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Thermal balance of large scale parabolic trough plants: A case study

A.J. Sánchez∗, A.J. Gallego, J.M. Escaño, E.F. Camacho

Departamento de Ingenieŕıa de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

Abstract

The main control objective in commercial solar parabolic plants is to track the average temperature of all the loops
around a reference set by the operator, by manipulating the flow of a synthetic oil. Due to the large number of loops
existing in current solar plants and the vast extension that they cover, obtaining a precise knowledge of every loops
efficiency becomes a very challenging task. Parameters such as loops reflectivity, tube absorptance, optical efficiency
may exhibit a great disparity due to dirt accumulated and atmospheric conditions. Because of this, the most efficient
loops achieve higher temperatures and the collectors may have to be set out of focus in many cases.

This paper presents a case study on a simulation model of a large scale parabolic plant, 50 MW, in which a control
of the aperture of the solar field loops inlet valves is applied through a nonlinear optimization problem. The goal is to
reduce the imbalance of loops temperature caused by the difference in efficiencies. The idea is opening the input valves
of the most efficient loops to increase the incoming flow-rate and reducing the flow in the less efficient loops. This will
prevent, in many cases, the activation of the defocus control avoiding energy losses and minimizing the deterioration of
actuators.

The optimization problem will need estimations of the loops states and parameters. An Unscented Kalman Filter
is used to estimate the loops temperatures states and a concentrated parameter model is used to estimate the loops
efficiencies. A loop clustering is implemented to avoid high computation times. Simulation results showing thermal
balance of the field minimizing the defocusing actions are presented.

Keywords: Solar Energy, Thermal balance, Optimization, Clustering, Defocus control

1. Introduction

Development and research in renewable sources of en-
ergy are being encouraged by the need to reduce the amount
of CO2 emissions provoked by conventional electricity gen-
eration (fossil fuels) (Romero and González-Aguilar, 2014;
Blanco and Santigosa, 2017). At present, among the re-
newable energies that are being more exploited we can
highlight solar, wind and hydraulic.

This paper focuses in Concentrating Solar Power (CSP)
plants with Parabolic Trough Collectors (PTC). Solar ther-
mal technology has now passed its development phase and
is now in operation (almost 100 commercial plants in 2017
(Pitz-Paal, R., 2018)). As a proof of this, we can mention
the following solar power plants that have been operating
in the recent years: Helios I (50 MW) (Helios I, 2019),
Majadas I (50 MW) (Majadas I, 2019) and Mojave I/II
(140 MW each) (Mojave Solar Project, 2019).

It is important to emphasize that one of the most rel-
evant characteristics of this type of solar plants is the ca-
pacity to store energy (Liu et al., 2016; Alva et al., 2017;
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Pelay et al., 2017; Sarbu and Sebarchievici, 2018), to be
used later, e.g., when the sun has set. The storage of ther-
mal energy can be done, generally, using steam (Prieto
et al., 2018) or molten salt tanks (Roca et al., 2016; Peiró
et al., 2018), being molten salts the best option when stor-
age capacity is increased (González-Roubaud et al., 2017).

Generally, the objective to pursue in PTC CSPs is to
keep temperature at the outlet of the solar field around a
reference value or set-point by using the flow-rate of the
fluid as a control signal. Part of the research related to
this field has been carried out in the ACUREX solar field
sited in Almeŕıa (Spain), both in simulation models and
in real tests in the ACUREX facilities. The objectives
that have been pursued in research related to the control
of solar plants focus on temperature tracking, robustness
and plant optimization, to name just a few. In Andrade
et al. (2013), a practical Nonlinear Model Predictive Con-
trol is developed for outlet temperature reference tracking.
Robustness and stability are included by adding, to the
cost function and in the controller constraints, a Lyapunov
function. An optimal operation in solar plants study is
presented in Camacho and Gallego (2013). Authors pro-
posed a three layer algorithm to increase the performance
by calculating the optimal solar field outlet temperature.
Lima et al. (2016) proposed a temperature control of a
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solar field by using a Filtered Dynamic Matrix Control in
which the filter is used in the prediction error allowing the
modification of the robustness and disturbance rejection
properties of the original Dynamic Matrix Control algo-
rithm. He et al. (2016) presented a model to determine
the optimal day ahead offering strategy for CSP plants
with TES, by solving an optimization problem which max-
imizes the expected total profit, in power markets. A
Gain Scheduling Model Predictive Control (GS-GPC) is
presented in Gallego et al. (2018) for field outlet tempera-
ture tracking of the new infrastructures for solar research
(TCP-100) sited at Plataforma Solar de Almeŕıa (PSA-
CIEMAT). In Sánchez et al. (2018b) preliminary results
of a model based optimization for performance improve-
ment of a solar trough plant, by means of field temperature
homogenization, are presented. The strategy was applied
to the ACUREX solar field showing power benefits when
high outlet field temperatures are required. A new term
penalizing the generation variation (cycling) is presented
in Cojocaru et al. (2019), which is used for a scheduling
strategy for CSPs. Authors showed that a a reduction in
the generation cycling can extend the lifetime of the power
block without reducing profits.

