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a b s t r a c t

Molecular docking is a Bioinformatics method based on predicting the position and orientation of a 
small molecule or ligand when it is bound to a target macromolecule. This method can be modeled 
as an optimization problem where one or more objectives can be defined, typically around an energy 
scoring function. This paper reviews developments in the field of single- and multi-objective meta-
heuristics for efficiently addressing molecular docking optimization problems. We comprehensively 
analyze both problem formulations and applied techniques from Evolutionary Computation and Swarm 
Intelligence, jointly referred to as Bio-inspired Optimization. Our prospective analysis is supported by 
an experimental study dealing with a molecular docking problem driven by three conflicting objectives, 
which is tackled by using different multi-objective heuristics. We conclude that genetic algorithms 
are the most widely used techniques by far, with a noted increasing prevalence of particle swarm 
optimization in the last years, being these last techniques particularly adequate when dealing with 
multi-objective formulations of molecular docking problems. We end this experimental survey by 
outlining future research paths that should be under target in this vibrant area.

1. Introduction

In the last few decades, the field of Bioinformatics has ex-
perienced an exponential growth of the amount of biological
data available [1], leading to the rise of new challenges related
to data storage, management, extraction and analysis. In par-
ticular, many Bioinformatics problems (e.g., molecular docking,
protein structure prediction, phylogenetic inference, etc.) can be
defined in terms of one or more objective functions that have
to be minimized or maximized [2]. Most of such problems have
been addressed in the literature by resorting to meta-heuristic
techniques [3].

In the area of Genomics, the increase of the number of human
DNA sequences available has allowed the detection of genes [4],
which express proteins that can be considered as therapeutic tar-
gets for drug discovery. These candidate proteins are extracted by
applying techniques, such as X-crystallography and Nuclear Mag-
netic Resonance spectroscopy (NMR). This has enabled to know
many structural details of ligand–protein complexes, as well as
the creation of databases such as the Protein Data Bank (PDB) [5].
This database stores information about biological macromolecule
crystal structures, whose atom coordinates are utilized in in silico
studies. These advances on laboratory and computational tech-
niques have shed light on the approaches applied in drug discov-
ery, and particularly molecular docking. This procedure consists
in finding the best orientation and position of a given chemi-
cal compound (ligand) to a therapeutic target (macromolecule).
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Molecular docking has significantly contributed to structure-
based drug discovery as has been emphasized [6], postulated [7]
and shown with successful protocols [8] in manifold contribu-
tions. Finding the ligand’s best orientation and binding site can
be formulated as an optimization problem, whose huge com-
plexity has stimulated the adoption of non-exact search methods
belonging to the family of meta-heuristics, such as Evolutionary
Algorithms. Indeed, meta-heuristics have been applied to single-
and multi-objective formulations of this problem, which is the
main focus of this survey.

In this regard, addressing the optimization of a molecular
docking problem requires to deal with two issues: the definition
of the energy scoring function and the choice of the search
method. The energy scoring function evaluates the quality of
the ligand–macromolecule interactions through approximations
to provide a compromise between accuracy and speed. The def-
inition of energy scoring functions has been conducted over
the last two decades to yield different main categories [9]: (1)
force field-based methods, (2) empirical scoring functions, (3)
knowledge-based potentials, and (4) descriptor-based scoring
functions. These approaches can model the molecular docking
simulations as rigid or flexible macromolecule–ligand conforma-
tions only if flexibility can be applied as degrees of freedom
in the ligand or macromolecules bonds. Simulations assuming
flexibility are more realistic than those in which flexibility is
not endowed. The quality of the molecular docking solutions
are measured in terms of the energy associated to the ligand–
protein interactions (∆G), which indicates the stability of the
complex computed. Likewise, the RMSD (root-mean-square devi-
ation) is also employed as a mean to gauge the distance between
the co-crystallized ligands and the computed ones, measured
in Angstroms (Å). The search method refers to the technique
that is used to find the best solution, which represents the
best ligand’s conformation to the macromolecule in terms of
energy. As anticipated above, the most widely adopted family of
solvers for molecular docking are meta-heuristics, which have
been used since the 90’s [10]. Nevertheless, there is a lack of
studies in which this kind of optimization techniques are re-
viewed towards providing biologists and researchers in applied
metaheuristics with an organized corpus of references related to
this research area, including a prospect of different perspectives
and challenges.

Therefore, our motivation in this paper is to provide the audi-
ence with a comprehensive survey of contributed works related
to bio-inspired meta-heuristic algorithms applied the molecular
docking optimization problem. Our bibliographic study provides
an overall overview, which we deem of utmost interest for both
biologists and professionals in bioinformatics with strong back-
ground in the problem, as well as for computer scientists working
on the wide field of bio-inspired meta-heuristics. The first target
group of readers will find in this manuscript informed hints on
which techniques can be more promising to be applied in prac-
tice, whereas the second group will discover a vast spectrum of
features related with this real-world optimization problem, that
can be useful to investigate and derive new heuristic techniques.

The contributions of this paper can be summarized as follows:

• The proposed survey focuses on different yet complemen-
tary perspectives: the different scoring functions that have
been adopted in the literature, the diverse single/multi-
objective formulations derived to model this problem, and
the variety of bio-inspired algorithms used to deal with
them. More than 115 references have been selected for
revision, and catalogued accordingly.

• We provide practical guidelines to the audience by present-
ing and discussing results of an experimental case study

based on a three-objective formulation of the molecular
docking problem on 75 instances with multi-objective meta-
heuristics. A thorough algorithmic comparison with recom-
mendations is included to support experts in the selection
of algorithms.

• A prospective discussion is made to elaborate on open is-
sues, trends and challenges with the aim of encouraging re-
search community in this area to follow-up with molecular
docking optimization.

The remainder of this paper is structured as follows: first, a
background section devoted to bio-inspired optimization algo-
rithms is included. Next, different categories of energy scoring
functions are introduced, which is used as the baseline criterion
to classify the literature in this field until today. Then we intro-
duce and discuss different single- and multi-objective heuristic
approaches applied to solve the molecular docking problem by
sorting them by the number of objectives optimized in each
reported contribution. Once we have examined the state of the
art, we present and discuss the results obtained for the aforemen-
tioned molecular docking problem with three objectives. Finally,
we discuss open issues, trends and challenged, and draw final
remarks on the future of this particularly active research area.

