therefore, they cannot be applied at

he same time. Inconsistent conditions are those with inconsis-

ent boolean operators. For example, (’’Number of Access
rom Same IP’’ GreaterThan 2) AND (’’Number of
ccess from Same IP’’ LessThan 2) . The function

nconsistent_rule_conditions(?x, ?y) is formulated to

over condition groups.

The SWRL code to infer inconsistencies are:

uleConditions(?x)
RuleConditions(?y)
hasOperator(?x, ?op1)
hasOperator(?y, ?op2)
oppositedOperators(?op1, ?op2)
hasId(?x, ?idx) ^ hasId(?y, ?idy)
hasLeftArgumentAttributeID(?x, ?lai)
hasLeftArgumentAttributeID(?y, ?lai)
hasRightArgumentAttributeID(?x, ?lav)
hasRightArgumentAttributeID(?y, ?lav)
lessThan(?idx, ?idy)
>
nconsistentRuleConditions(?x, ?y)

onditionGroups(?cg)
hasCondition(?cg, ?c1)
hasCondition(?cg, ?c2)
inconsistentRuleConditions(?c1, ?c2)
> InconsistentConditionGroups(?cg)

ules(?x)
InconsistentConditionGroups(?cg)
hasConditionGroup(?x, ?cg)
> InconsistentRules(?x)

• Tautological rules . Those rules that always satisfy, that is,

heir IF-Part that is always true. For example:

Fig. 3. Overview of the anti-fraud rules semantic analyzer.

o

h

t

t

a

a

O

e

h

i

r

e

b

l

u

fi

e

5

d

i

o

c

e

t

o

S

i

(

r

a

i

w

i

e

T

i

b

c

p

r

9 http://www.stardog.com/ .
10 The AFRUSA service http://ecompass.khaos.uma.es/afra/login.jsp .
11 http://www.stardog.com/docs/4.1.3/# _ reasoning _ types .
ProfileID:164;
RuleID:3963;
IF-Part: "Device city" Equals "Malaga"

OR
"Device city" NotEquals "Malaga";

Score: 0;
Result: Accept

Therefore, these rule can be deleted from the knowledge rule

base. The corresponding SWRL code is as follows:

ConditionGroups1(?cg1)
^ ConditionGroups1(?cg2)
^ hasCondition(?cg1, ?c1)
^ hasCondition(?cg2, ?c2)
^ inconsistentConditionRule(?c1, ?c2)
^ hasId(?cg1, ?idx)
^ hasId(?cg2, ?idy)
^ lessThan(?idx, ?idy)
->
tautologicalConditionGroups(?cg1, ?cg2)

Rules(?x)
^ hasConditionGroup(?x, ?cg1)
^ hasConditionGroup(?x, ?cg2)
^ tautologicalConditionGroups(?cg1, ?cg2)
-> TautologicalRule(?x)

• Contradictory rules . Rules that are formulated with the same

antecedent, but with a different consequent. That is, they are ac-

cepted and rejected at the same time. The SWRL code to infer the

existence of contradictory rules is:

Rules1(?x) ^ Rules1(?y)
^ hasConditionGroup(?x, ?a)
^ hasConditionGroup(?y, ?b)
^ same_condition_group(?a, ?b)
^ hasId(?a, ?ida) ^ hasId(?b, ?idb)
^ hasId(?x, ?idx) ^ hasId(?y, ?idy)
^ hasProfileId(?x, ?p)
^ hasProfileId(?y, ?p)
^ hasResult(?x, ?r1) ^ hasResult(?y, ?r2)
^ hasScore(?x, ?s) ^ hasScore(?y, ?s)
^ lessThan(?idx, ?idy) ^ notEqual(?r1, ?r2)
->
contradictory_rules(?x, ?y)

4.3. Overall approach

The proposed approach, called AFRUSA (Anti-Fraud Rules Se-

mantic Analyzer), consists of a Java Web service that connects to

the SME-Ecompass Anti-fraud application to assist in rule curation

and conflict resolution. An overview of the AFRUSA approach is il-

lustrated in Fig. 3 . According to the figure, the anti-fraud rules are
btained in form of JSON files, which are served by a REST-API

osted in the SME-Ecompass application. A set of mapping func-

ions are then used to translate the anti-fraud rules from JSON to

riples in RDF format, which follow the ontology knowledge model,

s explained in Section 4.1 .