The ACUREX solar field consisted of 10 loops of 172
meters of length. Small solar fields such us the ACUREX
field can be simplified to one equivalent collector loop.
Considering that all the solar field is affected by similar
levels of solar radiation and with loops having similar pa-
rameters is reasonable in small plants but not in large solar
fields (Gallego and Camacho, 2012).

In large scale solar plants such as Helios I (90 loops, 110
hectares) or Solana (808 loops, 800 hectares), this type of
global controllers may cause energy losses or unnecessary
overreaction due to the temperature discrepancy between
the different loops. This effect occurs not only due to the
difference between the loops but also due to clouds. Con-
trolling the average temperature of all loops presents a
drawback: if the solar field has not a good thermal bal-
ance, namely, all the loops have similar optical efficiencies
and flow-rate levels, some loops may reach much higher
temperatures than the others. Furthermore, the optical
efficiency of the loops can become very different due to
reflectivity, collector shape, receiver tube efficiency, struc-
tural state of the collectors/loops and environmental fac-
tors. These imbalances in the optical efficiency may lead
to the most efficiency loops to be defocused to avoid over-
heating problems (Sánchez et al., 2018b).

When a solar plant reaches a saturation point (maxi-
mum flow-rate and electric power production), it is easy
to find situations in which part of the field is much warmer
than others due to what has been previously mentioned.
Some parts of the field will have to be defocused since the
received solar radiation may be too high and the field tem-
perature cannot be reduced by increasing the flow. Due to
the aforementioned, the controller regulating the average
solar field temperature by manipulating the main pumps
flow, cannot cope with all the problems described above

and new control strategies have to be developed.
In commercial solar trough plants, the inlet valves are

usually used to achieve a hydraulic or static thermal bal-
ance. This is normally done on rare occasions. This can
be done by increasing the aperture of the hottest loops
input valves (increasing the flow levels) and reducing the
aperture of the coldest loops input valves (decreasing the
flow levels). In this paper a nonlinear optimization prob-
lem throughout the plant daily operation is presented to
control the apertures of the valves, which dictates the flow
to each loop, to obtain a thermal balance of the solar field.
The goal is to reduce the discrepancy in the loops outlet
temperature. A thermal balance of the field will avoid un-
necessary defocusing actions. The optimization problem
is based on a distributed parameters model (DPM) and
therefore an estimation of the loops internal temperatures
is needed. This is done using an Unscented Kalman Fil-
ter (UKF). The optical efficiencies are estimated using a
concentrated parameter model. An analysis of the com-
putation times depending of the number of the loops is
shown. A clustering algorithm is applied in order to group
loops with similar parameters to reduce the number of de-
cision variables in the optimization problem. To simulate
and validate the proposed strategy a 50 MW nonlinear
plant model is used.

The main advantages of the proposed optimization prob-
lem to control the inlet valves are:

1. Achieving a thermal balance of the field.

2. Reducing energy losses. Due to thermal balance de-
focusing actions will be reduced in many cases avoid-
ing possible energy losses.

3. Reducing the deterioration of the actuators and struc-
tures by reducing the control actions.

This paper is organized as follows: The 50 MW PTC
CSP dynamic model is briefly described in section 2. The
applied flow controller and defocus controller, GS-GPCs,
are described in section 3 and section 4. Section 5 de-
scribes the problematic of large scale plants through a sim-
ulation example. In section 6 the nonlinear optimization,
observers and clustering are described. Results from sim-
ulations in different scenarios are presented in section 7.
Finally, in section 8, some concluding remarks are given.

2. Parabolic trough field model

This section describes the 50 MW plant used, (Sánchez
et al., 2018a, 2019).

A nonlinear 50 MW plant model is used for controller
design and simulation purposes. To design the simula-
tion nonlinear plant model and the observers, two types
of mathematical models are used: a DPM is used for sim-
ulation purposes and a lumped parameter model. These
models are used for simulation, controller design, estima-
tion, and optimization.
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Nomenclature

A Cross-sectional area of the pipe (m2) q(t) Loop oil flow rate (m3/s)

C(t, T ) Specific heat capacity (J/(kg◦C)) qff
Computed flow-rate by the

Feed Forward (m3/s)

Cloop Loop heat capacity (J/◦C) Re Reynolds number

D Hydraulic diameter of the pipe (m) S Total reflective surface

G Collector aperture (m) t Time (s)

Hl(t, T )
Thermal loss global coefficient

(W/(m2C))
T (x, t) Temperature (◦C)

Ht(t, T, q)
Metal-fluid heat transmission coefficient

(W/(m2C))
Ta(t) Ambient temperature (◦C)