2. Bio-inspired optimization algorithms

Bio-inspired metaheuristics [11] for solving complex optimiza-
tion problems have become a very popular research topic in
last decades. Among the myriad of methods proposed to date,
classical techniques from the wide field of Evolutionary Compu-
tation – such as Genetic Algorithms (GA) or Differential Evolution
– are arguably the most established solvers because of their
versatility and relatively longer presence in the community. How-
ever, modern bio-inspired approaches such as Particle Swarm
Optimization (PSO) [12], Artificial Bee Colony (ABC) [13], Cuckoo
Search (CS) [14] and Firefly Algorithm [15] have started to attract
more attention for continuous- and discrete-variable optimiza-
tion problems, due to their prominent performance shown in
manifold real-world problems. Most of these new metaheuristics
hinge on search mechanisms that are rather different than those
characterizing evolutionary search techniques, as we will expose
briefly in what follows.

There are three main phases in most bio-inspired evolutionary
algorithms: (1) initialization of each individual in a set of can-
didate solutions to the problem at hand (population), which is
randomly generated according to some numerical representation
(solution encoding); (2) each solution in the population is evalu-
ated in terms of its fitness value, which can be used for ranking
the individual solution within the population for the purpose of
selecting or discarding it along the search process, (3) genera-
tion of a new population by recombination and/or mutation of
solutions in the existing population, followed by the evaluation
of the newly produced solutions (offspring) as per the fitness
metric of the problem; (4) a replacement criterion is adopted and
applied to select which solutions remain in the population and
which ones are discarded due to their worse fitness. Selection, re-
combination, mutation, evaluation and replacement are repeated
until a predefined stop condition is met. A general pseudocode
of the whole optimization process undertaken by bio-inspired
evolutionary algorithms is shown in Algorithm 1. At the end
of this process, the best solution found so far along the search
process is returned, which is declared to be the solution provided
by the algorithm.

In regards to newer search heuristics like the ones exemplified
above, their search process is rather guided by the interactions



Algorithm 1 Pseudocode of a generic evolutionary algorithm.
1: initializePopulation()
2: evaluatePopulation()
3: while not StopCondition() is met do
4: selectParents()
5: recombination()
6: evaluateOffspring()
7: replaceIndividuals()
8: end while
9: returnGlobalBestSolution()

between multiple agents endowed with simple behavioral rules
for interaction and communication with their counterparts. It is
the collective knowledge acquired by a set (swarm) of such agents
where the search power of the overall algorithm resides, as their
performed exploration benefits from the information about the
problem transmitted and conveyed throughout the members of
the swarm. A biological simile often lies underneath this wide
class of solvers, such as the behavioral patterns observed in bird
flocks or fish schools. This gives rise to the concept of Swarm In-
telligence [16], which refers to all search algorithms that conform
to the multi-agent procedure sketched previously.

3. The molecular docking problem

This section is devoted to the molecular docking problem.
It is divided into three different subsections, concentrated on:
(1) solution encoding strategy; (2) the energy scoring function,
which can be classified according to four main categories; (3) the
objectives to be minimized; and (4) the search method used to
find the best ligand–macromolecule interactions (solutions).

3.1. Solution encoding

Molecular docking processes are aimed at finding an opti-
mized conformation between the ligand (L) and the receptor (R)
that results in a minimum binding energy. The interaction be-
tween L and R can be described by an energy function calculated
from three components representing degrees of freedom: (1) the
translation of the ligand molecule, involving the three axis values
(x, y, z) in cartesian coordinate space; (2) the ligand orientation,
modeled as a four variables quaternion including the angle slope
(θ ); and (3) the flexibilities, represented by the free rotation of
torsion (dihedral angles) of the ligand and side chains of the
receptor.

Fig. 1 illustrates the most commonly used strategy for solution
encoding, which consists of a real-value vector of 7+n variables.
In this vector, the first three values correspond to the ligand
translation, the next four values correspond to the ligand and/or
receptor orientation, and the remaining n values are the ligand
torsion dihedral angles. In order to reduce the computational
cost, a grid-based methodology can be carried out by which the
protein active site is embedded in a 3D rectangular grid, and
by taking into account all the protein atoms. In this way, the
protein contribution at any given point is obtained by trilinear
interpolation in the grid cell. As a consequence of this process,
the range of translation variables (x, y, z) is [0 · · · 120], which
bounds effectively the limits of the coordinates of the grid space
previously set for each problem (and in essence, reduces the
size of its search space). Orientation (quaternion) and torsion
variables are measured in radians and encoded in the range of
[−π, π].

3.2. Energy scoring functions for the molecular docking problem

The energy scoring function allows evaluating the solutions
to the problem (ligand–macromolecule interactions), making ap-
proximations that establish a trade-off between accuracy and
speed. In this context, a complete review by Liu et al. [9] cate-
gorizes different energy scoring functions reflecting the current
progression in this field. This categorization is composed by the
following categories: (1) force-field-based energy functions, (2)
empirical or regression-based energy functions, (3) knowledge-
based scoring functions and (4) descriptor-based scoring func-
tions.

Functions that were first developed are included in the cat-
egory of force-field-based energy functions proposed by Mar-
tin Karplus et al. [17,18]. This type of energy scoring function
was proposed to calculate the ligand–macromolecule interactions
through the inclusion of non-covalent terms, like the so-called
Van der Waals interactions, the electrostatic energy and H-bond
terms. Some molecular docking software programs incorporating
this evaluation function are AutoDock [19], DOCK [20], COM-
BINE [21], GoldScore [22], MedusaScore [23] and CHARMM [24].
The following general functional form became more widely
adopted for this type of energy function:

∆G = ∆Evdw + ∆Eelectrostatic + ∆EH−bond + ∆Edesolvatation (1)

The second type of evaluation energy functions is referred
to as empirical scoring function. There are a few of exemplifying
software frameworks equipped with this class of scoring func-
tions, such as ChemScore [25], X-Score [26] and GlideScore [27].
The total score is composed of a sum of scores based on H-
bond interactions, bonds in which metals and lipophilic atom
contacts are involved and a set of penalty scores based on rigid
rotatable bonds, ligand–macromolecule steric clashes, and other
terms based on ligand–macromolecule interactions’ constraints
that could be useful, for example, to limit the search space of
the considered search method (see Section 3.4). An example of
equation that represents this method is as follows:

Stotal = SH−bond + Smetal + Slipophilic + Protatable + Pclashes (2)

A third category of energy functions corresponds to
knowledge-based scoring function, as they are known in the re-
viewed literature. Software packages using these functions in-
clude DrugScore [28] and IT-SCORE [29]. The value of this energy
function builds upon the sum of pairwise statistical potentials
between protein and ligand, e.g.:

A =

lig∑
n

macro∑
m

ωij(r), (3)

where lig and macro refer to the ligand and the macromolecule,
respectively.

