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Abstract. Isotropic packings of cohesive disks in 2D are studied by discrete, stress-controlled numerical simulations. 
Depending on the assembling process and on whether contacts possess rolling resistance (RR), configurations form under 
low pressure P with varying solid fraction * and fractal dimension dF describing small scale correlations below some blob 
size | . The gradual collapse observed under growing P is described as a linear relation between lnP and 1/* within some 
range, once the influence of initial conditions has faded out, and until a maximum density is approached. This corresponds to 
a decrease of | that is compatible with the fractal blob model. The isotropic tensile strength is always considerably smaller 
than the naive Rumpf estimate, and grows with consolidation. Coordination numbers in systems with small RR change little 
while density increases by large amounts in consolidation. 
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INTRODUCTION 

Cohesive granular systems, such as some soil materi­
als [1] and powders [2], can form very loose structures, 
which undergo considerable plastic compaction under 
growing stress intensity [1, 3] and can resist tension. The 
present communication investigates those phenomena by 
discrete element simulations in quasistatic conditions. 
Such a situation, with loose systems, has hardly been 
addressed by numerical means, as the recent literature 
rather explored dynamic compaction [4, 5], gravity de­
position [6], steady flows [7], or denser materials [8, 9]. 
We introduce a simple model material and report on its 
consolidation properties, in relation to its microstructure, 
thus presenting a brief account of studies published in 
two recent papers [10, 11], to which a section with new 
results on the resistance to tension is added. The paper 
ends with a short discussion. 

MATERIAL AND INTERACTION LAWS 

tive force which vanishes beyond the value D0 = a/1000 
of the gap h separating neighbors, varies linearly with h 
to reach its maximum intensity F0 for h = 0 and stays 
constant for h<0, i.e., when the particles are in con­
tact. We also introduce rolling resistance (RR) in some 
samples, hence a rolling friction parameter (a length) uR 

such that the local rolling moment T at a contact sat­
isfies |r| < nRF§, with F§ the repulsive elastic part of 
normal force FN. RR is physically attributed to small as­
perities and modeled similarly to standard sliding fric­
tion [10], whence a rolling stiffness constant KR. For 
contact deflection -h0 = F0/KN, while the static normal 
force -KNh+F0 vanishes, the maximum tangential force 
is nF0 and the maximum rolling moment is nRF0. 

Table 1 lists the values of micromechanical parameters 
used for most simulations, in dimensionless form. 

TABLE 1. Values of interaction 

M 

0.5 
F0 
105 1 

1J0 

10-3 

parameters. 

KNa2 

1 0 - 4 0 or 0.005 

Just like in Refs. [10, 11], which might be consulted for 
more details on the model, we consider 2D assemblies 
of N disks, with diameters uniformly distributed in the 
interval [a/2,a]. The disks interact with their contacting 
or very close neighbors, with forces that combine nor­
mal and tangential elasticity (involving spring constants 
KN, KT), Coulomb friction (with friction coefficient µ), 
some viscous damping (the values of which are irrelevant 
in quasistatic conditions), and some simplified form of 
van der Waals attraction. The latter consists in an attrac-

INITIAL CONFIGURATIONS 

In an initial stage, a granular gas is generated with solid 
fraction ΦI and a Maxwell velocity distribution, corre­
sponding to mean quadratic velocity V0 for particles of 
diameter a and mass m. V0 should be compared to the 
value V = √2F0D0 of the receding velocity in a con­
tact that is necessary to overcome attraction. While the 
disks collide and stick to one another, in a process akin 
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to isotropic ballistic aggregation, 4> is kept constant, un­
til all particles form one unique cluster. Then, a non-
vanishing pressure P is applied to the periodic rectan­
gular simulation cell, the edge lengths of which vary ac­
cording to an adapted Parrinello-Rahman scheme [10]. 
The strain rate e is constrained by condition sT0 < 0.05, 
involving characteristic time T0 = ^ am/F0. The dimen-
sionless ratio P = aP/F0 conveniently expresses the 
competition of confining pressure with contact adhesion. 
This procedure is applied to 5 samples of N = 1400 disks, 
4 with N = 5600 and 1 with N = 10976, with the param­
eters of Table 1, and 4>I = 0.36. The application of the 
first nonzero confining pressure, PI = 0.01, is regarded 
as part of the assembling process. It entails a substantial 
density increase, to * = 0.524 ± 0.008 with RR and to 
4> = 0.472 ±0.008 without RR. One such configuration 
is shown in Fig. 1. Coordination number z is about 3.1 

FIGURE 1. One configuration (N = 1400) with RR under 
P* = 0.01. Compressive forces are shown in red, tensile ones 
in green, line thickness encoding intensity. A few contacts (in 
blue) bear vanishing forces (h = h0). 

without RR and 2.9 with RR in such states. It decreases 
to nearly 2 if a large value jiR/a = 0.5 is adopted. 