I(t) Direct solar radiation (W/m2) Tin Inlet temperature (◦C)

k(t, T ) Thermal conductivity (W/(m◦C)) Tout Outlet temperature (◦C)

Kopt Optical efficiency (Unitless) Tmean
Mean temperature between inlet and

outlet temperature (◦C)

L Length of pipeline (m) Tset−point Temperature reference for tracking (◦C)

no(t) Geometric efficiency (Unitless) Tref−C4
Temperature set-point applied

to the 4thcollector (◦C)

Nu Nusselt number x Space (m)

P Power (MW) ∆T Thermal difference (◦C)

Pcp
Fixed factor (loop geometrical and thermal

properties ) (J/m3C)
µ(t, T )

Dynamic viscosity of the fluid

(Pa · s = N · s/m2 = kg/(m · s))
phi Fixed factor (Unitless) ν(t, T ) Kinematic viscosity (m2/s)

Pr Prandtl number ρ(t, T ) Density (kg/m3)

Q(t) Solar field oil flow rate (m3/h, kg/s)

2.1. Parabolic trough field

A 50 MW solar field extends throughout 110 hectares,
approximately. Each loop has, typically, 4 150 m collec-
tors (total of 600 m approximately) (Guzmán, 2019; He-
lioenergy II, 2019; Solaben 2, 2019) with an approximate
number of loops in the solar field of 90 (Guzmán, 2019;
Helios I, 2019; Helioenergy II, 2019; Risca, 2019; Solnova
1, 2019). The plant model for this work is composed of 90
loops. Commercial plants have, generally, a north-south
orientation for efficiency reasons.

Table 1
EuroTrough ET150 parameters.

Description Value Unit

Focal length 1.71 m

Aperture width 5.77 m

Aperture area 817.5 m2

Number of Modules per Drive 12 Unitless

Length per Solar Collector Assembly (SCA) 148.5 m

SCAs per loop 4 Unitless

Heat Collection Element (HCE) Type Evacuated tube Unitless

A solar parabolic trough plant can be described in
terms of, collector (parameters, length and number collec-
tors per loop), number of loops, receiver tube, heat transfer
fluid characteristics and power cycle.

For the 50 MW simulation plant the following elements
have been selected:

1. Loop collector: EuroTrough ET150. Collector max-
imum reflectivity and parabolic shape index are as-
sumed to be 0.91-0.92 and 0.96 respectively. In Table
1 the main parameters of the EuroTrough ET150 col-
lector are shown (Geyer et al., 2002; Kearney, 2007;
System Advisor Model (SAM). NREL, 2018).

2. Receiver tube: Schott PTR70. This receiver has
been commonly used in commercial solar plants (An-
dasol 1, 2019; Extresol-1, 2019; Ibersol Ciudad Real,
2019). This receiver tube has a length of 4060 mm at
20 ◦C ambient temperature with a borosilicate glass
envelope with an outer diameter of 125 mm. The
metal pipe has an inner diameter of 66 mm, an outer
diameter of 70 mm and are made of steel-type DIN
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1.4541 or similar (Burkholder et al., 2007; SCHOTT
Solar CSP GmbH, 2019). Maximum tube efficiency
is assumed to be 0.91.

3. Therminol VP1 as HTF. The operating range of
this synthetic oil is 12-400 ◦C (Therminol VP1 HTF,
2019). Therminol VP1 degrades above 400 ◦C. HTF
parameters approximation, such as fluid density (ρf )
and specific heat capacity (Cf ), are temperature de-
pendent and can be obtained through equations (1)
and (2). The reader should refer to the manufac-
turer, Therminol VP1 HTF (2019), for more param-
eters approximations.

ρf = −0.90797 · T + 0.00078116 · T 2 − 2.367× 10−6 · T 3

+1083.25
(1)

Cf = 4.5904× 10−8 · T 4 − 3.1536× 10−5 · T 3 + 0.006498 · T 2

+2.3458 · T + 1500.8

(2)

Nominal operation in this plants is typically reached
when the inlet/outlet temperatures of the field are 293
and 393 ◦C approximately, with a thermal difference in
the steam phase of 90-100 ◦C. Rankine cycle has been as-
sumed to be 0.381 (Andasol 1, 2019; Extresol-1, 2019)) in
nominal operation. Assuming the plant is in perfect condi-
tions the only losses in the steam phase will be produce by
the parasitics effects. A typical value for this efficiency is
0.9 (System Advisor Model (SAM). NREL, 2018). Taking
these parameters into account, under nominal operation,
the maximum HTF flow used in the 50 MW simulation
model is 3000 m3/h approximately, equation 3, (Sánchez
et al., 2018a, 2019).