A fourth category is based on machine learning based-scoring
functions that use modern Quantitative Structure–Activity Rela-
tionship (QSAR) analysis into the ligand–protein interactions. This
type of energy function extracts and exploits descriptors from the
ligand and macromolecule to improve the solutions of molecular
docking simulations. This is an emerging strand in the area that
can be very promising if combined with other energy scoring
functions and/or search methods, such as meta-heuristics.

3.3. Objectives of the molecular docking problem

The main objective of the molecular docking problem is to find
the best conformation between a ligand (L) and a receptor (R)
in terms of energy and RMSD. This goal can be formulated as a
single- or a multi-objective optimization problem. Therefore, the



Fig. 1. Solution encoding. The first three values (translation) are the coordinates of the center of rotation of the ligand. The next four values correspond to quaternion
and (θ ). The rest of the values hold the torsion angles in degrees.

molecular docking problem can be formally expressed by letting A
and B denote the ligand and protein molecule, respectively. If we
define f : R → R as a scoring function that evaluates solutions
with regards to a given score, and let C be the set of all feasible
molecular docking solutions between A and B, then the molecular
docking problem aims at finding a conformation −→x ∈ C that
satisfies f (−→x ) ≤ f (−→y ) ∀

−→y ∈ C :
−→y ̸=

−→x .
According to the reviewed literature, if molecular docking is

formulated as a single-objective optimization problem, the fitness
function to optimize is usually set to the final binding energy
∆G. However, in the middle of 2000’s, Grosdidier et al. [30]
and Janson et al. [31] proposed new approaches in which multi-
objective optimization was applied to the problem at hand by
simultaneously minimizing several objectives that will be de-
scribed below. These studies were subsequently followed by the
work performed by Liu et al. [32] and Boisson et al. [33]. There
are other remarkable studies published in the last decade that
embraced this design choice, such as [12,34–37]. More recently,
a new approach to the problem was proposed by López-Camacho
et al. [38], where three objectives were first considered within
the formulated molecular docking problem, thereby unleashing
new perspectives over the field of multi-objective optimization
strategies that could potentially improve the accuracy of drug
discovery.

In a general multi-objective problem, it is necessary to de-
fine two spaces: (1) the decision space, that includes the set of
feasible solutions; and (2) the objective space, which involves
the fitness (scoring) values of the objectives to be optimized.
Objectives formulated for molecular docking in the literature can
be enumerated as follows:

• In Grosidier et al. [30], objectives that were minimized cor-
respond to two scores resulting from a SimpleFitness and
a FullFitness. The first objective computes the sum of the
intramolecular energy (Eintra) of R and L, and the intermolec-
ular energy (Einter ) of the complex R-L in Expression (4). The
second objective is a term that corresponds to the solvation
energy ∆G given in Expression (5):

SimpleFitness = ER
intra + EL

intra + Einter , (4)

FullFitness = SimpleFitness + ∆Gelec.solv. (5)

• In Janson et al. [31], Sandoval-Perez et al. [34] and García-
Godoy et al. [36], the objectives used were:

Eintra = EL
intra+

R
intra, (6)

Einter = ER−L
intra+

R−L
intra, (7)

where Eintra refers to the unbound and bound states of the R
and L, and Einter refers to the unbound and bound states of
the complex R-L.

• In Boisson et al. [33], the authors proposed to optimize Einter
as per (7), and a surface criterion based on the hypothe-
sis that the surface of L and R decreases because of the
penetration of L into R.

• Liu et al. [32] elaborated on an approach that optimized the
energy associated to the Van der Waals and torsion bonds,
namely:

EL−R = ∆Sconf + WvdW , (8)

and a term based on the geometry dissimilarity (GD):

GS =

√∑N
i=1 ∥xindiv,i − xinput,i∥2

N
, (9)

where xindiv,i and xinput,i are the positions of the ith heavy
atom in each individual and the input L-R conformer.

• Gu et al. [35]: The authors proposed an approach that mini-
mizes the resulting score from three different scoring energy
functions (see Section 3.2): the force-field-based, empirical-
based and knowledge-based functions (see Eqs. (1), (2), (3)),
which are treated as objectives during the docking optimiza-
tion.

• In López-Camacho et al. [37] and García-Nieto et al. [12]
the molecular docking problem is defined on the basis of
two different metrics to be optimized, Einter and the RMSD
score. This score measures the average distance between the
known ligand position in the receptor and the computed
position of the docking ligand, which takes into account
symmetry, partial symmetry (e.g. symmetry within a ro-
tatable branch) and near-symmetry in a simple heuristic
fashion. This score is given by:

RMSDab = max(RMSD′

ab, RMSD′

ba), (10)



where RMSD′

ab =

√
1
N

∑
i minj r

ij
2 , and the sum is over all N

heavy atoms in structure a, the minimum is over all atoms
in structure a with the same element type as atom i in
structure b.

• In García-Godoy et al. [38], a three-objective molecular
docking problem is first posed and solved, based on the
simultaneous optimization of Einter , Eintra and the RMSD score
defined above. Interestingly, this preliminary work unveiled
the inherent benefits springing from considering a third
objective in the molecular docking problem, thus settling
the intuition in which this manuscript finds its motivation.

3.4. Meta-heuristics for the molecular docking problem

We have reviewed the most relevant works attending the ap-
plied meta-heuristics by considering two main categories: single-
and multi-objective algorithms. This categorization can be very
useful not only for practitioners that are interested in using one
approach or another, but also for developers willing to implement
innovative search methods. Furthermore, these approaches have
been also organized taking into account the standard categoriza-
tion of scoring functions provided by Liu et al. [9].

3.4.1. Single-objective algorithms
The use of molecular docking tools to predict the ligand-

interactions were pioneered in the early 80’s, but it was not until
the 90’s when researchers started to apply meta-heuristics to
optimize single-objective formulations of this problem, mainly
considering the free binding energy ∆G. During this decade, most
published works were based on assessing new search meth-
ods that used different scoring functions, being one of the most
widely used the one defined by Martin Karplus et al. [17,18],
who proposed the use of force fields to compute the interac-
tions between ligands and macromolecules. Some of these func-
tions accommodate some degrees of freedom in the ligands’ and
macromolecules’ bonds, which increases the complexity of the
problem and the computation time required to solve it to a given
accuracy, but yields more realistic molecular docking simulations.

In this context, studies such as [19,22,39–44] gravitated on the
application of GA by minimizing the final binding energy. Previ-
ously, we have also mentioned that some of these early force-field
scoring functions allow to apply flexibility to the ligands’ confor-
mations as the case of the studies performed in [19,22,39,42,43].
For example, the authors in [39] were the first to apply flexibility
to three instances of the molecular docking problem, and the
studies provided by Morris et al. [19] questioned which search
method is more efficient in escaping from a local minimum,
concluding that the Lamarckian Genetic Algorithm (LGA), a GA
with Local Search (LS) obtained the best solutions, followed by
GA and Simulated Annealing (SA), which failed to return better
solutions in terms of energy and RMSDs.

