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ABSTRACT

In the standard particle swarm optimization (PSO), a new 
particle’s position is generated using two main informant el-
ements: the best position the particle has found so far and the 
best performer among its neighbors. In fully informed PSO, 
each particle is influenced by all the remaining ones in the 
swarm, or by a series of neighbors structured in static 
topologies (ring, square, or clusters). In this paper, we gen-
eralize and analyze the number of informants that take part in 
the calculation of new particles. Our aim is to discover if a 
quasi-optimal number of informants exists for a given 
problem. The experimental results seem to suggest that 6 to 8 
informants could provide our PSO with higher chances of 
success in continuous optimization for well-known bench-
marks.
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1. INTRODUCTION

The canonical particle swarm optimization (PSO) [6], as
well as recent standard versions of this algorithm (Standards
2006, 2007, and 2011) [10], work by iteratively generating
new particles’ positions located in a given problem search
space. Each one of these new particles’ positions are cal-
culated using the particle’s current position (solution), the

particle’s previous velocity, and two main informant terms:
the particle’s best previous location, and the best previous
location of any of its neighbors.

Formally, in canonical PSO each particle’s position vector
xi is updated each time step t by means of the Equation 1.

xt+1
i = xt

i + vt+1
i (1)

where vt+1
i is the velocity vector of the particle given by

vt+1
i = ωvt

i +U t[0, ϕ1] · (pt
i −xt

i)+U t[0, ϕ2] · (bt
i −xt

i) (2)

In this formula, pt
i is the personal best position the parti-

cle i has ever stored, bt
i is the position found by the member

of its neighborhood that has had the best performance so far.
Acceleration coefficients ϕ1 and ϕ2 control the relative effect
of the personal and social best particles, and U t is a diago-
nal matrix with elements distributed in the interval [0, ϕi],
uniformly at random. Finally, ω ∈ (0, 1) is called the inertia
weight and influences the tradeoff between exploitation and
exploration.

An equivalent version of the velocity equation was re-
ported in [3], where Clerc’s constriction coefficient χ is used
instead of inertia weight as shown in Equation 3.

vt+1
i = χ

(
vt
i + U t[0, ϕ1] · (pt

i − xt
i) + U t[0, ϕ2] · (bt

i − xt
i)
)

(3)

χ =
2

|2− ϕ−
√

ϕ2 − 4ϕ| , with ϕ =
∑
i

ϕi, and ϕ > 4 (4)

Constriction coefficient χ is calculated, by means of Equa-
tion 4, from the two acceleration coefficients ϕ1 and ϕ2, be-
ing the sum of these two coefficients what determines the χ
to use. Usually, ϕ1 = ϕ2 = 2.05, giving as results ϕ = 4.1,
and χ = 0.7298 [4, 16]. As stated byMendes et all. [8, 9], this
fact implies that the particle’s velocity can be adjusted by
any number of informant terms, as long as acceleration coef-
ficients sum to an appropriate value, since important infor-
mation given by other neighbors about the search space may
be neglected through overemphasis on the single best neigh-
bor. With this assumption, Mendes et all. [8] proposed the
Fully Informed Particle Swarm (FIPS), in which a particle
uses information from all its topological neighbors. In FIPS,
the value ϕ, that is, the sum of the acceleration coefficients,
is equally distributed among all the neighbors of a particle.
Therefore, for a given particle i with position xi, ϕ is bro-
ken up in several smaller coefficients ϕj = ϕ/|Ni|, ∀j ∈ Ni.
Then, the velocity is updated as follows:



vt+1
i = χ

⎡
⎣vt

i +
∑
j∈Ni

U t [0, ϕj ] · (pt
j − xt

i)

⎤
⎦ , (5)

where Ni is the set of neighbors of the particle i, and
following the neighborhood a given topology. Figure 1 illus-
trates the topologies used by Mendes et al. [8] as the ones
with most successful performances in a previous work [7].
These topologies are: All, Ring, Square, Four-Clusters, and
Pyramid. Their results show that the Square topology (with
4 informants) outperforms the other ones. Indeed, the fact
of defining these neighborhoods in the swarm makes the par-
ticles to be influenced only by a certain number of neighbors,
and connected with static links in the graph. Once again,
important information may be disregarded through overem-
phasis, in this case, of structured sets of neighbors. The
number of informants seems to play also an important role,
but with no clue on how many of them is the best choice, or
if even the good issue is the neighborhood topology itself or
the fact that only a few informants are used.