Q =
P · 106

∆T · Cf · µrankine · µparasitic
(3)

2.2. Distributed parameter model

The distributed solar field dynamics can be described
by a partial differential equations (PDE) system shown in
equation 4. The system energy balance is described in this
set of PDEs (Carmona, 1985; Camacho et al., 1997):

ρmCmAm
∂Tm

∂t
= IKoptnoG−HlG(Tm − Ta)− LHt(Tm − Tf )

(4a)

ρfCfAf
∂Tf

∂t
+ ρfCfq

∂Tf

∂x
= LHt(Tm − Tf ) (4b)

Subindexes f and m are used referring to the fluid and
metal. Geometric efficiency depends on declination, day
of the year, local latitude, collector parameters, solar hour
and hourly angle. Coefficients and parameters Hl, specific
heat C and density ρ depends on the temperature of the
fluid. Coefficient Ht depends on fluid temperature and

HTF flow-rate (Camacho et al., 1997). An approximation
for Hl can be obtained from Burkholder et al. (2007),
Lüpfert et al. (2008). To obtain Ht value, equations (5)
are used, where the dependency of the flow-rate can be
observed (Sánchez et al., 2018a, 2019).

To discretize the system, the receiver tube longitudinal
dimension is used, obtaining a set of sub-systems. In this
way, the model is simulated, to obtain the dynamics of
the loops, by using a chain of sub-models. Each loop has
been divided into 300 segments (2 m each) to provide a
good simulation performance of the temperature evolution
(Sánchez et al., 2018a, 2019).

Re = Q ·D/(ν ·A) (5a)

Pr = Cf · µ/k (5b)

Nu = 0.025 · (Re0.79) · (Pr0.42) · phi (5c)

Ht = Nu · k/D (5d)

2.3. Concentrated parameter model

The concentrated parameter model (CPM) is a simpli-
fication of the spatially distributed solar field. This sim-
plification provides an overall description of the solar field
in terms of the fluid internal energy variation by equation
6. This model is used to obtain a reflectivity estimation
and to design the Feed Forward control action (Sánchez
et al., 2018a).

Cloop
dTout
dt

= KoptnoSI − qPcp(Tout − Tin)

−HlS(Tmean − Ta)
(6)

where Pcp is approximated by 1.868× 106 J/m3C, Cloop

is approximated by 3.287× 106 J/◦C and S is equal to
3427 m2 .

3. Flow-Rate MPC control scheme

This section describes the flow-rate MPC control strat-
egy used for field outlet temperature tracking. A GS-GPC
is used to control the HTF flow-rate, (Sánchez et al., 2018a,
2019). This control strategy is based on global dynamic
linear models of the solar field. GS-GPC controller has
already shown to have a good performance in temperature
tracking and disturbance rejection.

3.1. Generalized Predictive Control

The GPC algorithm is based on the following single-
input single-output model (Camacho and Bordons, 2007):

A(z−1)yk = z−dB(z−1)uk−1 +
C(z−1)

∆
ek (7)

where uk and yk are the control and output sequences
of the plant, ek is a zero mean white noise term and ∆ is
the integrator operator. A,B and C are polynomials in
the backward shift operator z−1:
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A(z−1) = 1 + a1z
−1 + ...+ anaz

−na

B(z−1) = b0 + b1z
−1 + ...+ bnbz

−nb

C(z−1) = 1 + c1z
−1 + ...+ cncz

−nc

where d is the dead time of the system and ∆ is the op-
erator 1−z−1. This model is known as a Controller Auto-
Regressive Integrated Moving-Average (CARIMA) model.
Consider a multistage cost function of the form:

J(N1, N2, Nu) =

N2∑
j=N1

δ(j)[ŷ(k + j|k)− w(k + j)]2

+

Nu∑
j=1

λ(j)[∆u(k + j − 1)]2

(8)

where ŷ(k + j|k) is an optimum j step ahead predic-
tion of the system output, N1 and N2 are the minimum
and maximum costing horizons, Nu is the control hori-
zon, δ(j) and λ(j) are weighting sequences and w(k + j)
is the future reference trajectory. The aim of GPC is to
minimise J(N1, N2, Nu) in order to compute a future se-
quence of control actions u(k), u(k + 1), ... that drives the
future plant output y(k + j) close towards w(k + j).

Hence given a CARIMA plant model and suitable cost
function, the minimum of the cost function can be ob-
tained by setting the gradient of J equal to zero and solving
the control sequence ∆u by the following equation (Cama-
cho and Bordons, 2007):

∆u = (GGT + λI)−1GT (w− f) (9)

where matrix G contains the step response coefficients
of the forced response model (Camacho et al., 2012), I is
the eye matrix, f is the free response of the plant, w is
the future reference trajectory vector and λ is the control
weighting vector (Camacho and Bordons, 2007).

3.2. Gain scheduling and Feedforward control

The design of a GS-GPC is described in Camacho
et al. (1994, 1997), Camacho and Bordons (2007). The
GS-GPC strategy is used in conjunction with a series FF
controller due to its effectiveness at rejecting measurable
disturbances (Camacho et al., 1997) and contribution in
preserving the validity of the linear description assumption
of the plant throughout the operation flow range.