This decade is also characterized by studies based on the use
of the Monte Carlo algorithm. For example, [45] used a force-
field based fitness function and Monte Carlo as search method
in flexible ligands’ instances. In [46], the authors also proposed
a Monte Carlo algorithm to predict 20 molecules’ interactions
where flexibility was assumed.

In [47], a comparative analysis was carried out to assess the
performance of several search methods: GA, Tabu Search (TS),
SA and an Evolutionary Programming (EP) algorithm. The authors
showed that the GA outperforms the rest of algorithms in terms
of energy. Furthermore, the provided discussion suggested that
GA is a very effective local search algorithm, but prone to falling
in low-energy local minimum. TS, on its own, seems to perform
a more global search, which permits to locate a global energy
minimum, but less accurately than GA. The authors noted the

importance of publishing studies about the search methods to
improve future techniques to be applied to molecular docking
simulations.

In the early 2000’s, the use of EAs continued playing a promi-
nent role, and a tendency of performing comparative analysis
emerged at that time. For example, in [48], the authors pro-
posed an EA that used global and local search strategies by
integrating decreasing mutations and self-adaptative mutations.
This approach was applied to a use case based on a flexible
ligand-rigid protein complex. In [49], an EA was designed to min-
imize Einter , evaluating the solutions by means of the CHARMM
tool. The method is applied to three instances of the problem.
Budin et al. [50] applied a method based on an EA by optimizing
the energy of H-bonds of a set of complexes where flexibility was
applied to the ligand (10 rotatable bonds). In [51], a new opti-
mizer was proposed based on GA, Global Underestimator Method
and Pole and applied to a set of 27 rigid instances. Solutions
were evaluated by a force-field-based energy scoring function.
In [28], the authors revolved on a new scoring function, which
is part of the knowledge-based scoring function group, as well
as on the LGA solver provided by AutoDock. Other remarkable
studies include [52,53]. The former uses a multi-population GA
and a force-field energy scoring function to evaluate the solutions
from a set of 11 complexes with flexible ligands. The latter applies
an GA-like method with an empirical energy function for seven
complexes, where flexibility is applied to the ligand. At this
point, we can conclude that these published works have several
features in common: (1) the number of complexes is not enough
to do a comparative analysis, (2) flexibility is only applied to the
ligand’s conformation; and (3) the number of algorithms applied
to perform the comparative analysis is limited.

More recently, there is an uprising trend in the field to use
Swarm Intelligence techniques rather than Evolutionary Compu-
tation approaches to tackle molecular docking based on optimiz-
ing a single objective. For example, Nesamalar and Chandran [13]
introduced a Genetic Clustering combined with Bee Colony Opti-
mization (BCO). The approach, coined as (GCBCO), was tested by
using 10 docking instances from the PDB bind core set. The re-
sults showed that GCBCO outperforms other Swarm Intelligence
algorithms (specifically, PSO and Ant Colony Optimization - ACO)
in terms of energy. The authors in [54] utilized the AutoDock
4.2 energy function to include flexibility in the macromolecule
and ligand. Another novel ingredient of this recent reference
was a new search algorithm hybridizing features of a quantum-
behaved particle swarm optimization (QPSO) and the local search
method of Solis and Wets. A thorough analysis of the algorithm’s
performance was made by comparing the results obtained by
QPSO with those rendered by the LGA optimizer embedded in
AutoDock.

3.4.2. Multi-objective algorithms
The first studies to consider a multi-objective optimization

approach appeared in 2007 [30,31]. In [30], Grosididier et al.
presented EADock, which is a multi-objective formulation based
on an EA and the minimization of two objectives from two differ-
ent fitness functions: the total binding energy and the solvation
energy as per Eqs. (4) and (5), respectively. In [31], a multi-
objective approach based on PSO (namely, ClutMPSO) was shown
to minimize efficiently Einter and Eintra. The ligand–macromolecule
interactions were evaluated with the early energy function of
AutoDock 3.0. Other notable contributions to the multi-objective
formulation of the molecular docking problem are [34,36], where
the same objectives as in [31] are optimized, and [35]. In the first
work, a force-field-based energy function is used to evaluate so-
lutions, and the NSGA-II multi-objective meta-heuristic is used as
the search method. In the second work, 11 instances were tested



by multi-objective solvers assuming flexibility in both the ligand
and macromolecule. Search methods that were used ranged from
NSGA-II to ssNSGA-II, SMPSO, MOEA/D and SMS-EMOA. Interest-
ingly SMPSO, a Swarm Intelligence multi-objective optimization
method that resembles the search mechanisms underlying the
classical PSO solver, was shown to attain outperforming results
in terms of energy and RMSD, when compared with the rest
of algorithms. In the third work, the authors proposed a multi-
objective approach (MoDOCK) that minimizes three fitness scores
from different scoring functions. This approach is compared with
single-objective approaches that used popular scoring functions,
such as: DOCK, Glide, SurFlex, DOCK6 and DOCK6-F. The analysis
indicated that MoDOCK dominated the rest of approaches in
terms of RMSD.

In [37,55], the authors propose a multi-objective approach to
optimize Einter and the RMSD score using the energy function
of AutoDock 4.2 to enable flexibility in the macromolecule and
the ligand. The selected algorithm were NSGA-II, SMPSO, GDE3,
and MOEA/D. In [37], it was again observed that SMPSO showed
the best overall results in terms of energy and RMSD (value
lower than 2 for successful docking results). Finally, in the most
recently study reported in [38] three-objectives were considered
for minimization: Einter , Eintra and RMSD. The solvers utilized
in this late study were SMPSO, MOEA/D and MPSO/D, whereas
the AutoDock 4.2 function was considered to model flexibility
in the macromolecule and the ligands. The obtained results in
this preliminary study laid the foundations for more elaborated
experiments as the one later presented and discussed in this
manuscript.

4. A survey of molecular docking using bio-inspired optimiza-
tion

This section classifies the most relevant articles that deal
with the molecular docking problem using bio-inspired meta-
heuristics, by conforming to the topics developed in the previous
sections. In this way, the literature can be classified depending
on three different taxonomic aspects: the first one deals with the
scoring function used to evaluate the solutions produced by the
different bio-inspired meta-heuristics; the second one reduces to
the particular problem objectives that are under consideration in
each work. The third classification criterion takes into account
which family of bio-inspired meta-heuristic techniques have been
applied to solve molecular docking problem.