All Ring Four-Clusters

Pyramid Square

Figure 1: Topologies used by Mendes et al. [8].
Each particle has a number of fixed neighbors in
the swarm (All=N-1; Ring=2; Four-Clusters=4,5;
Pyramid=3,5,6; Square=4)

All this motivated us to generalize the number of neigh-
bors that influence particles, as well as the different configu-
rations of topologies, in order to discover whether there ex-
ists a quasi-optimal number of informants that take part in
the calculation of the velocity vector for a particular prob-
lem. Then, our initial hypothesis is that certain numbers
(sets) of informant neighbors may provide new essential in-
formation about the search process, hence leading the PSO
to perform more accurately than existing versions of this al-
gorithm, for a number of well-known benchmark problems
in continuous optimization.

With the aim of researching in this line, we have designed
in this work a generalized version of PSO that follows the
information scheme of FIPS (with Clerc’s constriction coeffi-
cient), but having as a free variable the number of informants
in the calculation of the velocity vector. To evaluate our
PSO with all possible configurations we have followed the
experimental framework (with 25 problem functions) pro-
posed in the Special Session of Continuous Optimization
of CEC’05 [12]. The performed analysis and comparisons
(against Standard PSO and FIPS versions) will help us to
claim if there are informant sets other than 2 and N that
yield a more efficient PSO.

The remainder of this article is organized as follows. Next
section presents the“Quasi-optimal Informed”version of PSO
worked here. Section 3 describes the experimentation proce-
dure and the parameter settings. In Section 4, experimental
results are reported with analysis and discussions. Finally,
concluding remarks and future work are given in Section 5.

2. THE QUEST FOR AN OPTIMAL NUM-
BER OF INFORMANTS

As previously commented, the possibility of adjusting the
particle’s velocity by an arbitrary number of terms enables
us to generalize the number (k) of neighbors, from 1 to Ss
(being Ss the swarm size). Therefore, a number Ss of differ-
ent versions of PSO can be generated (selecting k particles
of the swarm without replacement), each one of them with
neighborhoods containing k particles. Obviously, if k = Ss
the resultant version is the FIPS algorithm with neighbor-
hood “ALL”, as illustrated in Figure 1.

Nevertheless, since providing each k neighborhood with
structured topologies is impracticable due to the great num-
ber of graph combinations, we have opted in this work to
simply selecting k random (uniform) informants of the swarm
(S). This way, for each particle i, and at each time step t,
a different neighborhood (N t

i ) with k elements is generated,
and hence, the number of informants can be analyzed with
independence of any structured topology. Formally, we can
represent a given neighborhood as follows

N t
i = {n1, . . . , nk} | N t

i ⊂ St,∀nj , nh ∈ N t
i , nh �= nj �= i

(6)
Following this scheme, we have designed for this work a

new PSO called Optimally Informed Particle Swarm (OIPS),
which performs as formulated in Equation 5, and using sets
of k random (uniform) informant particles as neighborhoods.
Then, we can evaluate all the OIPS-k versions (with k :
1 . . . Ss) in order to discover whether an optimal value, or
range of values, exist that allows to improve over the stan-
dard PSO and avoid the overhead of using topologies or
computing contributions from all particles in the swarm.