HTF flow-rate is the main variable dictating the plant
dynamics. To cover the operation range, the GS-GPC is
based on linear models that have been identified at four
different flow-rates operating points (1494, 1908, 2322 and
2736 m3/h), see Fig. 1, (Sánchez et al., 2018a, 2019).
These linear models describe the global dynamics of the
plant.

The FF is computed using equation (10) which is ob-
tained from the CPM description (Camacho et al., 1992),
equation (6). The output of the FF is the fluid flow, qff .

qff =
KoptnoSI −HlS(Tmean − Ta)

Pcp(Tref − Tin)
(10)
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1908 m3/h

2322 m3/h

2736 m3/h

Figure 1 Step response of the solar field linear models.

The control scheme, see Fig. 2, works as follows: The
GS-GPC receives the temperature set-point for the solar
field and the current mean temperature and computes a
virtual reference temperature, Tref , for the FF. The FF
computes the HTF flow-rate taking into account the mea-
surable disturbances, the virtual reference and the mean
temperature of the equivalent loop to track the temper-
ature set-point at steady state.. Since the GS-GPC +
FF scheme is considering a global model by one loop, the
calculated flow-rate is for one loop. If the models where
completely perfect, the virtual reference computed by the
GS-GPC would be the same as the desired set-point for
the outlet temperature of the field. The GS-GPC + FF
scheme is presented in Fig. 2 where Qff represents the
global flow-rate (equal to qff · N , where N = 90 loops)
for the complete field and Q is the measured flow-rate
(Sánchez et al., 2018a, 2019).

Solar Field
GS-GPC

Tin, Ta, Ieff

Tout Tref Qff

Tset−point

Tout
FF

.

Flow

Q

Figure 2 GS-GPC + FeedForward control scheme.

4. Collector defocus MPC

Commercial CSPs are, generally, oversized to produce
a certain amount of energy throughout the year. This
means that at certain periods of the year, such as in sum-
mer, the amount of energy that reaches the solar field is
too much to be processed by the plant. This causes the
field to overheat since it is not possible to increment the
flow-rate as much as it should be needed. To prevent over-
heating and therefore the degradation of the HTF (around
400 ◦C), commercial plants have a safety mechanism based
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on defocusing the collectors (sun-tracking angle modifica-
tion). When a collector is taken out of focus, it receives
less energy and therefore the HTF will not get overheated.
This mechanism is generally applied to the fourth collector
in a heuristic manner based on outlet temperature thresh-
olds. However, using a threshold based control may cause
undesired oscillations in the field temperature.

In normal operation, the fourth collector defocus con-
trol is enough to prevent the oil temperature from exceed-
ing the manufacturer recommended safety limits. How-
ever, in cases of power limitation, it may be necessary to
include the defocus in other collectors. In a previous work,
(Sánchez et al., 2018a), a GS-GPC controller was designed
for the third and fourth collector defocus, showing good
temperature reference tracking results. This controller was
based on a defocus curve with a very non-linear behavior,
see Fig. 3, (Goswami et al., 2000). As can be seen in Fig.
3, the curve has a greater slope around 2-3 defocus degrees
while it is much smoother in the 0-1 and 4-5 defocus de-
grees areas. In the zone of 3-5 defocus degrees, it can be
observed that the efficiency quickly approaches zero, which
implies very little control authority. Since the function is
non-linear, the gain-scheduling is designed at 9 different
points of defocus angle (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5
degrees). From a certain defocus angle, efficiency begins
to decrease rapidly, since rays no longer reach the tube.
Moreover, the plant responds differently depending on the
flow-rate, so defocus linear models will not be the same
for all flow-rates. To improve the performance of collector
defocus GS-GPC, 9 linear models are obtained for each
of the flow-rate points where Flow GS-GPC has been de-
signed (1494, 1908, 2322 and 2736 m3/h). In this way the
linear models for the defocus GS-GPC control will cover
the operation range. The linear models to implement the
defocus GS-GPC are presented in Sánchez et al. (2018a).
In this work, this defocus GS-GPC controller is used with
a high and fixed temperature set-point (396 ◦C). A com-
plete explanation of the defocus GS-GPC control design
can be found in (Sánchez et al., 2018a).
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Figure 3 Collector efficiency-defocus angle curve.

