
PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

Tool for Validation Software Projects in
Programming Labs

http://dx.doi.org/10.3991/ijep.v2i2.2080

A.J. Sierra, T. Ariza, F.J. Fernández, G. Madinabeitia
Universidad de Sevilla, Sevilla, Spain

Abstract—This work shows a testing tool used in Fundamen-
tals of Programming II laboratory in Telecommunication
Technologies Engineering Degree at University of Sevilla to
check the student project. This tool allows students to test
the proper operation of their project in autonomous way.
This is a flexible and useful tool for testing the project
because the tool identifies when the student has carried out
a project that meet the given specifications of the project.
This implies a high rate of success when the student delivers
its project.

Index Terms—Tool, Telecommunication Technologies
Engineering, Fundamentals of Programming, Student-
centered Learning System, First-Year Students, Statistical
Analysis

I. INTRODUCTION

In this paper, we present Tool for Validation Software
Projects (TSVP), a tool for testing the course Project, used
in the Fundamentals of Programming II laboratory in
Telecommunication Technologies Engineering Degree at
University of Sevilla. This tool allows autonomous verifi-
cation of course project by the student. We show a flexible
and useful tool for checking the course project. Further-
more, it is used to identify when the course project fits the
requirements. It has led to an increase in success rate in
the evaluation of the student project in FPII.

The European Higher Education Area (EHEA) was
launched along with the Bologna Process' decade anniver-
sary, in March 2010, during the Budapest-Vienna Ministe-
rial Conference [2]. The foundation of EHEA is based on
student’s work. Laboratories are essential to develop
theoretical content and implement abilities in a larger
scale work. The TVSP facilitates both the teacher’s and
student’s work, in the context of a project-based learning
methodology.

There are tools that automate completely or partially the
task of assessment software (Computer Aid Assessment or
CAA) at university scope [1] [7]. Among these systems we
highlight the following, BOSS [3], Curator [6], Goodle
GMS [14], CourseMarker [11], Assyst [10], HoGG [15]
and OnlineJudge [5].

Conversely to representation of assessment content and
results [12] that is standardized, CAA has not been stan-
dardized.

Therefore, there is a problem of portability and interop-
erability between them, which makes it difficult to adapt
these systems to other university environments.

This paper presents a tool for specific educational re-
quirements in Fundamentals of Programming II in EHEA.

The Tool for Validation Software Projects (TVSP) is
implemented in C language. It has been based on previous
implementations, in other programming languages. These
languages are Perl [17] and shell script [16]. The objective
of this work is to provide a simple tool for students. This
tool is easy to use and is integrated into the working
environment for the laboratory. This tool is implemented
without an external server and can perform the tests with-
out Internet connection.

This paper is organized as follows: first, the laboratory
is shown in the context of the course Fundamentals of
Programming II in Telecommunication Technologies
Engineering Degree offered at the University of Seville in
2010-11. Next, we show the laboratory in which we use
the tools. Then, we describe the implemented tool describ-
ing the functionality, goals and usability. And finally
results and conclusions are shown.

II. BACKGROUND

A. EHEA
EHEA is a set of agreements adopted by all European

countries to harmonize their university education. It
includes not only the member states of the European
Union, but a total of 46 countries.

 The principles which regulate the EHEA are four:
 a) A unit of measurement common training.
 b) A common training structure.
 c) Quality assurance.
 d) Transparency of information.
The basic objective is to facilitate mobility of students,

faculty and graduates among all member countries of the
EHEA, so that students can continue their studies in
another university system, it can generate faculty ex-
change programs and facilitates mobility for workers with
higher education. Another aim is to make the EHEA an
attractive environment to come to Europe to students from
third countries, with the advantages it brings to the coop-
eration and international solidarity.

B. The European Credit: A unit of measurement studies
Until now, University studies in Spain were computed

using LRU [13] credits. These credits indicate only the
number of class hours composing a curriculum (10 hours
of class were 1 credit). The European Credit is a harmoni-
zation of the duration of the studies. All Courses have the
same length, regardless of the degree you are pursuing.
This allows an accurate assessment of training achieved at
a given time if students want to or are obliged to change
the University and facilitates the recognition of studies.