The main source of information we have used to find the
papers considered in this survey has been Scopus

R⃝ .1 The search
terms utilized to query this database have been composed by
combinations of ‘‘molecular docking’’, ‘‘protein docking’’, ‘‘genetic
algorithm’’, ‘‘evolutionary algorithm’’, ‘‘swarm intelligence’’. From
all the retrieved results, we have selected the most representative
works for reaching informed insights and conclusions about the
general trends of this literature strand.

As a starting point of our bibliographic analysis, Table 1 or-
ganizes related work according to scoring functions that have
been used along the years. These scoring functions can be divided
into four types as discussed in Section 3.2: force-field-based
energy functions, empirical or regression-based energy functions,
knowledge-based scoring functions and descriptor-based scoring
functions. Works using force-field based energy functions are
more common in the area, being the AutoDock scoring function
the most prominent among them. Some studies resort to their
own formulation of the force-field based function.

The bibliographic taxonomy follows in Table 2, although in
this case the literature comprising multi-objective approaches

1 Scopus: https://www.scopus.com.

is categorized in terms of the selected optimization objectives,
bearing in mind that when one single objective is considered, the
intermolecular energy Einter is always chosen.

Table 3 inspects the use of different bio-inspired meta-
heuristics to solve the molecular docking problem from the 90’s
to the present day. It is remarkable that the use of GA has
been prominent all over the history of the field, arguably by the
particularly good results achieved by this solver when addressing
molecular docking problems. Some approaches using the Monte
Carlo algorithm (MC) were noticed at the dawn of the field, but
this approach has fallen into disuse. PSO techniques have been
used more frequently in recent years, as they were empirically
found to improve existing methods at the time. It is worth noting
that LS approaches have been also hybridized with other common
meta-heuristics, hence tracing a promising research path around
Memetic Computing [104], a paradigm within Bio-inspired Op-
timization that precisely embraces this hybridization as its core
design principle.

5. Experimental study: optimizing three objectives

In the previous section, we have described the historical evo-
lution of the research activity around the use of bio-inspired
meta-heuristics to deal with the molecular docking problem. To
provide readers interested in this subject with empirical evi-
dences of the practical benefits derived from this research area, in
this section we conduct a study where three state-of-the-art bio-
inspired meta-heuristics are used to solve a molecular docking
problem considering three objectives: the inter-molecular en-
ergy Einter , the intra-molecular energy Eintra and the Root Median
Square Deviation (RMSD) score. As commented previously, Einter
relates to the ligand–receptor affinity, Eintra characterizes the
ligand deformity, and the RMSD score measures the difference
of atomic distances between the co-crystallized ligand and the
computed one.

The study involves both, a quantitative analysis of the so-
lutions found by the algorithms (computer scientist perspec-
tive) and a qualitative analysis of some selected results (biolo-
gist perspective). Three multi-objective algorithms were selected
for the experimental part of this study due to their renowned
good performance in other multi-objective problems: SMPSO and
MOEA/D, which have yielded good results when dealing with this
problem in the recent past [36]; and MPSO/D, recently applied
to the same problem optimizing only two objectives (Einter and
RMSD) and using rigid ligand–protein complexes [12]. We next
describe them briefly for the sake of completeness:

• SMPSO is a multi-objective PSO algorithm that incorporates
a velocity restriction mechanism. The approach allows pro-
ducing new effective particle positions in those cases where
the velocity becomes too high. This solver also includes
additional features, such as the use of polynomial muta-
tion as a turbulence factor and an external archive to store
non-dominated solutions found during the search. In [116],
a comparative analysis of SMPSO with five representative
multi-objective solvers was performed in terms of the qual-
ity of the resulting approximation sets and the convergence
speed to the Pareto front. The obtained results showed that
SMPSO returned the best overall results in such terms.

• MOEA/D is a multi-objective EA based on decomposition
[117]. This algorithm divides the multi-objective problem
into a number of scalar optimization subproblems, which
are solved simultaneously by evolving the population. At
each generation, the best solution for each subproblem is
obtained. The neighborhood relations among these subprob-
lems are defined based on the distances between their ag-
gregation coefficient vectors. The optimization of each sub-
problem is based on the information from the subproblems
within its neighborhood.

https://www.scopus.com


Table 1
Classification of the literature in terms of scoring functions.
Year Reference Force field Empirical Knowledge (DrugScore) Descriptor (QSAR)

Other DOCK GOLD AutoDock AMBER GROMOS

1994 Xiao and Williams [56] �
Xiao and Williams [57] �
Knegtel1 et al. [58] �

1995 Oshiro et al. [39] �
Clark and Ajay [59] �
Jones et al. [60] �
Gehlhaar et al. [42] �
Read et al. [46] �
Verkhivker et al. [41] �

1997 Westhead et al. [47] �
Maddalena and Snowdon [61] �
Jones et al. [22] �
Levine et al. [44] �

1998 Vieth et al. [62] �
Morris et al. [19] �

1999 Chen and Chi [63] �
Liu and Wang [45] �

2000 Yang and Kao [48] �
Taylor and Burnett [49] �

2001 Budin et al. [50] �
David et al. [51] �
Pegg et al. [64] �

2002 Hou et al. [65] �
Sotriffer et al. [28] �

2003 McGann et al. [66] �
2004 Lee et al. [67] �

Li et al. [52] �
Yang and Chen [53] �
Magalhães et al. [68] �

2005 Li et al. [69] �
Janson and Merkle [70] �
Li et al. [71] �
Li et al. [72] �
Chang et al. [73] �

2006 Wiley et al. [74] �
Oduguwa et al. [75] �
Chen et al. [76] �

2007 Grosdidier et al. [30] �
Zhao and Sanner [77] �
Kroemer [78] �

2008 Kang et al. [79] �
Sung [80] �
Janson et al. [31] �

2009 Liu et al. [32] �
Thiriot and Monard [81] �
Liu et al. [82] �
Tavares et al. [83] �

2010 Fuhrmann et al. [84] �
Ling et al. [85] �
Atilgan and Hu [86] �
Archetti et al. [87] �
Meier et al. [88] �
Boisson et al. [33] �
Mesmoudi et al. [89] �

2011 Rondón et al. [90] �
2012 Liu et al. [91] �

Lima et al. [92] �
Nesamalar and Chandran [13] �
Koohi-Moghadam and Rahmani [93] �
Liu et al. [94] �

2014 Zhen-yu et al. [95] �
2015 Fu et al. [54] �

Li et al. [96] �
Ravindranath et al. [97] �
Xu et al. [98] �
García-Godoy et al. [36] �
López-Camacho et al. [99] �

2016 López-Camacho et al. [37] �
García-Nieto et al. [55] �
Guan et al. [100] �

2018 Leonhart et al. [101] �
Guan et al. [102] �
García-Nieto et al. [12] �
Lopez-Camacho et al. [38] �
Fu et al. [103] �



Table 2
Classification of the literature in terms of optimization objectives.
Year Reference Eintra Einter ∆elec solv SL−R ∆Sconf EvdW GS RMSD

2007 Grosidier et al. [30] � �
2008 Janson et al. [31] � �
2010 Boisson et al. [33] � �
2013 Sandoval-Perez et al. [34] � �
2015 García-Godoy et al. [36] � �

Liu et al. [9] � � �
Gu et al. [35] N/A N/A N/A N/A N/A N/A N/A N/A

2016 López-Camacho et al. [37] � �
2018 García-Nieto et al. [12] � �

Table 3
Classification of the literature in terms of the utilized meta-heuristics (ABC: Artificial Bee Colony)
Year Reference MC EA TS SA PSO ACO ABC LS

GA DE Other

1994 Xiao and Williams [56] �
Xiao and Williams [57] �
Knegtel1 et al. [58] �

1995 Oshiro et al. [39] �
Clark and Ajay [59] �
Willett [40] �
Jones et al. [60] �
Gehlhaar et al. [42] �
Read et al. [46] �

1996 Clark and Westhead [43] �
Verkhivker et al. [41] �

1997 Westhead et al. [47] � � �
Maddalena and Snowdon [61] �
Jones et al. [22] �
Levine et al. [44] �

1998 Vieth et al. [62] � �
Morris et al. [19] � � �
Szczerbicka et al. [105] �

1999 Chen and Chi [63] � �
Liu and Wang [45] �

2000 Yang and Kao [48] �
Taylor and Burnett [49] �

2001 Budin et al. [50] �
David et al. [51] � �
Pegg et al. [64] �

2002 Hou et al. [65] � � �
Sotriffer et al. [28] � �

2004 Lee et al. [67] � �
Schneidman-Duhovny et al. [106] �
Magalhães et al. [68] �

2005 Li et al. [69] �
Janson and Merkle [70] � � �
Li et al. [71] �
Li et al. [72] �
Chang et al. [73] � �

2006 Wiley et al. [74] � �
Oduguwa et al. [75] �
Chen et al. [76] � �

2007 Grosdidier et al. [30] �
Zhao and Sanner [77] �
Kroemer [78] � � �

2008 Kang et al. [79] �
Sung [80] �
Janson et al. [31] �

2009 Liu et al. [32] �
Thiriot and Monard [81] �
Liu et al. [82] �
Tavares et al. [83] � � �

2010 Fuhrmann et al. [84] �
Ling et al. [85] �
Atilgan and Hu [86] �
Archetti et al. [87] �
Chang et al. [107] �
Meier et al. [88] �
Boisson et al. [33] �
Mesmoudi et al. [89] �

(continued on next page)



Table 3 (continued).
Year Reference MC EA TS SA PSO ACO ABC LS

GA DE Other

2011 Rondón et al. [90] �
2012 Lima et al. [92] �

Nesamalar and Chandran [13] � � �
Liu et al. [94] � � �

2013 Sandoval-Perez et al. [34] �
López-Camacho et al. [108] � � �
Rakshit et al. [109] � � �
Liu et al. [110] �

2014 Magalhaes et al. [111] �
Zhen-yu et al. [95] �

2015 Fu et al. [54] � �
Li et al. [96] �
Ravindranath et al. [97] �
Xu et al. [98] �
García-Godoy et al. [36] � � � �
López-Camacho et al. [99] � � �

2016 López-Camacho et al. [37] � � �
García-Nieto et al. [55] �
Guan et al. [100] �
García-Godoy et al. [112] � � �
Peh and Hong [113] �

2017 Cecilia et al. [114] �
Guan et al. [115] �

2018 Leonhart et al. [101] �
Guan et al. [102] � �
García-Nieto et al. [12] �
Lopez-Camacho et al. [38] � �
Fu et al. [103] �

• MPSO/D is a relatively new multi-objective PSO algorithm
based on decomposition [118]. This algorithm decomposes
the objective problem into a set of sub-regions on the basis
of a set of direction vectors. Each subregion has a solution
that maintains a level of diversity. MPSO/D also exploits the
crowding distance to calculate the fitness of the solutions
for the selection operator, as well as the neighboring par-
ticles (solutions) of a given particle to infer the global best
historical position found by the algorithm.

These three multi-objective algorithms have been
implemented in C++ as part of the jMetalCpp2 project [108],
which is essentially a software framework for single- and multi-
objective optimization meta-heuristics. The energy score eval-
uation has been performed by AutoDock 4.2 [119] which, as
mentioned before, is a widely used tool for virtual drug discovery
involving rigid and flexible docking simulations. The integration
of AutoDock with jMetalCpp3 provides a flexible capacity to
use the majority of the meta-heuristics implemented for the
molecular docking problem. Specifically, jMetalCpp is in charge
of evolving solutions as per the search operators of the meta-
heuristic algorithm under choice, only delegating in AutoDock the
evaluation of a newly produced candidate.

This experimental use case was carried out over an extensive
set of 75 molecular complexes that have been used in many
other studies [119]. Table 4 summarizes this set of instances,
including the PDB codes of these structures and the range of the
crystalographic resolution in Å. Moreover, these complexes are
classified in terms of the type of their ligand: small, medium, and
large size inhibitors, as well as cyclic urea inhibitors. All these
compounds are characterized by a flexibility of the ligand limited
to 10 torsional degrees of freedom. These instances were previ-
ously preprocessed (both the macromolecule and the ligand), and
their potentials were calculated for a three-dimensional square

2 http://jmetalcpp.sourceforge.net/ (accessed on November 15th, 2018).
3 http://khaos.uma.es/autodockjmetal/ (accessed on November 15th, 2018).

(x, y, z) grid of 120 Å per dimension and a grid spacing of 0.375
Å, using the AutoGrid4 software.

Once all the macromolecules and ligands have been prepared,
we executed 30 independent runs for each pair of algorithm and
instance. Table 5 indicates the parameter values of the three algo-
rithms included in the benchmark. Each used a population/swarm
size of 100 individuals (or particles), and were limited to a max-
imum of 1,000,000 fitness evaluations. The rest of parameters
were set with their nominal values.