5. Large scale parabolic trough plant problematic

Commercial solar plants occupy large areas to house
the solar field formed by the collectors, piping system and
the steam generator. As an example, Solaben 50 MW
plants occupy 110 hectares with a solar field of 90 loops
and 360 collectors (Helioenergy II, 2019, Solaben 2, 2019)).
Given this amount of loops (and collectors), the optical ef-
ficiency may not be the same in the whole field. Due to
this difference in the efficiencies, a certain number of loops
will be at a lower temperature due to lower efficiency while
another amount of loops will be at a higher temperature
at their outlet. However, the temperature tracking control
is applied at the outlet temperature of the solar field since
this temperature will eventually be the oil temperature at
the inlet of the steam generator. Given the dimensions
of these plants, approximating the solar field by an av-
erage loop may not be efficient. This issue is even more
important in bigger plants such as Solana (280 MW, 800
hectares) (Helioenergy II, 2019, Solana Generating Sta-
tion, 2019). Optical efficiency depends, among others, on
the following:

1. Reflectivity, related to the cleanliness of the reflect-
ing surfaces.

2. Efficiency of the tube related to the cleaning status
and the structural state of the receiver tube.

3. Condensation, related to atmospheric conditions.

4. Shape factor, related to the structural state of the
collector/loop.

5. State of flexible hoses, related to the structural state
of the collector/loop.

In periods of the year in which the plant works at sat-
uration (maximum flow-rate and electric power produc-
tion), it is easy to find situations in which part of the field
is much warmer than others due to what has been pre-
viously mentioned. Generally, this can occur in part of
spring and autumn as well as throughout the summer. In
these cases, even if the plant continues to produce maxi-
mum electric power, a part of the field will be defocused
since the received solar energy may be too high for the
steam generator and turbine. As mentioned, the defocus
algorithm is a type of security control, not a specific control
to regulate the outlet temperature. The defocus algorithm
usually implements a series of thresholds modulating the
defocusing angles depending of the current outlet tempera-
ture. This type of control produces high oscillations. That
is why whenever possible, its use should be minimized.

A simulation showing this effect is presented in Figs. 4
and 5. Table 2 shows the reflectivity ranges of the loops.
In Fig. 4 the temperatures and defocus angles of each of
the 90 loops are shown. The disparity in the outlet tem-
peratures of the loops is observed due to the different effi-
ciencies. This will cause the loops with higher efficiency to
be defocused in order to maintain safe loop temperatures.

Fig. 5 shows how the global flow-rate controller (GS-
GPC) is trying to control the field outlet temperature.
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Figure 4 Loops temperatures (left) and defocus angles (right) when there is no valve control under stable radiation.

Table 2
Reflectivity ranges and Loops

Reflectivity Range Loops Number

0.74-0.75 4

0.75-0.77 6 7 8 18

0.77-0.79 3 11 15

0.79-0.81 2 5 9 10 13 19 20 23

0.81-0.83 1 12 14 16 22 24 28

0.83-0.85 17 21 25 26 27 30 31 32 34 35 38 43 44

0.85-0.87 33 36 37 42 45 50 52 68 72

0.87-0.89 39 40 41 46 48 49 55 58 60 62 63 79 81 89

0.89-0.90 29 51 57 59 70 73 78 80 82 84

0.90-0.91 53 56 64 65 66 67 74 76 77 88

0.91-0.92 47 54 61 69 71 75 83 85 86 87 90
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Figure 5 Field outlet temperature (top) and field flow-rate/irradiance
(bottom) (No valve control applied)

Achieving a good tracking of the set-point temperature
(391 ◦C) until 11 am. At this time, the controller is ap-
plying the maximum available flow-rate to the plant and

has lost its control authority. It is when the defocus con-
trol will begin to carry out its safety correcting actions to
prevent the hottest loops from exceeding oil degradation
temperatures.

Although this situation is not critically dangerous, it
is possible to avoid it to a greater extent by improving the
thermal balance. The thermal balance using the proposed
strategy in this paper will increment the flow-rate and cool
down the hottest loops to avoid unnecesary defocus actions
and a decrease the HTF flow of the coldest loops to warm
them up.

6. Optimization for field thermal balance

The objective of the non-linear optimization is to ob-
tain the values of the apertures of the valves of the loops,
which make the field as homogeneous as possible with re-
spect to the outlet temperature of the loops. Subsections
6.1 and 6.2 describes briefly the UKF used to estimate the
non-measurables states of the loops and the lumped pa-
rameter model used to estimate the loops efficiencies. The
valve control and the computation times analysis are pre-
sented in 6.3. Finally, in subsection 6.4 the loops clustering
is proposed to reduce the number of control variables.

6.1. Nonlinear state estimator: the unscented Kalman fil-
ter

The Unscented Kalman Filter (UKF) has been pro-
posed in the literature as a way to reduce the errors in-
troduced by the linearization performed by the Extended
Kalman Filter (EKF) (Simon, 2006).

Lets assume the following set of nonlinear systems:

xk+1 = G(xk, uk, nk) (11a)

yk = F (xk, vk) (11b)

where xk is the non-observable state space vector, yk
is the measured observation and uk is the input to the
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system. Functions G and F are nonlinear functions and
are assumed to be known. nk and vk are the process noise
and the observation noise.