6 http://www.i-jep.org

http://dx.doi.org/10.3991/ijep.v2i2.2080�

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

A European credit represents 25 hours of study and
takes into account not only the session in classroom
(including theoretical sessions, practical laboratory ses-
sions, seminars or workshops), but also computes the
hours of study to solve the various tasks assigned (exams,
papers or conducting seminars).

Each course consists of 60 European credits. The
EHEA does not change the time devoted to study, but
makes it much more explicit and transparent.

C. Changes in the University
The set of EHEA is structured in three levels:
 The basic level is the Degree. In Spain degrees con-

sist of 240 European credits (4 courses). The degree
enables to develop a profession that requires a uni-
versity educational level.

 The second level is the Master. This is a specializa-
tion of a specific field of knowledge or multidiscipli-
nary studies (representing disciplines from various
areas). Guidance can be for research, for professional
practice, or mixed. The duration of the Master will be
ECTS 60, 90 or 120 credits (1 and 2 courses), de-
pending on the nature of the studies.

 The third level is the PhD. In general, the PhD is a
research process aimed at developing the thesis. To
enroll in a doctoral program, the person concerned
will have to be overcome at least 60 credits European
Masters level or be in possession of a graduate de-
gree of at least 300 European credits.

D. EHEA at University of Sevilla
The University of Seville currently offers 77 degrees

and double degrees and 81 Master Degrees [19].

E. School Of Engineering at Sevilla
The implementation of the EHEA at the School of En-

gineering at Seville (Escuela Técnica Superior de In-
geniería, or ETSI) has been based on Aeronautical, Indus-
trial, Telecommunications, and Chemical Engineering.
These qualifications have enabled currently offered in the
ETSI Grade the following qualifications:
 Degree in Aerospace Engineering
 Degree in Industrial Technology
 Degree in Telecommunications Engineering Tech-

nology
 Degree in Chemical Engineering
 Degree in Civil Engineering
 Degree in Electronic Engineering, Robotics and

Mechatronics
 Degree in Energy Engineering
 Degree in Industrial Engineering

The postgraduate program is structured around seven
Master's programs, each of them associated to a doctoral
program:
 Master in Electronics, Signal Processing and Com-

munications.
 Master in Electric Power Systems.
 Master in Automation, Robotics and Telematics.
 Master in Advanced Mechanical Engineering Design.
 Master in Industrial Organization and Management.

 Master in Environmental Engineering.
 Master in Thermal Energy Systems.

F. Telecommunication Technologies Engineering
Degree

In Telecommunication Technologies Engineering De-
gree (or TTED) at University of Sevilla, the techniques
and technologies of transmission, treatment and informa-
tion management, are studied. This will provide extensive
knowledge of communications, electronics, signal proc-
essing, information management, and computer networks.

TTED offers four tracks or specializations:
 Telecommunication Systems
 Electronic Systems
 Telematics
 Sound and Image

Students accessing this qualification must have disposi-
tion to work and have analytical skills. You need a good
background in mathematics and physics, and having
language and information technology skills is highly
recommended.

G. First-year at TTED
The first-year for Telecommunication Technologies

Engineering Degree at University of Sevilla consists of
two terms.

Each term has different courses. The First term has the
following courses:
 Mathematics I.
 Mathematics II.
 Physics.
 Computer Basics.
 Fundamentals of Programming I.
 The Second term has the following courses:
 Fundamentals of Programming II.
 Circuit Theory.
 Mathematics III.
 Statistics.
 Technology devices and Components.

III. LABORATORY CONTEXT

This laboratory is taught in the subject of Fundamentals
of Programming II (FPII) in Telecommunication Tech-
nologies Engineering Degree at University of Sevilla. In
this section we show the context of the laboratory. To
accomplish this purpose, we present the objectives, the
contents, the used methodology and the evaluation system.