PLASTIC CONSOLIDATION 

The pressure is then stepwise increased, from cohesion-
dominated states at small P to confinement-dominated 
ones at large P . In each step, P is multiplied by a con­
stant factor 101 /8 , and one waits for equilibrium to be 
satisfied with good accuracy: the net force – and mo­
ment – on each particle is lower than 10 -4F1 – resp. 
10-4F1a – with F1 = Max{F0,aP}, with a similar tol­
erance on controlled internal stresses. The stability of 
such equilibrium states can also be checked with stiff­
ness matrcies [11]. Considerable structural changes are 

witnessed under growing P , as the initial loose struc­
ture (Fig. 1) gradually collapses and loses its porosity. 
The compaction is stopped at P = 13.3, above which no 
significant further compaction is observed. The sample 
structure and force distribution is then similar to that of a 
cohesionless system, as apparent in Fig. 2. The evolution 

FIGURE 2. Configuration of Fig 1, compacted to P* = 13.3. 

of density with pressure during compaction is shown in 
Fig. 3. No size dependence is observed and the data of 
all samples are averaged over. Conforming to the litera­
ture, in which the void index e = - 1 + 1 / * is used as 
a state variable, such consolidation curves can be repre­
sented as 1 / * versus lnP . They are quite sensitive to 
a small RR, and can be modeled as follows, introducing 
three regimes for growing P . In the first one, for P of 
the order of PI , the first applied nonvanishing pressure, 
the initial structure resists the pressure increase, and * 
stays constant. Then, in regime II, pressure increments 
cause irreversible compaction and a straight line is ap-

FIGURE 3. Consolidation data and fit to Eq. (3), for sys­
tems with (red triangles) and without (black dots) a small RR. 
Dashed lines: fits to Eq. (1). Continuous lines: fits to Eq. (3) 
and (bottom) decompression from highest P*. 

proached as N °°. This is the classical form of consol­
idation curves, defining a plasticity index X: 

1 
-1--yl ln P . (1) 
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In Eq. (1), values Φ0 and P0 correspond to the end of 
regime I, and depend on the initial assembling method. 
However, we could check [11] that various factors af­
fecting Φ0 and P0 , such as ΦI or V0/V , become irrele­
vant once regime II is reached. The consolidation behav­
ior expressed by Eq. 1 is thus intrinsic, independent on 
the initial state. Finally, a maximum solid fraction Φmax 
is approached at large P , as a power law, 

1 1 A 
+ . 

Φmax (P ) α (2) 

A possible complete formula interpolating between 
Eqs. 1 and 2 is (defining 
setting Φ = Φmax in (1)) 

a crossover pressure P1 by 

1 1 -A ln P 
a l/a 

— 1-expf - — ] 
Pci P* 

(3) 

which is found (see Fig. 3) to fit the data appropriately. 
Eq. (3) requests A = λ(P1 )α / (2α) in (2). Table 2 lists 
the values of fitting parameters. 
TABLE 2. Values of parameters λ, Φmax and α used to fit 
the consolidation curve with parameters of Table 1, and in a 
sample with larger RR, with Eq. (3). Corresponding P1 values 
are 0.271±0.033, 0.900±0.064 and 2.6±0.4. 

mla * 0 Φmax 

0 
0.005 
0.5 

0.0237 
0.0316 
0.0178 

0.469 
0.515 
0.382 

0.349 
0.194 
0.25 

0.7808 
0.7745 
0.724 

0.91 ±0.10 
1.08 ±0.16 
0.86 ±0.24 

On reducing P at any stage (as shown on Fig. 3 for 
P = 13.3), Φ remains constant, apart from small, nearly 
elastic [11] changes. Subsequently, plastic compaction is 
resumed only if the highest value Pc applied in the past, 
the preconsolidation pressure, is exceeded. 

DENSITY CORRELATIONS 

Open, ramified structures such as the one of Fig. 1 are 
frequent in colloid aggregation processes, and exhibit a 
self-similar structure characterized by a fractal dimen­
sion dF. Ideal aggregation processes (e.g., diffusion-
limited, reaction-limited or ballistic) have been studied a 
lot [12] and lead to different values of dF [13]. Since the 
density of a fractal object vanishes in the thermodynamic 
limit, arbitrarily large systems of finite solid fraction Φ 
only display a fractal structure below some correlation 
length or “blob size” ξ, which satisfies (in 2D) [12] 

| oc $ - 1 / ( 2 - * ) (4) 

In the traditional models, aggregates are rigid, unde-
formable and unbreakable objects, whence a loopless 

structure and coordination number z = 2. We are deal­
ing here with a more realistic version of ballistic aggre­
gation, with a complete mechanical model for particle 
interactions. The result of the ideal aggregation process 
with rigid clusters is only approached for large RR with, 
then, z - • 2 at small P* (or, also, in the limit of V0/V* - • 0 
under P* = 0 [10], as initial clusters are hardly disturbed 
as aggregation proceeds). 