The anti-fraud rules in RDF format (Abox) are then stored in

 Stardog 9 repository, which is a commercial version of the Pellet

WL 2 reasoner (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007), but

nhanced with persistence capabilities. Once the ontology (Tbox)

as been loaded together with the SWRL rules, a series of reason-

ng tasks are launched by using the Stardog OWL 2 reasoner to de-

ive new information that is not explicitly expressed in the knowl-

dge rule base. The new information will indicate, when applica-

le, which of the analyzed anti-fraud rules are: duplicated, over-

apping, inconsistent, contradictory or tautological.

Finally, the SWRL rules and a series of SPARQL queries are eval-

ated by means of the Stardog reasoner and EndPoint, so that a

nal report with the results of the analysis is issued to the human-

xpert through the web interface. 10

. Validation

For the validation of the proposed semantic model, a real-world

atabase is used, which comprises 2155 anti-fraud rules generated

n the context of the e-Tourism site eTravel.com . This company

ffers services for reserving and booking flights, hotels, cars and

ruises to thousands of users around the world. Most of these op-

rations are successfully booked through on-line CNP transactions,

hus the use of efficient fraud prevention applications is highly rec-

mmendable to detect and examine suspicious clients.

The complete AFRUSA service, comprising: the semantic model,

tardog repository, reasoner, SPARQL EndPoint, and web interface,

s deployed on a Linux CentOS machine with Intel(R) Xeon(R) CPU

2 core) 2.70GHz and RAM 4GBs. In this scenario, an analysis of the

ule database of eTravel.com takes 5 min on average, which entails

 set of SPARQL queries to infer problematic rules. It is worth say-

ng that the Stardog reasoning 11 covers all the OWL 2 profiles as

ell as user-defined rules via SWRL. This ensures that the reason-

ng task of AFRUSA detects all the errors (duplicates, overlapping,

tc.) in anti-fraud rules taking into account the defined SWRL rules.

his was indeed manually tested for the knowledge rule-base used

n this experimentation (eTravel.com).

The SPARQL queries are specified in Table 11 , together with a

rief description of the information they obtain.

After the analysis, the resulting report is shown in Fig. 4 , which

onsists in: 5 duplicated rules (Same Rules category), 5 overlap-

ing, 2 inconsistencies, 1 tautology, and 1 case of contradictory

ules. Among rules that are the same (duplicated with different

http://www.eTravel.com
http://www.eTravel.com
http://www.eTravel.com
http://www.stardog.com/
http://ecompass.khaos.uma.es/afra/login.jsp
http://www.stardog.com/docs/4.1.3/#_reasoning_types

Table 11

SPARQL queries which are defined to analyze anti-fraud rules.

Description SPARQL query

Get pairs of conditions that are the same select ?x ?y where { ?x rul:same_rule_conditions ?y }
Get conditions that are the same as a specific condition