Algorithm 1 Pseudocode of OIPS-k

1: t← 0
2: ϕj = ϕ/k

3: initialize(St) /* Swarm S0 with N particles */
4: while t < MAXIMUMt) do
5: for each particle it of the swarm St do
6: N t

i = generate neighborhood(k, i, St) //Equation 6

7: vt+1
i = update velocity(vt

i ,x
t
i, ϕj ,N t

i ) //Equation 5

8: xt+1
i = update possiton(xt

i,v
t+1
i ) //Equation 1

9: pt+1
i = update local best(pt

i ,x
t+1
i )

10: end for
11: t← t + 1
12: end while
13: Output: b /*The best solution found*/

The pseudocode of OIPS-k is introduced in Algorithm 1.
After swarm initialization and ϕj value calculation (lines 1
to 3), the optimization process is repeated until reaching
the stop condition. In this, at each iteration and for each
particle a new neighborhood is randomly (uniformly) gen-
erated by fulfilling conditions of Equation 6 (line 6). Then,
particle’s velocity, current position, and local best position
are updated (lines 7 to 9). Finally, the best so far particle
position is returned as output (line 13).



Table 1: CEC’05 test suite of functions
f Name Intervals f∗

f1 Shifted Sphere [-100, 100] -450
f2 Shifted Schwefel 1.2 [-100, 100] -450
f3 Shifted Rotated High Conditioned Elliptic [-100, 100] -450
f4 Shifted Schwefel’s Problem 1.2 with Noise [-100, 100] -450
f5 Schwefel’s Problem 2.6 [-100, 100] -310
f6 Shifted Rosenbrock’s [-100, 100] 390
f7 Shifted Rotated Griewank’s. Global Optimum Outside of Bounds [0, 600] -180
f8 Shifted Rotated Ackley’s with Optimum on Bounds [-32, 32] -140
f9 Shifted Rastrigin’s [-5, 5] -330
f10 Shifted Rotated Rastrigin’s [-5, 5] -330
f11 Shifted Rotated Weierstrass [-0.5, 0.5] 90
f12 Schwefel’s Problem 2.13 [-π, π] -460
f13 Shifted Expanded Griewank’s plus Rosenbrock’s [-3, 1] -130
f14 Shifted Rotated Expanded Scaffer’s F6 [-100, 100] -300
f15 Hybrid Composition (f1-f2,f3-f4,f5-f6,f7-f8,f9-f10) [-5, 5] 120
f16 Rotated Version of Hybrid Composition f15 [-5, 5] 120
f17 F16 with Noise in Fitness [-5, 5] 120
f18 Rot. Hybr. Comp. (f1-f2,f3-f4,f5-f6,f7-f8,f9-f10) [-5, 5] 10
f19 Rot. Hybr. Comp. Narrow Basin Global Optimum [-5, 5] 10
f20 Rot. Hybr. Comp. Global Optimum on Bounds [-5, 5] 10
f21 Rot. Hybr. Comp. (f1-f2,f3-f4,f5-f6,f7-f8,f9-f10) [-5, 5] 360
f22 Rot. Hybr. Comp. High Condition Number Matrix [-5, 5] 360
f23 Non-Continuous Rotated Hybrid Composition [-5, 5] 360
f24 Rot. Hybr. Comp. (f1,f2,f3,f4,f5,f6,f7,f8,f9,f10) [-5, 5] 260
f25 Rot. Hybr. Comp. Global Optimum Outside of Bounds [2, 5] 260

3. EXPERIMENTAL SETUP
In this section, we present the experimental methodology

and statistical procedure applied to evaluate the different
versions of OIPS-k and to compare them. We have followed
the experimental framework presented in the Special Session
on Real-Parameter Optimization at CEC’05 [12].

We have implemented our OIPS-k using the MALLBA li-
brary [1] in C++, a framework of metaheuristics. Following
the specifications proposed in CEC’05 experimental proce-
dure, we have performed 25 independent runs of OIPS-k for
each test function and for each k ∈ {1, . . . , Ss} neighbor-
hood. We use this standard benchmark to avoid biasing the
results to concrete functions, and to have a high number
of test problems that endorse our claims. For simplicity,
the study has been made with dimension D = 30 (num-
ber of continuous variables), although an additional anal-
ysis with different problem dimensions is also included in
Section 4.5. In the results, we are reporting the Maximum,
the Median, the Minimum, and the Mean error of the best
solutions found in the 25 independent runs. For a solution
x, the error measure is defined as: f(x) − f∗, where f∗ is
the optimum fitness of the function. The maximum num-
ber of fitness evaluations has been set to 10, 000×D, which
constitutes the stop condition.