The UKF does not approximate the nonlinear functions
G and F , as the EKF does, but approximates the proba-
bility density function by a Gaussian. This is represented
deterministically by samples (known as σ−points or sigma
points), chosen appropriately, which capture the covari-
ance and mean of the Gaussian probability density func-
tion. The UKF uses the unscented transformation (UT)
(Romanenko and Castro, 2004; St-Pierre and Gringras,
2004) to capture the covariance and mean of the system.
The UT is a method to calculate the statistics of a ran-
dom variable which undergoes a non-linear transformation
Haykin (2001). Subsequently, the σ − points are propa-
gated through the nonlinear functions G and F . Various
variations and improvements have been proposed since the
original UKF was proposed, e.g, an improvement on the
unscented transformation was presented in Wang et al.
(2017). In this work, authors proposed the incorporation
of random parameters into the state vector in order to get
a higher number of sigma points.

For this work, the UKF is used to estimate the inter-
nal temperatures of the loops. That is, the temperatures
of the fluid and metal of the segments in which the loops
are divided. The UKF has already been used to obtain
estimations of the effective solar irradiance and loops in-
ternal temperatures of a solar plant showing good results
(Gallego and Camacho, 2012; Sánchez et al., 2019). Since
the UKF works with a nonlinear model, the model de-
scribed by the equations (4) is used but with a simpli-
fication. Instead of 300 segments, as in the simulation
model, 80 segments will be used. In this way the complex-
ity of the estimator can be reduced since a large number
of tube segments implies a large number of parameters in
the covariance matrices needed to be adjusted (Gallego
and Camacho, 2012). Since the nonlinear model also uses
the optical efficiency parameter, to obtain better results
in the estimation of the internal temperatures of the loop,
an estimation of the reflectivity of the loops is obtained.
The following subsection describes the estimation of the
reflectivity.

6.2. CPM collector efficiency estimation

As commented, not all loops have the same optical ef-
ficiency due to multiple causes such as dust, wind etc. An
estimation of this parameter is needed not only by the
nonlinear optimization algorithm but by the UKF for es-
timating the non-measurable states. The overall optical
efficiency can be obtained using the concentrated param-
eter model equation (12) as follows:

Kopt =
Cloop

dTout

dt + qPcp(Tout − Tin) +HlS(Tmean − Ta)

noSI
(12)

The variation of the reflectivity along the day is slow
which means a quasi-static characteristic. Due to the na-
ture of the concentrated parameter model, the obtained
result is filtered to smooth possible abrupt changes in the
reflectivity estimation. The estimation of the optical effi-
ciency is obtained using the concentrated parameters model
in periods in which the plant is in steady state conditions.
It is done continuously to be able to capture small (or high)
variations in the collector’s efficiency due to environmental
conditions along the day. The applied filter is a first order
filter with a τ = 300 s to avoid sudden changes that could
appear in the measured variables.

6.3. Inlet valves control

The objective of the non-linear optimization is to ob-
tain the values of the manipulated variables, apertures of
the loops inlet valves, which make the field as homoge-
neous as possible with respect to the outlet temperature
of the loops. Improving the thermal balance of the solar
field avoids thermal energy losses produced by defocus ac-
tions. The general formulation of the nonlinear problem is
presented in equation (13).

minJ =

NLoop∑
n=1

( N2∑
j=N1

δ(j)[ŷn(t+ j|t)− w(t+ j)]2

+

Nu∑
j=1

λ(j)[∆un(t+ j − 1)]2
)

s.t :

Umin < U(t+ j) < Umax

∆umin < ∆u(t+ j) < ∆umax

x = g(x, U), y = f(x)

(13)

where ŷn(t + j|t) is an optimum j step ahead predic-
tion of the system output, NLoop is the number of loops,
Nu is the control horizon, δ(j) and λ(j) are weighting se-
quences and w(t+j) is the future reference trajectory (set-
point). Regarding the constraints, Umin and Umax are the
minimum and maximum control signals while ∆umin and
∆umax are the minimum and maximum control signals
increments.

In the case addressed in this strategy, the main objec-
tive is not to track a given reference because this is per-
formed by the main flow controller. The aim is minimizing
the difference among the outlet temperatures of the loops
in steady state. By minimizing those distances, the outlet
temperatures of all loops become closer and the thermal
disparity is minimized.

The resolution of the problem involves the simulation of
the evolution of the field temperature, that is, the temper-
ature of the loops along the prediction horizon. For this,
the DPM is used. As mentioned above, in the section 6.1,
a model divided into 80 pieces has been used. The valves
values do not change throughout the prediction horizon,
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because the goal is to compute only one control action
for each valve to achieve a thermal balance of the field in
steady state. The reason to do this is that possible cou-
pling between the valve and flow controllers is not desirable
and may cause an oscillatory behavior. The intermediate
evolution of the outlet temperature is not penalized in the
cost function.