A. Fundamentals of Programming II in EHEA
FPII in EHEA is a term core subject at the first-year of

Telecommunication Technologies Engineering Degree.
This subject consists of 6 ECTS credits corresponding to
150 hours of student work. 1.5 ECTS credits are dedicated
to theoretical contents (15 classroom hours and 22.5 hours
of study) and 4.5 ECTS credits are dedicated to practical
classes (45 classroom hours and 67.5 hours of study). This
subject has a high practical content.

iJEP – Volume 2, Issue 2, April 2012 7

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

B. Objectives in FPII
The subject aims to consolidate basic skills obtained in

FPI by solving a complex problem. The principles and
fundamentals of programming are developed by means of
problem’s resolution, in practical sessions.

The objectives of this subject are the following:
 Resolution of problems through structured program-

ming techniques by the decomposition of complex
problems.

 Management and implementation of abstract data
types.

 Development of programs in a programming lan-
guage such as C, providing the methods for handling
data structures.

 Design applications using Object-oriented program-
ming (OOP) techniques. This technique includes fea-
tures such as data abstraction, encapsulation, messag-
ing, modularity, polymorphism, and inheritance in
Java.

C. Contents in FPII
The content in FPII is the following:
 Resolution of problems using abstract data types.
 Development of programs in a programming lan-

guage such as C using abstract data types.
 Resolution of problems through OOP techniques.

This technique includes features such as data abstrac-
tion, encapsulation, messaging, modularity, poly-
morphism, and inheritance in Java.

 Development and implementation of an application
in an OOP language such as Java, using OOP tech-
niques.

The practices carried out in the part corresponding to
the abstract data types are the following:
 Basic operations on linked lists.
 Resolution of two problems using a linked list: One

of them consists of reading words and counting the
number of times that each word is repeated, and the
other one consists of reading data from a file, insert-
ing orderly them into a list and writing these data into
a file.

 Sum of a certain number of polynomials using linked
lists.

 Stacks and queues implemented with tables and lists.
 Circular lists.
 Use of trees.

The practices carried out in the part corresponding to
OOP are the following:
 Programming environment tools (java, javac, jar,

javadoc, jdb).
 Arrays.
 The Java Debugger (jdb).
 Handling Exceptions in Java.
 Encapsulation (classes, inheritance and packages)

and utilities (String class and other basic classes).
 Polymorphism (overloading methods and construc-

tors).
 Inheritance, overwriting methods.

D. Methodology in FPII
The methodology used in FPII for the acquisition of

knowledge is the following:
 Lectures: classes where the teacher makes a theoreti-

cal exposition of the subject matter, explaining the
basics of the subject.

 Laboratory practices: these classes are dedicated
primarily to the student address and resolve the prob-
lems proposed by the teacher.

 Active use of e-learning technologies: this technol-
ogy has been used for storing contents, submission of
practices, continuous evaluations, forums, internal e-
mail. The virtual learning environment system used
is WebCT (Blackboard Learning System) [22].

 Project-based learning, or PBL, is the use of in-depth
and rigorous classroom projects to facilitate learning
and assess student competence. Students use technol-
ogy and inquiry to respond to a complex issue, prob-
lem or challenge. PBL focuses on student-centered
inquiry and group learning with the teacher acting as
a facilitator. Every student must complete two course
projects that will consist of developing an applica-
tion, comprising the steps of understanding the prob-
lem, designing of the program, coding and subse-
quent testing. One course project is in C, and other
project in Java.

E. Evaluation in FPII
The evaluation of the course in FPII is based in the fol-

lowing concepts:
 Attendance at practices: it is indispensable to attend a

minimum number of practical classes, and the sub-
mission of some exercises developed during the prac-
tice sessions.

 Theoretical grade: tests and final exam is the 65% of
the final grade.

 Tests: there are two tests with a value of 10% of the
final grade. The virtual learning environment system
is used in these evaluations.

 Final exam: the exam with a value of 80% of the fi-
nal grade. It may contain a mixture of multiple
choice questions (theoretical or practical issues) and
problems to be solved by the student.

 Practical grade: Design and implementation of two
course projects in C and Java is the 35% of the final
grade.

 Course project in C: Development and implementa-
tion of programs in a programming language such as
C for handling abstract data types. This project con-
sists of a complete program whose requirements will
be provided at the beginning of the course. This work
must be defended by the student in an exam. The
teacher will request new modification of the pro-
gram.