To analyze the results, we have used non-parametric sta-
tistical tests, since several times the distributions of results
did not follow the conditions of normality and homoskedas-
ticity [5]. Therefore, the Median error (and not the Mean
error), out of 25 independent runs, has been used for analysis
and comparisons. In particular, we have considered the ap-
plication of the Friedman’s ranking test, and use the Holm’s
multicompare test as post-hoc procedure [11].

The test suite of the CEC’05 benchmark is composed by
25 functions with different features [12]: unimodal, multi-
modal, separable, non-separable, shifted, rotated, and hy-
brid composed. Functions f1 to f5 are unimodal, functions

f6 to f12 are basic multimodal, functions f13 and f14 are
expanded, and functions f15 to f25 are composed by sev-
eral basic functions. This way, our new proposals are eval-
uated under quite different conditions of modality, separa-
bility, and composition. Table 1 shows the function names,
bounds, and optimum values.

The parameter setting applied to OIPS-k (in Table 2) fol-
lows the specification of the Standard PSO in [10]. The
swarm size has been set to 30 particles in order to simplify
the experimentation procedure due to space constraints. Nev-
ertheless, as done with the problem dimension, additional
experiments concerning different swarm sizes will be also
provided in Section 4.4.

Table 2: Parameter setting used in OIPS-k
Description Parameter Value
Swarm size Ss 30
Acceleration coefficient ϕ 4.1
Constriction coefficient χ 0.7298

4. ANALYSIS AND DISCUSSION
In this section, we first present an analysis concerning the

influence of the different neighborhood sizes (k) in OIPS-k.
Since we will present a clear range for the informant number
to be used, later we evaluate them against standard algo-
rithms in the literature. Finally, further analysis concerning
the computational effort, the swarm size, and the problem
dimension are performed.

4.1 Impact of the Number of Informants
First, we focus on the different number of informants con-

stituting all possible combinations of neighborhoods.
Since in this experimentation we have concentrated on a

swarm size with 30 particles, the number of OIPS-k’s ver-
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Figure 2: Each plot contains the performance (Maximum, Median, Minimum, and Mean error values out of 25
independent runs) of the different OIPS-k versions for the 30 possible values of k, and for all CEC’05 functions.
The graph in the bottom-right figure contains the frequency histogram of best performance (number of Hits)



Table 3: Median of the error for the 6 compared algorithms and for all the CEC’05 functions
Alg./Func. Standard PSO 2007 FIPS-ALL FIPS-Usquare OIPS-6 OIPS-U[6,8] OIPS-HE{6,8}
f1 5.68E-14 4.12E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 5.08E+00 5.83E+04 3.38E-09 3.41E-13 1.54E+02 2.89E-05
f3 4.28E+07 5.39E+08 6.36E+05 2.06E+06 1.14E+06 3.02E+06
f4 5.05E+03 7.46E+04 1.50E+04 6.30E-03 4.03E+03 1.33E+00
f5 2.89E+03 3.09E+04 3.34E+03 1.25E+03 2.42E+03 1.21E+03
f6 1.66E+01 1.22E+10 1.62E+01 1.62E+01 2.70E+01 2.19E+01
f7 1.23E-02 3.33E+02 9.86E-03 5.68E-14 7.76E-03 5.68E-14
f8 2.09E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01
f9 2.39E+01 2.73E+02 1.69E+01 1.51E+02 1.49E+01 1.09E+01
f10 1.80E+02 4.82E+02 2.79E+01 1.60E+02 1.44E+02 1.51E+02
f11 3.78E+01 3.45E+01 3.89E+01 3.97E+01 3.99E+01 3.98E+01
f12 2.88E+05 7.78E+05 2.12E+03 7.78E+05 4.61E+03 7.40E+05
f13 1.19E+01 6.67E+01 2.99E+00 1.37E+01 3.79E+00 1.19E+01
f14 1.40E+01 1.39E+01 1.28E+01 1.36E+01 1.16E+01 1.34E+01
f15 5.58E+02 9.46E+02 2.39E+02 3.57E+02 3.16E+02 3.06E+02
f16 2.12E+02 8.22E+02 4.88E+01 1.87E+02 1.69E+02 1.75E+02
f17 2.51E+02 1.19E+03 7.24E+01 2.01E+02 1.88E+02 1.90E+02
f18 8.30E+02 9.22E+02 8.31E+02 8.23E+02 8.42E+02 8.22E+02
f19 8.30E+02 9.33E+02 8.31E+02 8.22E+02 8.41E+02 8.22E+02
f20 8.30E+02 9.22E+02 8.30E+02 8.23E+02 8.41E+02 8.23E+02
f21 8.00E+02 1.32E+03 8.63E+02 8.58E+02 6.80E+02 8.58E+02
f22 5.23E+02 1.39E+03 5.51E+02 5.12E+02 5.74E+02 5.11E+02
f23 8.67E+02 1.34E+03 8.70E+02 8.66E+02 5.54E+02 8.66E+02
f24 2.16E+02 1.42E+03 2.21E+02 2.12E+02 2.30E+02 2.12E+02
f25 2.16E+02 1.44E+03 2.21E+02 2.12E+02 2.31E+02 2.12E+02
Hits 1 1 9 9 4 10