(e.g. conditionX)

select ?y where { rul:conditionX
rul:same_rule_conditions ?y }

Get pairs of condition groups that are the same select ?x ?y where { ?x rul:same_condition_groups ?y }
Get condition groups which are the same as a specific

condition group (e.g. conditiongroupY)

select ?y where { rul:conditiongroupY
rul:same_condition_groups ?y }

Get pairs of rules which are the same select ?x ?y where { ?x rul:same_rules ?y }
Get rules which are the same as a specific rule (e.g. ruleX) select ?y where { rul:ruleX rul:same_rules ?y }
Get all the rules select ?x where { ?x rdf:type rul:Rules }
Get all the rules with 2 condition groups select ?x where { ?x rdf:type rul:Rules2 }
Get condition groups with 3 conditions select ?x where { ?x rdf:type rul:ConditionGroups3 }
Get pairs of rules which overlap select ?x ?y where { ?x rul:overlapped_rules ?y }
Get inconsistent rules select ?x where { ?x rdf:type rul:inconsistent_rules }
Get tautological rules select ?x where { ?x rdf:type rul:tautological_rules }

Table 12

Example of rules detected in category “Same rules”.

ProfileID RuleID IF-Part Score Result

164 3951 “Number of Checkouts within the last 2 days for Credit Card” Equals “4” 0 Reject

164 3967 “Number of Checkouts within the last 2 days for Credit Card” Equals “4” 0 Reject

Table 13

Example of rules detected in category “Overlapped Rules”.

ProfileID RuleID IF-Part Score Result

164 3920 “Credit Card Hash” IsIncludedInList “Blacklist-CreditCardHas” 0 Reject

164 3959 “Credit Card Hash” IsIncludedInList “Blacklist-CreditCardHas” OR “BIN Country”

NotEquals “Spain” OR “Card Holder’s Name” IsIncludedInList “Email Providers

(domain)”

0 Reject

Table 14

Example of rules detected in category “Inconsistent Rules”.

ProfileID RuleID IF-Part Score Result

164 3964 “Billing Address City” NotEquals “Device City” OR (“Card Holder’s Name”

IsIncludedInList “Email Provider’s Domain” AND “Card Holder’s Name”

IsNotIncludedInList “Email Provider’s Domain”)

0 Reject

I

v

t

b

e

t

e

t

c

‘

c

s

i

c

I
A
‘

d

t

r

f

‘

e

r

t

t

i

a

p

6

p

s

a

i

p

t

t

t

s

r

e

c

s

c
Ds), a recurring mistake is detected when a numerical custom

alue is involved in one condition of the antecedent.

Table 12 shows an example of a duplicated rule that is de-

ected for IDs 3951 and 3967, which is for examining the num-

er of checkouts with a credit card in 2 days. This is a typical

rror generated in setting phase, when the human-expert is fine-

unning thresholds in rules in accordance with his/her own past

xperience.

In the case of overlapping, Table 13 shows an example of

he rules detected with IDs 3920 and 3959, which use the same

ondition (‘‘Credit Card Hash’’ IsIncludedInList
‘Blacklist-CreditCardHas’’) that are satisfied in both

ases. Therefore, rule 3920 can be removed from the rule database,

ince it is actually covered by rule 3959.

An interesting result can be observed in Table 14 , where an

nconsistent rule is detected as it contains a condition that

an never be satisfied, e.g., ‘‘Card Holder’s Name’’
sIncludedInList ‘‘Email Provider’s Domain’’
ND ‘‘Card Holder’s Name’’ IsNotIncludedInList
‘Email Provider’s Domain’’ . In this regard, it is worth

ifferentiating inconsistent rules from tautological ones, for which

he antecedent part is always true. An example of a tautological

ule detected by the semantic analyzer is shown in Table 15 ,

or which the condition involving ‘‘Device Country’’ and

‘Andorra’’ always satisfies.

Finally, contradictory rules are probably the most critical for the

-merchant, as they could lead the expert system to issue incor-

b

ect recommendations. An example of a contradictory rule was de-

ected (see Table 16) that reflects a typical scenario where a cus-

om substring is contained in one attribute of the card transaction,

n this case the ‘‘Billing Address’’ . The e-shopper is now

ble to decide on which rule is incorrect and remove it, thereby

reventing the anti-fraud expert system from operating wrongly.