 Course project in Java: Design and implementation
of an application using Object-oriented programming
(OOP) techniques. This project consists of a com-
plete program whose requirements will be provided
at the beginning of the course. This work must be de-
fended by the student in an exam. The teacher will
request new modification of the program.

8 http://www.i-jep.org

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

So, we are using continuous evaluation in the subject.
In addition to monitor what students are doing in the
laboratory, there are two small tests before the final exam.
Exams are distributed throughout the course and meet
several objectives:
 Ensuring that the student has the skills to make the

practices and understand the following topics of the
course. It leads the student to organize the study of
the subject properly. Furthermore, they must study a
part of the subject before starting the next, so that
classes and laboratory sessions are more useful.

 Training students in examinations of the subject.
 The student receives information on their current

knowledge and he/she identifies gaps that must be
overcome.

IV. METHODOLOGY IN THE LABORATORY

The project-based learning is effective for students to
acquire programming skills [4]. Projects must be evalu-
ated by the teacher. The project-based learning has tradi-
tionally been used in courses with few students, but is
difficult to implement in courses with many students.

Due to the large number of students in FPII, a tool is
necessary to facilitate the evaluation of the student's
course project. So, the teacher can validate easily and
quickly the functionality of the completed project. Fur-
thermore, this tool will also facilitate the development of
the project by the student. The student can test the proper
operation of the project in the development phase. The
tool will report identified problems.

The course project works properly when it has passed a
series of tests carried out using the tool. Then the student
can delivers it to the teacher.

Access to the tool must be integrated with the learning
environment used in the course. The virtual learning
environment system used is WebCT. Therefore, students
can get the tool through the virtual learning platform.

The student needs to have an environment similar to
that used in laboratory practices. This development envi-
ronment is used for the execution of the tool and the
project. To this purpose, a virtual machine is provided to
the student. This virtual machine is identical to the pro-
gramming environment used in the practical classes. The
virtual machine includes the same operating system and
the tools necessary for compilation and execution of
programs. We provide the necessary instructions to
download the virtual machine.

The use of the tool must be easy and intuitive for the
student. The tool keeps the environment (compilation and
execution) used in the laboratory by providing a user
friendly interface.

The review of the student project should be automated
as much as possible to enable the correction of a large
number of projects.

Students are examined of the project as follows:
 The student must deliver in advance the course pro-

ject completed and tested with the tool so that it
passes all the provided tests. The delivery takes place
via WebCT.

 On the practical exam, the student must first
download his project from the virtual learning plat-
form.

 He will be required to perform new tests using the
tool. In order to do this, we provide new input files to
the program and the corresponding outputs.

 The student must perform certain program modifica-
tions that change some basic functionality. This en-
sures largely that the student is the author of the work
and understands it perfectly. It also ensures that the
student has organized the project in a suitable way
and that the functions are intuitive (easy to under-
stand).

 The student, before the end of the test, will use
WebCT to deliver all the testing results. The student
must make a copy of its modifications. This copy
will be used if any problems arise, for example, if he
sends the wrong files.

 Finally, the teacher verifies the result in the review
itself or in the virtual learning platform. Check the
program's structure, comments, legibility, etc ... to
assign a rating.

V. DESCRIPTION OF THE TOOL FOR VALIDATION

SOFTWARE PROJECTS (TVSP)

A. Background
There are tools that automate completely or partially the

task of assessment software (Computer Aid Assessment or
CAA) at university scope [1] [7] [3] [6] [14] [11] [10] [15] [5].

CAA tools help to assess more objectively. However, it
requires more careful design of the tasks and the assess-
ment criteria. It is necessary specifying strictly the results
to be obtained and the test suite designed trying to cover
all possible cases. These tests, along with the expected
results can be provided to students so they can make tests
before delivery of the work. A subset of the tests is pro-
vided to students. The students are warned that the given
tests will only check part of the code, encouraging them to
further testing, as done in [23].

Typically, a CAA tools use the model of black-box as a
component of assessment.

The student program is considered a black box. CAA
tools evaluate the program's output compared to a refer-
ence correct output for different input tests. Tests can be
done to a whole program (to be compiled) or parts of a
program (functions, code snippets, lines, etc.). In TVSP
both options are possible. Although so far we have only
assess complete programs.