sions is 30, from OIPS-1 to OIPS-29, plus OIPS-30 repre-
sented by the so called FIPS-All. Therefore, we have un-
dergone the evaluation of each version OIPS-k with the
benchmark of functions CEC’05. Summing up, 25 inde-
pendent runs for each algorithm version and for each func-
tion have been performed, resulting in a total number of
25× 25× 30 = 18, 750 experiments. The results are plotted
in Figure 2, and several observations can be made from it:

• A number of 6 informants in the neighborhood makes
the algorithm to perform with success in practically all
functions. This is quite interesting since we can then
mention the version OIPS-6 as the most promising one,
and study its main features with regards to other pa-
rameters (swarm size, ϕ) and versus other algorithms
(Standard PSOs, FIPS, etc.) in the next sections.

• For almost all functions, the interval between 5 and 10
informants concentrates most of the successful runs. In
this sense, the plot at bottom-right in Figure 2 shows
the histogram concerning the frequency in which each
OIPS-k obtained the best results in the studied func-
tions. This leads us to suspect that less than 5 infor-
mants is a deficient value of k not really taking parti-
cles out of the found local optima during the evolution,
while more than 10 informants is redundant.

• In this sense, a number of 8 informants is also appro-
priate showing good performances in efficacy, although
it is costly compared to OIPS-6. A new research ques-
tion then comes to scene: could we create still better
PSO’s by using a range of informants during the search
instead of betting for just one single constant value?
Therefore, combining 6 and 8 informants in neighbor-
hoods could be a source of new competitive algorithms.

• Another interesting observation concerns the behavior
of all OIPS-k’s versions in certain sets of functions that
show similar curves of performance. Thus, functions
f1 to f5, unimodal ones, show accurate performances

from k = 5 in advance. Rastrigin’s funcitons f9 and f10
draw quite similar curves with the best performance
in k = 7. Hybrid composed functions, from f15 to f25,
show also high performance for k = 6.

• Curiously, biased functions to the same optimum f∗

share similar curve shapes of OIPS-k’s performances.
For example, functions f1 to f4, with f∗ = −450, func-
tions f9 and f10, with bias to −330, functions f15, f16,
and f17 which are biased to 120, functions f18, f19,
and f20 with f∗ = 10, functions f21, f22, and f23 with
f∗ = 360, and specially functions f24 and f25 biased
to 260, they all show close curve shapes in Figure 2.
An intriguing question is whether the CEC’05 bench-
mark is having an unknown feature in the induced
landscapes that makes a given kind of PSO to per-
form better than others. If we could find such feature
in the landscape domain we could create good algo-
rithms from the start for these and other problems.

4.2 Performance Comparisons
We compare here the best OIPS-k version (OIPS-6) against

the Standard PSO and other successful versions of FIPS with
the aim of studying how well informed our proposal is.