. Conclusions

In this paper, a semantic approach driven by ontology has been

roposed as a mediated schema for the representation and con-

olidation of actual rule-based expert systems. The specific case of

nti-fraud rule repositories for Card Not Present (CNP) transactions

n e-commerce environments has been analyzed. The proposed ap-

roach is based on Web Ontology Language (OWL) and Seman-

ic Web Rule Language (SWRL) technologies to develop reasoning

asks aimed at finding mistakes in rules, which lead the expert sys-

em to perform inaccurately.

The proposed approach is materialized in the form of a web

ervice called AFRUSA. It has been evaluated in the context of a

eal-world scenario in the e-commerce (e-Tourism) industry. The

xperiments have shown that AFRUSA can effectively discover and

lassify mistakes in rule databases of anti-fraud expert knowledge

ystems. The results obtained comprise: duplicates, overlaps, in-

onsistencies and contradictions in rules that can now be curated

y the e-merchant.

Fig. 4. Screenshot of the results panel of Anti-Fraud Rules Semantic Analyser (AFRUSA) web interface.

Table 15

Example of rules detected in category “Tautological Rules”.

ProfileID RuleID IF-Part Score Result

164 3965 “Device Country” NotEquals “Andorra” OR “Device Country” Equals “Andorra” 100 Accept

Table 16

Example of rules detected in category “Contradictory Rules”.

ProfileID RuleID IF-Part Score Result

164 4070 “Billing Address City” Contains “La vella” 0 Accept

164 5072 “Billing Address City” Contains “La vella” 0 Reject

d

v

i

t

h

t

R

A

D

D

F

G

G

G

G

H

H

H

H

H

K

M

N

P

R

R

S

S

W

W
The semantic model elaborated here is also applicable to other

omains where rule-base expert systems are involved. This moti-

ates our main future line of research. In addition, ongoing work

s focusing on the incorporation of Open Linked Data to enrich

he semantic model with new perspectives of information, such as

abits of fraudsters, commonly demanded products in fraudulent

ransactions and open blacklists of IPs address, card numbers, etc.

eferences

lexopoulos, P. , Kafentzis, K. , Benetou, X. , Tagaris, T. , & Georgolios, P. (2007). To-

wards a generic fraud ontology in e-government. In Proceedings of the second in-
ternational conference on e-business - volume 1: Ice-b, (icete 2007) (pp. 269–276) .

ean, M. , & Schreiber, G. (2004). OWL web ontology language reference. Technical
Report . W3C Recommendation, 10 February 2004 .

urkin, J. (1998). Expert systems: design and development (1st ed.). Upper Saddle

River, NJ, USA: Prentice Hall PTR .
ang, L. , Cai, M. , Fu, H. , & Dong, J. (2007). Ontology-based fraud detection. In Y. Shi,

G. D. van Albada, J. Dongarra, & P. M. A. Sloot (Eds.), Lecture notes in com-
puter science, Part III 7th international conference on computational science: Vol.3

(pp. 1048–1055)). Springer Berlin Heidelberg .
ómez-Pérez, A. , Corcho, O. , & Fernandez-Lopez, M. (2004). Ontological engineering .

Springer-Verlag London Limited .

rosan, C. , & Abraham, A. (2011). Rule-based expert systems. In Intelligent systems: A
modern approach (pp. 149–185)). Berlin, Heidelberg: Springer Berlin Heidelberg .

rosof, B. N. , & Poon, T. C. (2004). Sweetdeal: Representing agent contracts with
exceptions using semantic web rules, ontologies, and process descriptions. In-

ternational Journal of Electronic Commerce, 8 (4), 61–97 .
ruber, T. R. (1993). A translation approach to portable ontologies. Knowledge Acqui-

sition,, 5 (2), 199–220 .
aase, P. , & Stojanovic, L. (2005). Consistent evolution of owl ontologies. In