In addition to comparing the output, often measure-
ments of the efficiency of program are taken (CPU usage,
execution time, memory usage).

The black box model requires running unknown code.
It is desirable using a sand-box model (isolated and secure
execution environment) in the implementation. So, it is
prevented possible harm that may result from erroneous or
malicious code when running dynamic tests.

In addition to the dynamic analysis of the program
given by the student, CAA tools can perform a static
analysis of the code delivered.

The static analysis can detect hidden problems that have
not been obtained by the limited number of tests. The
static analysis can detect hidden problems that have not
been found by the limited number of tests

iJEP – Volume 2, Issue 2, April 2012 9

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

The compilation can be considered a basic static analy-
sis of the code, and generates warning when it detects a
possible error.

Sometimes, it is necessary to search for particular
words or phrases in the code, for example to force or
forbid the use of certain structures or functions.

However, as cited by reference [9], it is not possible to
automatically evaluate all aspects of good programming.
The automatic assessment should be supplemented with
human evaluation. In this case, the tool may set the weight
of the score given to each part of the evaluation.

This section shows the tool used at the first year in
FPII. The Tool for Validation Software Projects (TVSP)
allows the student a guided learning. In addition, the
student can verify its course project in autonomous
way [18]. The tool is implemented in C language. It has
been based on previous implementations, in other pro-
gramming languages. These languages are Perl and shell
script.

Next, the working environment used for the develop-
ment of laboratory practices is shown. Then, the targets
set for the implementation of TVSP are described. After
this, the architecture of the tool is shown and, finally how
to use the tool.

B. Working environment
The following environment was used for laboratory

practices of FPII:
 Operating System: Ubuntu 11.04.
 Compiler: gcc and JDK.
 Debugger: gdb and ddd.
 Editors: emacs and gedit.
 Other tools: make.

A virtual machine is provided to students. Thus the pro-
ject can be developed anywhere and everywhere.

The virtual machine provided is a clone of the operating
system and applications used in the laboratory. This
virtual machine is compatible with VMware Player [31]
and VirtualBox [30] (freeware).

The advantages of using virtual machines include the
following:
 Any student can work with the same tools from any-

where, regardless of operating system installed on its
computer.

 Ensuring that the working environment exactly
matches the lab environment used.

 Fault management.

The practical classes are held at the Computer Centre
(CC) of the Engineering School. The CC currently has 12
classrooms with capacity for about 25 or 50 students. The
PC's have the necessary environment for the different
subjects taught at school.

In the current year (2011-2012) 5 lecture classrooms
have been enabled so that students can bring their com-
puters and do the practices.

The University of Seville provides each student a laptop
with a low cost, refundable returning the laptop.

C. Objetives of the Tool
The tool, in FPII, allows the student the following op-

erations:
 Compilation the source code of the course project

and check whether this operation is done without any
errors or warnings.

 Tests of the memory management. This task verifies
that all dynamic memory used by the course project
is released.

 It runs a test suite and verifies that the output is prop-
erly generated.

This task includes verification that the output generated
by the student's project matches the expected output. The
verification tasks include the following points:
 Check the output files.
 Check the standard output.
 Check the standard error output.

D. TVSP Functionality Diagram
The Student Project Code (SPC) is the starting point of

the validation process.
A Global Error Report (GER) is generated at the end of

this process. The Fig. 1 shows the TVSP functionality.
The validation has the following steps:
 Compilation of the SPC. This phase generates bug

report, including compilation errors and warnings.
 Generation of Modified Student Project Code

(MSPC) from the SPC. The MSPC includes the man-
agement of signals produced in exceptional situa-
tions. Furthermore, the MSPC tests the memory used
by the program for each case.

 Compilation of the MSPC to generate the Modified
Executable (ME).

 Execution of the program through the use of tests to
generate the error output report. This error output re-
port is included in the GER. In TVSP, the SPC is
tested in an isolated virtual machine (no internet con-
nection) similar to that used by students in laboratory
practices.

The error report generated from the execution of the
ME includes the following information:
 Standard Output Report (SOR). This shows the dif-

ferences between the expected standard output and
standard output obtained by the student’s project.

 Standard Error Output Report (SEOR). This shows
the differences between the expected standard error
output and standard error output obtained by the stu-
dent’s project.