Additionally, we have developed two simple combinations
of OIPS-ks with neighborhoods of 6 and 8 informants, namely
OIPS-U[6,8] and OIPS-HE{6,8}. The former randomly (uni-
form) chooses a value in {6, 7, 8} as the number of infor-
mants to be used in every step of the optimization process.
The later version, OIPS-HE{6,8}, performs the first half of
the optimization process with 6 informants, and the remain-
ing second half with 8 (Half Evolution, HE).

Table 3 shows the resulted median errors of compared
OIPS-k versions for all CEC’05 functions. In addition, Stan-
dard PSO 2007, FIPS-ALL, and FIPS-USquare algorithms
are also compared. We have added the FIPS-USquare (with
informants in a square neighborhood) to this comparison
since it was the version of FIPS that reported the best re-
sults in terms of performance in Mendes et al. [8].



In Table 3, the best resulted median errors are marked in
bold, and the last row summarizes the number of best results
(Hits) obtained by each algorithm. As clearly observable,
OIPS-HE{6,8} obtains the higher number of Hits (10 out
of 25), followed by OIPS-6 and FIPS-USquare with 9. In
the case of OIPS-U[6,8], a limited number of Hits of 4 leads
us to suspect that the random combination of neighborhood
sizes in the interval [6,8] does not make the most of these
values. In general, we can also notice that all the algorithms
obtain the best median errors for one function, at least, so
even the Standard PSO 2007 in f8 and the FIPS-ALL in f11
report the best median error.

Table 4: Average Rankings Friedman’s test of re-
sulted median errors

Algorithm Ranking
OIPS-HE{6,8} 2.58
OIPS-6 2.86
FIPS-Usquare 2.88
OIPS-U[6,8] 3.26
Standard PSO 2007 3.76
FIPS-ALL 5.66

Statistically, Table 4 contains the results of an Average
Rankings Friedman’s test [11] applied to the median re-
sults1 of Table 3. We can see that OIPS-HE{6,8} is the
best ranked algorithm (with 2.58), followed by OIPS-6, and
FIPS-Usquare. In contrast, FIPS-ALL is the worst ranked
algorithm according to this test. This means that the com-
plete scheme of information adopted in FIPS-ALL could
damage the generation of new particles by incorporating
noise and redundant information to them. In this sense,
the FIPS-ALL shows even worse ranking than the Standard
PSO 2007, whose set of informants (SI) is included in the
set of the ALL topology, that is, SI ⊂ ALL.

Table 5: Holm test of resulted median errors for
α = 0.05
i algorithm z = (R0 − Ri)/SE p Holm
5 FIPS-ALL 5.820652884342103 5.86E-9 0.0100
4 Standard PSO 2007 2.2299903907544407 0.0123 0.0125
3 OIPS-U[6,8] 1.2850792082313736 0.1987 0.0166
2 FIPS-Usquare 0.5669467095138413 0.5707 0.0250
1 OIPS-6 0.5291502622129168 0.5967 0.0500

More precisely, Table 5 contains the results of a multicom-
parison Holm’s test [11] on the median errors got by the com-
pared algorithms. In this, the best ranked technique in the
Friedman test, OIPS-HE{6,8} is compared against all other
algorithms. Holm’s procedure rejects those hypotheses of
equality of distributions that have a p-value≤0.0125. Then,
we can state that, for the tackled benchmark of functions
(CEC’05), and according to this test, OIPS-HE{6,8} is sta-
tistically better than Standard PSO 2007 (p-value=0.0123)
and than FIPS-ALL (p-value=5.86E-9) algorithms.

As a further analysis, we have applied the Holm’s test
(with α=0.05) to compare our best algorithms OIPS-HE{6,8}
and OIPS-6, against G-CMA-ES [2], the one with the best
performance in the Special Section of CEC’05. In this case,

1Friedman statistic considering reduction performance (dis-
tributed according to chi-square with 5 degrees of freedom:
45.93714285714339).

the statistical test results with a p-value=0.288 when com-
paring OIPS-HE{6,8} with G-CMA-ES, and a p-value=0.137
when comparing OIPS-6 with G-CMA-ES. Therefore, no
statistical differences exist between the performed median
error distributions of these algorithms, i.e., none of them
performs better than the other one.