We used two quality indicators to evaluate the algorithms’
performance: the Hypervolume (IHV ) [120] and the Unary Ad-
ditive Epsilon Indicator (Iϵ+) [121]. IHV gives a measure of both
convergence and diversity, whereas the Iϵ+ takes into account the
convergence degree of the obtained Pareto front approximations.
As molecular docking is a real-world problem, the Pareto front is
not known a priori. Consequently, in order to calculate these two
measures for each instance, a reference front was generated using
all the non-dominated solutions obtained for an instance using all
executions of the three algorithms. For these indicators, we calcu-
lated the median and the Inter-Quartile Range (IQR) as statistical
measures of central tendency and dispersion. Tables 6 and 7 list
such statistics for IHV and Iϵ+, respectively. The cells shaded in
dark gray indicate the algorithm scoring the best median value
for the corresponding indicator, whereas those in light gray refer
to the algorithm achieving the second best median indicator value
for each instance.

In the IHV indicator, the higher the convergence and diversity
degree of a front is, the higher (better) the resulting IHV value
will be. We can observe in Table 6 that MOEA/D obtained the
best median value in 17 instances and the second best value in 18
instances. SMPSO obtained the best and second best median value
in 38 and 17 instances, respectively. Finally, MPSO/D achieved
the best and second best median value 20 and 40 times over
the benchmark. Taking into account the Iϵ+ indicator, the higher
the convergence of a front is, the lower (and better) the value of
Iϵ+ will be. Having this in mind, it can be observed that MOEA/D
obtained 14 best median values and 18 s best median values of
this indicator. SMPSO obtained the better results with 43 and

http://jmetalcpp.sourceforge.net/
http://khaos.uma.es/autodockjmetal/


Table 4
X-ray crystal structure coordinates taken from the PDB database and used in our docking experiments. They consist of 75 molecules 
with accession codes from the PDB database. The range of resolution (Å) of each subgroup is shown in the last column.
Ligand type PDB code Resolution (Å)

Small size 1a9m, 1aaq, 1b6l, 1b6m, 1bdl, 1bdq, 1bdr, 1gnm, 1gnn, 1gno, 1hbv, 1heg, 1hih, 1hpv,
1hsg, 1hte, 1kzk, 1sbg, 1tcx, 1zih, 1zir, 3aid

1.09-2.8

Medium size 1b6j, 1b6k, 1b6p, 1d4k, 1d4l, 1hef, 1hps, 1hxw, 1izh, 1izi, 1jld, 1k6c, 1k6p, 1k6t, 1k6v,
1mtr, 1mui, 2bpv, 2bpx, 4hvp, 4phv, 5hvp

1.75-2.8

Large size 1a94, 1hiv, 1hos, 1htg, 1hvi, 1hvj, 1hvk, 1hvl, 1hvs, 1hwr, 1ody, 1vij, 1vik, 3tlh, 7hvp,
8hvp, 9hvp

1.8-2.8

Cyclic urea 1bv7, 1bv9, 1bwa, 1bwb, 1dmp, 1g35, 1hpo, 1mes, 1meu, 1pro, 1qbr, 1qbt, 1qbu, 7upj 1.8-2.5

Table 5
Parameter setting used for SMPSO, MPSO/D and MOEA/D.
Algorithm Parameter Value

All Swarm size/Population size 100 Particles/Individuals
Maximum number of evaluations 1,000,000

SMPSO [116]

Archive Size 100
C1 , C2 1.5
ω 0.9
Mutation polynomial mutation
Mutation probability 1.66
Mutation distribution index ηm 20
Selection method Rounds

MPSO/D [118] C1 , C2 rand(1.5, 2.0)
ω rand(0.1, 0.5)

MOEA/D [117] µ 0.5
Cr 1.0
Mutation probability pm = 1/(number of decision variables)

13 best and second best median values respectively. MPSO/D
obtained 18 best median values and 44 s best median values.

These observations on the obtained indicator values lead us to
conclude that SMPSO achieves the best results (with a better con-
vergence and diversity than the rest of solvers in the benchmark),
followed by MPSO/D and MOEA/D. In order to assess whether
the differences are statistically significants, we have also applied
the Friedman’s ranking and Holm’s post-hoc multicompare tests.
In this regard, we are able to assess which algorithms are sta-
tistically worse than the control one (i.e. the one ranking the
best) and evaluate the results by applying a p-value of 0.05. Ta-
ble 8 verifies that SMPSO is the best ranked algorithm according
to Friedman’s test for the two indicators, followed by MPSO/D.
Therefore, SMPSO was used as control algorithm in the post-
hoc Holm tests. In terms of IHV , the adjusted p-values show that
SMPSO is statistically better than MPSO/D and MOEA/D, given
that the HolmAp values are lower than 0.05 for both quality
indicators.

Finally, we provide a visual hint of the solutions obtained in
this benchmark in Fig. 2, which represents the intermolecular
interactions between the ligand and the macromolecule. Image
A in this figure shows a macrocyclic peptidomimetic inhibitor
(represented with sticks) bound to the flexible HIV-protease (the
flexible side-chains of the macromolecule are represented with
sticks) (macromolecule). The values of Einter , Eintra and RMSD are
−19.81 kcal/mol, 0.47 kcal/mol and 0.51 Å, respectively. We
have selected this solution because the ligand–macromolecule
interaction is energetically stable and the ligand’s deformity in
terms of energy is less stable. The RMSD score corresponds to
0.51 Å, which is lower than 2 Å. This result elucidates that the
computed ligand’s position is a good prediction compared to the
co-crystallized ligand. Furthermore, this solution can be selected
by those practitioners interested in a lower ligand’s deformity
and a more stable ligand–receptor interaction. Image B shows a
more detailed ligand–macromolecule interaction. The predicted
H-bond is represented with green spheres. This corresponds to a
non-covalent bond between the -NH of the amide bond of ASP29
of the macromolecule’s active site and the atom O2 of the ligand.

In summary, this empirical study illustrates the potential of
considering three objectives in the molecular docking problem, as
well as the suitability of adopting multi-objective meta-heuristics
towards producing a richer portfolio of possible ligand conforma-
tions.

6. Discussion and challenges

A first aspect for discussion in this survey is driven by the
categorization of the energy scoring function in four main families
according to [91]: (1) the force-field-based energy function; (2)
empirical or regression-based energy functions; (3) knowledge-
based energy scoring functions; and (4) machine-learning-based
functions. As a result of our bibliographic analysis, we have ob-
served that the force field-based energy function is the most used
alternative to evaluate ligand–macromolecule binding solutions,
with the one provided by AutoDock prevailing in the literature
as almost a de facto choice. Furthermore, knowledge-based and
descriptor-based functions are notably less utilized in the field.
This can be useful as an overview for computer scientists to
apply meta-heuristics using new evaluation methods such as the
study provided by [87], where the authors applied a new QSAR-
based-energy function and a search method based on Genetic
Programming (GP).