 Generated File Report (GFR). This shows the differ-
ences between the expected output files and output
files obtained by the student’s project.

 Memory Report (MR). This shows the errors in
memory management in the student’s project.

10 http://www.i-jep.org

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

Figure 1. TVSP Functionality Diagram.

E. Using TVSP
Both the tool and instructions to use are provided in the

virtual learning platform WebCT.
The tool runs on the command line. The user’s manual

is provided in a file README.txt. The user interface of
the tool is simple and intuitive for rapid deployment and
efficient management by the student, as shown in Fig. 2.

In the course 2010/11 the course project consists of
emulating a Network Address Translator (NAT). The
program reads a NAT configuration file and an input file
with the packets that are received to NAT. The program
generates an output file containing the translated packets.
The application uses linked lists to store the list of transla-
tions used by the NAT and to store the packets arriving to
it.

TSVP has been used during the course for different
purposes:
 Summative assessment: Summative assessment is

that which is used to assess the student's final work.
Retry is not allowed. Initially this was the main use
of the tool.

 Formative assessment: In formative assessment is
considered that the correction is mainly used as feed-
back to the student, for showing its failures and ena-
bling a better implementation. In this case, the stu-
dent can perform multiple deliveries. In our case this

assessment is done prior to delivery, because the stu-
dent has the assessment tool.

 Online exams: During the online exams student must
use this tool. In the evaluation, students must make
minor modifications to the code. Other authors have
made similar actions [8].

F. The management system to deliver in TVSP
Other tools include an assignment management system.

In FPII, WebCT, as virtual learning platform, facilitates
this task. WebCT allows us to have a collection of issues
available to students (that can be performed by levels),
generate reports and statistics, post results, etc.

VI. RESULTS

TVSP has been used at the first year in FPII laboratory
in Telecommunication Technologies Engineering Degree
at University of Sevilla for establishment of EHEA.

This tool allows a guided learning of the student. In ad-
dition, the student can independently evaluate the proper
functioning of the project. TVSP has been implemented in
C and has been based on previous deployments in other
programming languages (Perl and shell script).

The course project examinations are realized on various
dates, spread along the term. TVSP allows students great
flexibility for the evaluation of their work and to organize
their efforts.

iJEP – Volume 2, Issue 2, April 2012 11

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

Figure 2. User interface of the tool.

Figure 3 show the results of different assessments using
this tool. First, we show the results obtained during the
course corresponding to the first ordinary call in the First
Examination Date (FED). Next, we compare the call in
June, with September and December, realized at Septem-
ber (Second Examination Date, or SED) and December
(Third Examination Date, or TED), respectively.

A. First Examination Date (FED)
At the beginning of the course all the material necessary

to implement the course project is delivered, including the
requirements. Along the course, four evaluations have
been established for the assessment of the course project.

Once an assessment has been passed the student ex-
ceeds that matter. The student must realize one of those
exams. The project must pass the quality criteria set by the
tool TVSP. A student who passes the exam will not have
to make another project delivery. A student who does not
exceed the exam can present to the next call.

The first delivery was made in March, the second in
April, the third in May and finally the last in June 2011.

Below are shown the results of the evaluations per-
formed for the first call in the First Examination Date
(FED).

We present the results of students who pass the assess-
ment (or Student Passing PS) and students who failed the
assessment (Not Passing or NPS). Table I shows the
results of PS compared NPS.

TABLE I. RESULTS IN THE COURSE

 FED SED TED

PS 75 13 9

NPS 11 13 2

Total 86 26 11

Figure 3. Results in the Course (percentage)

12 http://www.i-jep.org

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

These results are shown for the four deliveries for the
first call (First Examination Date EDF), and four sched-
uled dates in March (First), April (Second), May (Third)
and June (Fourth).

The last row (Total) shows the total number of students
who have presented to the call of March (First column),
April (Second column), May (Third column) and June
(Fourth column). According to the results shown, in all the
assessments the total number of students who passed the
examination was over 60% of students presented, even in
the FED’s third call the percentage of successful students
is 100%. This shows that the student deliveries the course
project when it has the minimum quality. These results are
shown graphically in Fig. 4.