A. Gómez-Pérez, & J. Euzenat (Eds.), The semantic web: Research and applications .

In Lecture notes in computer science: Vol. 3532 (pp. 182–197). Springer Berlin Hei-
delberg .

and, D. J. , & Blunt, G. (2009). Estimating the iceberg : How much fraud is there in
the u. k.? Journal of Financial Transformation, 25 (1), 19–29 .
orrocks, I. , & Patel-Schneider, P. (2003). Reducing owl entailment to description
logic satisfiability. In D. Fensel, K. Sycara, & J. Mylopoulos (Eds.), The seman-

tic web - iswc 2003 . In Lecture notes in computer science: Vol. 2870 (pp. 17–29).
Springer Berlin Heidelberg .

orrocks, I. , Patel-Schneider, P. F. , Bechhofer, S. , & Tsarkov, D. (2005). OWL rules:
A proposal and prototype implementation. Web Semantics: Science, Services and

Agents on the World Wide Web, 3 (1), 23–40 .
u, B. , Carvalho, N. , Laera, L. , Lee, V. , Matsutsuka, T. , Menday, R. , & Naseer, A. (2013).

Applying semantic technologies to public sector: A case study in fraud detec-

tion. In H. Takeda, Y. Qu, R. Mizoguchi, & Y. Kitamura (Eds.), Semantic technol-
ogy: Second joint international conference, JIST 2012, Nara, Japan, December 2–4,

2012. Proceedings (pp. 319–325)). Springer Berlin Heidelberg .
etkar, P. S. , Shankar, R. , & Banwet, K. D. (2014). Telecom kyc and mobile banking

regulation: An exploratory study. Journal of Banking Regulation, 15 (2), 117–128 .
cGuinness, D. , & Harmelen, F. (2004). OWL web ontology language overview. Tech-

nical Report . W3C Recommendation .

oy, N. F., & McGuinness, D. L. (2001). DOntology development 101: A guide
to creating your first ontology. Technical report . Stanford University Knowl-

edge Systems Laboratory Technical Report KSL-01-05 . http://protege.stanford.
edu/publications/ontology _ development/ontology101-noy-mcguinness.html.

érez, J. , Arenas, M. , & Gutierrez, C. (2009). Semantics and complexity of sparql.
ACM Transactions on Database Systems, 34 (3), 16:1–16:45 .

ajput, Q. , Khan, N. S. , Larik, A. , & Haider, S. (2014). Ontology based expert-system

for suspicious transactions detection. Computer and Information Science, 7 (1),
103–114 .

amaki, A. A. , Asgari, R. , & Atani, R. E. (2012). Credit card fraud detection based on
ontology graph. International Journal of Security, Privacy and Trust Management

(IJSPTM), 1 (5), 1–12 .
irin, E. , Parsia, B. , Grau, B. C. , Kalyanpur, A. , & Katz, Y. (2007). Pellet: A practical

owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide

Web, 5 (2), 51–53 .
taab, S. , & Studer, R. (2009). Handbook on ontologies. International handbooks on

information systems . Springer .
ard, T. (2010). Strategies for reducing the risk of ecommerce fraud. Tech-

nical report a first data white paper . https://www.firstdata.com/downloads/
thought-leadership/ecommfraudwp.pdf.

ong, L. (2013). Money-laundering in southeast asia: Liberalism and governmental-

ity at work. Contemporary Politics, 19 (2), 221–233 .

http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0015
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0021
http://www.firstdata.com/downloads/thought-leadership/ecommfraudwp.pdf
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30582-1/sbref0023

	Enhancing semantic consistency in anti-fraud rule-based expert systems
	1 Introduction
	2 Background and literature overview
	2.1 Background concepts
	2.2 Literature overview

	3 Anti-fraud expert system for CNP transactions
	4 Semantic approach
	4.1 Ontology knowledge model
	4.2 Semantic rules
	4.3 Overall approach

	5 Validation
	6 Conclusions
	 References