4.3 Computational Effort
We present in this section some remarks about the compu-

tational effort. To execute the experiments, we have used the
computers of the laboratories of the Departament of Com-
puter Science of the University of Málaga (Spain). Most of
them are equipped with modern dual core processors, 1GB
RAM, and Linux S.O., having into account that there are
more than 200 computers, that means that up to 400 cores
have been available. To run all the programs, we have used
the Condor [15] middleware that acts as a distributed task
scheduler (each task dealing with one independent run of
OIPS-k).

Figure 3 plots the mean running time (seconds) in which
all the versions of OIPS-k have found the best mean error
for all functions. The mean running times used by OIPS-
U[6,8], OIPS-HE{6,8}, Standard PSO 2007, FIPS-ALL, and
FIPS-USquare algorithms are also plotted. As expected,
the running time increases with the number of informants
in OIPS-k, although it seems to stabilize from OIPS-15 to
OIPS-30 (FIPS-ALL). We have to mention that this last
version (OIPS-30) does not use the random selection of in-
formants, since all particles in the swarm are involved in the
velocity calculation. This led us to suspect that the time
the random selection of informants spends is not significant
with regards to the time of calculating the new velocity vec-
tor (information time).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

S
e
c
o
n
d
s
 
(
s
)

Number of Informants (K)

Mean Times for Each Function (CEC 2005)

OIPS-k
Standard PSO 2007

OIPS-6
OIPS-U[6,8]
OIPS-HE6,8

FIPS-USquare
FIPS-All

Figure 3: Mean running time (seconds) in which all
the versions of OIPS-k have found the best mean
error for all functions. The mean running time used
by the rest of algorithms is also plotted

We can also observe in this figure that the Standard PSO
2007 required the shortest running time (excepting OIPS-1
and OIPS-2), since only two informants are involved in the
velocity calculation: the personal (p) and the global best (b)
positions. Almost all the remaining compared algorithms re-
quired similar running times, between 600 and 900 seconds,
since they used a close number of informants (from 4 to 8) in
their operations. Obviously, the algorithm using the higher
number of informants, OIPS-30 (FIPS-ALL), required the
longest running time.



4.4 Influence of the Swarm Size
Another interesting feature of OIPS-k that we also ana-

lyze here concerns the influence that the swarm size experts
on the optimal number of informants k in the neighborhood.
In this sense, we have carried out a series of additional ex-
periments in which, four configurations of swarm sizes (with
10, 30, 50, and 100 particles) have been set in the differ-
ent OIPS-k algorithms for a number of neighborhoods (k).
Specifically, we have evaluated from OIPS-1 to OIPS-10,
OIPS-30, OIPS-50, and OIPS-100 versions, each one of them
with the four possible configurations of swarm size.
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Figure 4: Influence of the different swarm sizes in
OIPS-k. The median fitness values are plotted for
swarm sizes with 10, 30, 50, and 100

Figure 4 shows the plot of the median error values resulted
from the experiments with different sizes of swarm, for func-
tion f10 (of CEC’05). We have selected this function since
it shows a representative behavior similar to the ones ob-
tained on the remaining functions. We can effectively ob-
serve that all the best median errors are obtained by OIPS-k
versions with neighborhoods included in the range of k ∈
[5, 9]. Therefore, with independence of the number of par-
ticles in the swarm, the empirical optimal number of in-
formants required is included in this interval, and even for
larger swarm sizes (with 100 particles) the performance of
OIPS-k is enhanced using those small neighborhoods.