B. Results of the Course
Table II shows the results of the three calls made along

the course 2011 in June (EDF), September (SED) and
December (TED) are shown. This table shows the results
of PS compared with NPS.

According to the results shown in the three calls, a high
percentage of students have overcome the assessment.
This implies that, the student knows when the project has
a minimum quality to successfully overcome the evalua-
tion. Figure 5 shows that the percentage of success (PS) is
higher in all evaluations to the percentage of fail (NPS).

This can also be seen graphically taking into account
the total number of students presented to each of the calls
(June, September and December 2011).

Figure 5 shows that the total number of students pre-
sented to the first call (EDF) is quite high compared to the
rest of calls. This is because the course has facilitated and
eased project delivery.

VII. CONCLUSIONS

In this paper we have presented a testing tool used in
FPII laboratory of Telecommunication Technologies
Engineering Degree at University of Seville for the
evaluation (and self-evaluation) of the student project.
This tool allows autonomous verification by the student
that can evaluate independently the proper execution of
the course project. The results have shown that the use of
this tool along with the flexibility to deliver the project to
the teacher leads to a high degree of success.

TABLE II. RESULTS IN FED.

FED

First Second Third Fourth

PS 27 8 31 9

NPS 3 2 0 6

Total 30 10 31 15

Figure 4. Results in FED: the four options.

Figure 5. Results In The Course (total)

ACKNOWLEDGMENT

The authors would like to thank to all teachers of the
both courses (FPI and FPII) Rafael Bachiller Soler, Isabel
Román Martínez, Antonio José Estepa Alonso, José
Manuel Fornés Rumbao, José Ángel Gómez Argudo,
Fernando Cárdenas Fernández, Pablo Nebrera Herrera,
Godofredo Fernández Requena. These results would not
have been possible without their dedication.

REFERENCES
[1] K.M. Ala-Mutka, “A survey of automated assessment approaches

for programming assignments”. Computer Science Education
15(2):83-102, June 2005 http://dx.doi.org/10.1080/08993400500
150747

[2] “Bologna beyond 2010 – Report on the development of the
European Higher Education Area, Background Paper for the Bo-
logna Follow-up Group”, prepared by the Benelux Bologna Secre-
tariat -, Leuven/Louvain-la-Neuve Ministerial Conference, 28-29
April 2009.

[3] BOSS Online Submission System. Department of Computer
Science, University of Warwick, UK. http://www.dcs.warwick.
ac.uk/boss/

[4] L. ChanLin, “Technology integration applied to project-based
learning in science”. Innovations in Education and Teaching
International, 45, 2008, pp. 55-65. http://dx.doi.org/10.1080/1470
3290701757450

[5] Cheang, B., Kurnia, A., Lim, A., & Oon, W.-C. “On automated
grading of Programming Assignments in an academic institution”.
Computers & Education, 41, 121 – 131, 2003. http://dx.doi.org/
10.1016/S0360-1315(03)00030-7

[6] Curator: An Electronic Submission Management Environment.
Department of Computer Science, Virginia Polytechnic Institute
and State University, USA. http://courses.cs.vt.edu/curator/.

[7] Douce, C., Livingstone, D., and Orwell, J. “Automatic test-based
assessment of programming: A review.” J. Educ. Resour. Comput.
5, 3 (Sep. 2005). http://dx.doi.org/10.1145/1163405.1163409

[8] English, J. “Experience with a computer-assisted formal pro-
gramming examination”. In Proceedings of 7th annual conference
on Innovation and technology in computer science education,
2002.

[9] Jackson, D.. “A semi-automated approach to online assessment”.
Proceedings of 5th annual conference on Innovation and technol-
ogy in computer science education, Finland, 164 – 167, 2000.

[10] Jackson, D. & Usher, M. “Grading Student Programs using
ASSYST”. In Proceedings of the 28th ACM SIGCSE Conference
on Computer Science Education, pp. 335-–339. ACM Press, New
Orleans, LA, 1997.