When it comes to the algorithmic design of the search method,
our survey has identified several meta-heuristic solvers being
used in the literature, including the Monte Carlo algorithm, the
family of Evolutionary Computation (GA, DE and others alike),
Tabu Search, Simulated Annealing, Local Search methods, and
Swarm Intelligence methods (PSO, ACO and ABC, among others).
We have observed that Evolutionary Computation has been at
the forefront of meta-heuristics applied to these problems, with
a prominence of GA-based methods. By contrast, Swarm Intelli-
gence (specially, PSO) is being explored with promising results in
recent contributions.

Molecular docking can be also formulated as a single- or multi-
objective optimization problem. According to the state of the art,



Table 6
Median and Inter-Quartile Range (IQR) of IHV .

if molecular docking is approached as a single-objective opti-
mization problem most cases embrace the final binding energy
∆G as the function to be minimized. In the multi-objective case,
however, the reported experiments are more diverse in terms of
the selected objectives, with assorted combinations of Einter , Eintra,
∆electsolv , EL−R, GS, fitness scores provided by three different scor-
ing functions (force-field-based, empirical-based and knowledge-
based) and RMSD. Either way, Einter and Eintra

comprise the combination of conflicting objectives that most
authors have considered so far when modeling molecular docking
as a multi-objective optimization problem.

Moreover, an insightful discussion has been held around the
experiments and results obtained in a molecular docking problem
consisting of three objectives to be minimized: Einter , Eintra and the
RMSD score. To the best of our knowledge, the present contri-
bution corresponds to one of the only few published works that



Table 7
Median and Inter-Quartile Range (IQR) of Iϵ+ .

optimize more than two objectives [9,35]. The performed exper-
imental study includes an extensive comparison of three state-
of-the-art multi-objective meta-heuristic algorithms, from which
we conclude that SMPSO performs best in terms of convergence
and diversity, followed by MPSO/D. We have also provided a bio-
logical analysis based on the intermolecular H-bond interactions
between ligand and macromolecule.

As a result of our experimental survey, we have identified
several open challenges that are timidly considered in the specific
literature or, in most cases, overlooked. An interesting aspect that
has not been sufficiently elaborated to date is the generation of
adapted initialization and recombination/mutation operators – in
essence, how to compute the neighborhood of a given solution
– so as to efficiently tackle molecular docking problems. Taking
into account that common solution encoding strategies resort to



Fig. 2. Image A depicts the ligand’s conformation in the HIV-protease active site. The ligand and the side-chains of the aminoacids are represented with sticks. Image
B shows a more detailed representation of the ligand–macromolecule interactions. H-bonds are represented with green spheres.

Table 8
Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of compared
algorithms for the test set of 75 docking instances. * indicates the control
algorithm.
Hypervolume (IHV ) Epsilon (Iϵ+)

Algorithm FriRank HolmAp Algorithm FriRank HolmAp

*SMPSO 1.75 – *SMPSO 1.68 –
MPSO/D 1.94 2.36e−01 MPSO/D 1.94 1.11e−01
MOEA/D 2.31 1.04e−03 MOEA/D 2.38 3.63e−05

well-delimited sets of variables, i.e. for translation, quaternion
and torsions, with specific ranges of variables, it should be pos-
sible to generate specific search operators that take advantage of
the inter/intra-dependency among such variables. In this sense,
based on the geometrical restrictions observed in rotations they
have not complete degree of freedom. Along with this, ranges of
peptide conformations are limited according to Ramachandran’s
plot [122]. In light of these variable interactions and geometrical
restrictions we envision a research niche focused on designing
ad-hoc search operators that efficiently explore the landscape
of the formulated molecular docking problem, thereby favoring
unprecedented levels of search efficiency.

The review of the selected works has also revealed that, in
general, algorithms are configured by using parameter settings
utilized in similar studies. Furthermore, it is also widely noted
that key parameter values are not explicitly indicated, thus mak-
ing it very difficult to reproduce the reported results. These issues
are often found in interdisciplinary works where experts in the
application domain are not aware of the good practices that
should be followed when comparing optimization algorithms.
Consequently, the application of techniques for automatic param-
eter tuning [123] would help biologists when searching for the
best algorithmic configuration for their practical docking prob-
lems. What is more, instead of configuring a particular tech-
nique according to some application-agnostic criterion (e.g. to
take a popular optimization algorithm), a step further along this
research path is the automatic design of metaheuristics [124]
specifically tailored for molecular docking.

Finally, we have observed that most reported benchmarks
among different bio-inspired metaheuristics do not comply with
recommended practices in terms of methodology and statistical
assessment of the gaps claimed to exist among the considered
solvers. This is particularly concerning, as conclusions derived
from such studies can be severely biased by an unadvertised
lack of fairness in terms of parametric tuning and/or the statis-
tical significance of detected performance differences. To prevent
the community from misleading conclusions in this regard, we
definitely advocate for a wide adoption of the methodological
recommendations for analyzing benchmarks of metaheuristic al-
gorithms [125], as well as the use of advanced Bayesian tests and

graphical tools for ranking and pairwise comparison among such
techniques. Optimization frameworks contributed very recently
to the community move indeed in this direction [126,127].

7. Concluding remarks

Molecular docking can be modeled as a complex optimization
problem based on predicting the interaction between a ligand to a
macromolecule, in terms of energy and RMSD. This modeling ap-
proach has been at the core of research in Bioinformatics, mainly
aimed at discovering new compounds and therapeutic targets
within the pharmaceutical industry. This paper has reviewed the
state of the art related to the intersection between this problem
and bio-inspired meta-heuristics. To this end the molecular dock-
ing problem relies essentially in two different design aspects: (1)
the energy scoring function to be optimized and (2) the search
method designed to efficiently solve the underlying optimization
problem.

As evinced in our work, the extensive literature published in
this topic has hitherto blossomed several problem flavors and
algorithmic variants. This profitable background should suggest
molecular biologists to embrace and apply these techniques to
solve their own in silico molecular docking studies. However,
there is still room for further improvement in what refers to
several research avenues identified in this work. Among them,
we have emphasized on hybrid meta-heuristics blending together
modern bio-inspired solvers and local search methods specialized
to deal with the complex geometry of docking problems. We
foresee that this noted lack of hybrid approaches will mobilize fu-
ture research efforts within the field of Bio-inspired Optimization,
ultimately accelerating the emergence of radically new heuristic
solvers adapted to the complex specificities of this family of
problems. We have also stressed on the need for more principled
comparison studies and statistically informed analysis when com-
paring different solvers for molecular docking problems. Unless
robust comparison methodologies already used in the field of
optimization heuristics are widely adopted by the community,
a halo of doubt will remain over the claimed outperforming
behavior of new, adapted or refurnished search algorithms for
docking problems.
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