4.5 Influence of the Problem Dimension
Similar to the previous analysis, the potential influence

that scaling to larger problem dimensions may have on the
selection of the neighborhood size (in OIPS-k) is studied in
this section. In this case, the experiments are focused on the
resolution of large scale problems, as the ones found in the
context of the Special Session CEC’08 [14] and CEC’10 [13]
(the stop condition is 5, 000 × D fitness evaluations). In
concrete, we have worked with the Shifted Ackley’s function
(f6 in CEC’08 and f3 in CEC’10) with dimensions D = 30,
50, 100, and 500 variables. The swarm size was set to 30
particles as in initial experiments, and our goal is to see
how sensible is OIPS-k to problem size.

Figure 5 plots the median errors resulted for all OIPS-
k configurations. Once again, the informed OIPS-k with
neighborhood sizes close to 6 informant particles show the
best performance for almost all problem dimensions. Only
when dealing with 50 variables, OIPS-k with 4 and 5 in-
formants obtain the best median errors values, also close to
OIPS-6. Therefore, as expected, increasing the number of
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Figure 5: Influence of different problem dimensions
in OIPS-k. Study made with the Shifted Ackley’s
function, f6 in CEC’08 and f3 in CEC’10

variables in the problem dimension does not seem to variate
the behavior of the OIPS-k versions. In fact, for the Shifted
Ackley’s function, the curve shapes representing each prob-
lem dimension follow similar patterns to practically all plots
in Figure 2.

5. CONCLUSIONS
In this paper, we generalize and analyze the number of in-

formants that take part in the calculation of new particles.
For this, we have created a new version of Informed PSO,
called OIPS-k with the possibility of managing any neigh-
borhood size k, from 1 informant to all of them in the swarm
(FIPS-ALL). A series of experiments and comparisons have
been carried out in the scope of the CEC’05 benchmark of
functions. The influence of the number of informants, the
problem dimension, and the swarm size have been analyzed.

The following conclusions can be extracted:

1. A number of 6 informants in the neighborhood makes
the algorithm to perform with high success in practi-
cally all functions. This means that, at least for the
popular continuous benchmarks, researchers should con-
sider OIPS-6 instead of the standard PSO.

2. In fact, comparisons with Standard PSO 2007, FIPS-
ALL and FIPS-USquare versions, and other algorithms
in the state of the art (G-CMA-ES), lead us to propose
our OIPS-6 (and its combination OIPS-HE{6,8}) as a
prominent optimizer.

3. For almost all functions, the interval between 5 and 10
informants concentrates most of the successful runs.
We suspect that less than 5 informants is a deficient
value of k, since hard landscapes make PSO stuck in
local optima with no guide enough coming from the
two best particles in the swarm to scape from them.
More than 10 informants is redundant, since lost of
particles are just representing the same movements as
others, that is, there are classes of equivalence in the
swarm (basins of attraction) that are providing redun-
dant samples to interfere with the velocity computa-
tion for k > 10 (including FIPS).

4. The behavior of all OIPS-k versions in certain sets of
functions show similar curves of performance. Uni-
modal, Rastrigin’s, Hybrid Composition functions show
quite similar curve shapes concerning the impact of k.



5. Functions biased to the same optimum f∗ share similar
curve shapes of OIPS-k’s performances. For example,
functions f1 to f4, with f∗ = −450, and specially func-
tions f24 and f25 biased to f∗ = 260. If this leads to
a rethinking of existing benchmarks or not is open to
discussion.

6. In general, the higher the number of informants (in-
volved in the velocity calculation), the longest the run-
ning time required.

7. Each OIPS-k version shows quite similar behavior in
our experiments independently of the swarm size, and
independently of the problem dimension. This means
that OIPS-k is having additional features making it
scalable and resistent to constrained execution (memory-
restricted, at least).

As future work, we are interested in investigating other
elemental features of the PSO algorithm as well as to ap-
ply new concepts of the Standard PSO 2011, to “informed”
versions of this algorithm. Besides, we plan to perform an-
alytical investigations on what is the probability that 6 to
8 particles take “most times” a given arbitrary particle solu-
tion out of the many local optima that are usually found in
complex problems.

A research in progress is to study whether the CEC’05
benchmark is having an unknown feature in the induced
landscapes that makes a given kind of PSO to perform better
than others. If we could find such feature in the landscape
domain we could create good algorithms from the start for
these and other similar problems.
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