[11] Higgins, C., Hergazy, T., Symeonidis, P., & Tsinsifas, A. “The
CourseMarker CBA system: Improvements over Ceilidh”. Educa-

iJEP – Volume 2, Issue 2, April 2012 13

http://dx.doi.org/10.1080/08993400500�150747�
http://dx.doi.org/10.1080/08993400500�150747�
http://www.dcs.warwick.�ac.uk/boss/�
http://www.dcs.warwick.�ac.uk/boss/�
http://dx.doi.org/10.1080/1470�3290701757450�
http://dx.doi.org/10.1080/1470�3290701757450�
http://dx.doi.org/10.1016/S0360-1315%2803%2900030-7�
http://dx.doi.org/10.1016/S0360-1315%2803%2900030-7�
http://dx.doi.org/10.1145/1163405.1163409�

PAPER
TOOL FOR VALIDATION SOFTWARE PROJECTS IN PROGRAMMING LABS

tion and Information Technologies, 8, 287 – 304, 2003.
http://dx.doi.org/10.1023/A:1026364126982

[12] IMS Global Learning Consortium. (2005). IMS Question & Test
interoperability specification (Version 2.0). Retrieved March 29,
2012, from http://www.imsproject.org/question

[13] Ley Orgánica de Reforma Universitaria. Ley Orgánica, 11/1983,
de 25 de agosto. B.O.E. de 1 de septiembre.

[14] M. López, F. Gomez-Estern, and D. Muñoz, "Automatic Web-
Based Evaluation of C-Programming Exercises in Engineering
Education". International Journal for Knowledge, Science and
Technology. Vol. 1. Núm. 2. 2010. Pag. 1-6.

[15] Morris, D.. “Automatic Grading of Student’s Programming
Assignments: An Interactive Process and Suite of Programs”. In
Proceedings of the 33rd ASEE/IEEE Frontiers in Education
Conference, S3F-1 – S3F-5. 2003.

[16] IEEE Std 1003.1, 2004 Edition. http://pubs.opengroup.org/
onlinepubs/009695399/mindex.htmll

[17] Perl, http://dev.perl.org/perl5/.
[18] J. Rué, El aprendizaje Autónomo en Educación Superior, Narcea,

S.A. Ediciones, 2009.
[19] University of Sevilla, http://www.us.es.
[20] VirtualBox, https://www.virtualbox.org/
[21] VMware virtualization, http://www.vmware.com/.
[22] WebCT (Course Tools) or Blackboard Learning System,

http://www.blackboard.com/.
[23] Y.T. Yu, C.K. Poon and M. Choy, "Experiences with PASS:

Developing and Using a Programming Assignment aSsessment

System", Proceedings of the Sixth International Conference on
Quality Software (QSIC'06) 2006.

AUTHORS

A.J. Sierra is with the Department of Telematic Engi-
neering at the School of Engineering of the University of
Sevilla, Camino de los Descubrimientos S/N, 41092
Seville, Spain (e-mail: antonio@trajano.us.es).

T. Ariza is with the Department of Telematic Engineer-
ing at the School of Engineering of the University of
Sevilla, Camino de los Descubrimientos S/N, 41092
Seville, Spain (e-mail: matere@trajano.us.es).

F.J. Fernández is with the Department of Telematic
Engineering at the School of Engineering of the Univer-
sity of Sevilla, Camino de los Descubrimientos S/N,
41092 Seville, Spain (e-mail: fjfj@trajano.us.es).

G. Madinabeitia is with the Department of Telematic
Engineering at the School of Engineering of the Univer-
sity of Sevilla, Camino de los Descubrimientos S/N,
41092 Seville, Spain (e-mail: german@trajano.us.es).

This article is an extended version of a paper presented at the Interna-
tional Conference IEEE EDUCON2012, held in April 2012, in Mar-
rakesh, Morocco. Received, 22 April 2012. Published as resubmitted by
the authors 30 April 2012.

14 http://www.i-jep.org

http://dx.doi.org/10.1023/A:1026364126982�
http://pubs.opengroup.org/onlinepubs/009695399/mindex.html�
http://pubs.opengroup.org/onlinepubs/009695399/mindex.html�
http://dev.perl.org/perl5/�
http://www.us.es/�
https://www.virtualbox.org/�
http://www.vmware.com/�
http://www.blackboard.com/�

	CfP_IGIP2012_v2.pdf