dF is measured on computing the Fourier transform 
of the density autocorrelation function (or “scattering in­
tensity”), I(k), which should be approximately constant 
for wavevector k below 2n/^ and decrease as k-d" in 
the fractal range 2n/a > k > 2n/%. Fig. 4, in spite of 

• -p*=o.oi 
o-P*= 0.178 
A - P * = 1 

I.-'i 
KW^HSV 

-1.0 -0.5 
log,B(k/2iO 

FIGURE 4. Scattering intensity per unit area versus wave 
vector k in systems with RR for 3 values of P*. 

large error bars at small k, shows that our results abide 
by such expectations. Correlations coincide for large k 
for different P*, indicating that consolidation essentially 
affects the large scale features of the microstructure. The 
slope of I(k) versus k on the logarithmic plot yields 
dF = 1.52 ±0.04, which coincides with the fractal di­
mension (1.55 ± 0.02) obtained in ideal ballistic aggrega­
tion [13], despite a different connectivity: z is well above 
2, it increases with P* from about 2.9 to 3.1. Correlation 
length % can be estimated from the abscissa of the inter­
section of the initial plateau with the line of slope -dF. 
% decreases as P* increases until all signatures of a frac­
tal microstructure vanish (for P* - 1). Due to the lim­
ited fractal range and corrections to scaling, relation (4) 
cannot be accurately checked, although it correctly de­
scribes [10] the change of | between P* = 0 (* = 0.36, 
%la ~ 9.5) and P* = 0.01 (* = 0.515, c /a ~ 5.0). 

Interestingly, the same data analysis in systems with­
out RR yields quite a different value of dF, near 1.9: a 
small level of RR (pR/a = 0.005) has a large effect on 
the fractal dimension. 

X a 
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TENSILE STRENGTH CONCLUSIONS 

Some values of tensile strength, as measured under 
isotropic stresses (i.e., a negative value PT of P ), are 
shown in Fig. 5, as a function of preconsolidation pres­
sure Pc . PT might be measured either with a stepwise 
loading (as used in compression), or on smoothly stretch­
ing the specimen until the inner tension reaches a maxi­
mum. Both procedures agree. Remarkably, PT turns out 

—•— Step-wise (no RR) 
—O— Step-wise 

• Stretching 

FIGURE 5. Isotropic tensile strength versus P* in a sample 
with N= 1400. 
to be very similar for small RR or without RR. This 
contrasts with the sensitivity of consolidation behavior 
- in which the system gets continuously broken and re­
paired - to a small RR level. Pf is reached for a very 
small strain level (< 10 -4), irrespective off*. The rup­
ture can thus be regarded as brittle - although for low P* 
samples may still withstand smaller tensions, as they get 
progressively torn apart in a strain-controlled test. Clas­
sically, the strength of a cohesive material is assessed 
with the so-called Rumpf formula [9], which amounts 
in the present case to replacing the average normal force 
FN by -F0 in relation FN = 7naP/(z<S>) (which is nearly 
exact [10] and directly stems from the classical expres­
sion of stresses as sums over contacts involving forces 
and branch vectors). The Rumpf formula was proposed 
decades ago [14], based on the assumption that a large 
population of contacts simultaneously break in tension. 
It ignores the specific disorder and microstructure of co­
hesive packings and overestimates the tensile strength by 
a large factor (~ 3 for large P*, above 50 for P* = 0.01). 
On the other hand, a Rumpf-like formula can be tried [2] 
at scale | , based on a description of the system as a pack­
ing of blobs joined by fragile bonds with tensile strength 
- F0. This provides a rough estimate of Pf, up to some 
unknown numerical factor, and predicts Pf °c I - 1 . The 
variations of Pf (Fig. 5) are compatible with such a re­
lation, as it increases by a factor of about 6 while E de­
creases in the same proportion. 

We have retrieved the classical consolidation behavior of 
cohesive granular assemblies and powders with a sim­
ple model. The study of the mechanical properties of 
loose cohesive granular assemblies can benefit from the 
concepts developed and applied in the fields of gels 
or colloidal aggregates (fractal dimension, blob size). 
Thus estimates for such quantities as tensile strength, 
on accounting for the characteristic blob size, are im­
proved over simple, particle-level approaches. However, 
the scaling regime is not necessarily well developed, and 
the mechanical behavior depends on connectivity proper­
ties beyond the simplest fractal characteristics. Although 
consolidation regime II is observed to coincide with the 
self-similar scaling regime for ξ, a prediction of plas­
ticity index – associated with complex rearrangement 
events – is still unavailable. Another clear conclusion 
is the importance of rolling friction in contacts (even a 
small µR changes the geometric and mechanical proper­
ties). Our observations call for both more detailed inves­
tigations of rupture and plasticity mechanisms, for vary­
ing RR levels, and more general classifications, in 2 and 
3 dimensions, of the rich variety of structures appearing 
in loose cohesive systems (would mechanical properties 
change along with dF with diffusion-limited instead of 
ballistic aggregation ?) 
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