The only constraint for this optimization is the mini-
mum and maximum value for the valves apertures, Umin <
U(t+j) < Umax. Considering that only the outlet temper-
ature of the loops at the end of the prediction horizon are
used to compute the cost function, the proposed nonlinear
optimization problem can be posed as follows (14):

minJ =

NLoop∑
m=1

NLoop∑
n=1

|ŷm(N2)− ŷn(N2)|

s.t :

Umin < U(t+ j) < Umax

x = f(x, U), y = g(x)

(14)

It has to be noted that the optimization problem re-
ceives the flow-rate (since it is needed to compute the evo-
lution of the loops) but it does not change it.

0 10 20 30 40 50 60 70 80 90

Valves Number

0

500

1000

1500

2000

T
im

e
 (

s
)

Computational Mean Time

0 10 20 30 40 50 60 70 80 90

Valves Number

0

1000

2000

3000

4000

T
im

e
 (

s
)

Computational Max Time

0 10 20 30
0

30

100

350
400

T
im

e
 (

s
)

0 10 20 30
0

100

380

800

1000

T
im

e
 (

s
)

Figure 6 Optimization computation times depending on the number
of the decision variables.

The optimization problem is computed every 30 min-
utes. This sampling time has threefold objectives: i) avoid
interaction between the GS-GPC flow controller (sampling
time of 30 seconds) and the valve controller (sampling time

of 30 minutes) which can be harmful; ii) provide sufficient
time to the nonlinear optimization algorithm to reach a
proper solution and iii) to wait until steady state condi-
tions are reached to assure that transport delays do not
affect to the disparity of temperatures at the outlet of the
loops. For this work, it has been assumed that the inlet
valves aperture precision is 1%.

Trying to optimize a nonlinear problem with 90 deci-
sion variables may be computationally demanding. In fact,
the time needed for its computation may be greater than
the control sampling time for the valve controller. Sev-
eral simulations have been performed for different number
of decision variables (valves), in order to check the time
needed to reach a reasonable solution. Matlab 2016b opti-
mization toolbox was used to solve this optimization prob-
lem on a 3.6 GHz, i7 processor and 12 GB of RAM PC. In
Fig. 6, the maximum and mean time obtained are shown.
The maximum time shown refers to the time needed to
obtain results when the plant is far from the optimal so-
lution. In this case it has been obtained by placing all the
valves at a 100% aperture. The mean time is the comput-
ing time needed when the plant is close, or at least, not
far from an optimal solution.

Solving the problem with 10, 20 or 30 variables (valves)
is feasible, less than 30 minutes both the mean and the
maximum. For a larger number of variables the problem
would need larger computational times. In fact, solving
the problem for 90 valves would require an average of 2000
seconds.

Although the time shown may vary depending on the
algorithm used, hardware and specifications, it gives an
idea of the number of control variables that can be ap-
plied to solve the optimization process in the proposed
times. To solve the thermal balance optimization within
the proposed time, a reduction in the number of variables
is needed. The solution proposed in this paper is group-
ing loops of similar efficiency using a clustering algorithm.
The selected algorithm to obtain the clusters is k-means
which is detailed in the following section. The hydraulic
system has been assumed to be linear. Although this sys-
tem will modify the flow-rate on every loop when a valve
is changed it has been assumed to be linear to simplify the
optimization problem. Including the hydraulic model in
the optimization problem would provide a more realistic
scenario but at the cost of increasing the complexity of the
problem a lot. Considering the hydraulic model will actu-
ally enlarge these optimization times. This paper intends
to be a starting point in the solution of a problem which
affect the operation of large scale solar plant.

The non-linear optimization problem has been progra-
mmed using the Matlab function fmincon. The computa-
tion of the optimization problem, which tries to minimize
the cost function given by the Eq. (14), has the struc-
ture detailed in Algorithm (1). The optimization process
begins with the clustering of loops to generate groups of
loops with similar properties. Grouping the loops will re-
duce the optimization process computation times in two
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ways: (i) reducing the number of decision variables reduces
the searching space and thus the computation time and
(ii) the optimization problem needs to simulate the evolu-
tion of the loops temperatures along a prediction horizon,
therefore, reducing the number of loops to be simulated
will reduce the amount of time needed to simulate the so-
lar field. Since the loops are being grouped, virtual loops
have to be created. These virtual loops will represent the
loops groups. The parameters and variables of the virtual
loops, for the optimization problem, will be the averaged
values of the loops that make up each group. For example,
the efficiency of the virtual loop will be the average of the
estimations of the efficiencies of the loops that belong to a
group, which have been obtained with the CPM observer.
Likewise, the states of the virtual loops (segments temper-
atures) will be the averaged values of the temperatures of
the segments of the loops that form each cluster. The sim-
ulation of the virtual loops along the horizon of prediction
will be performed for given values of the valve apertures.
Once the virtual loops have been dynamically simulated
for these valve openings, the cost function is calculated.
If the cost function obtained value is minimum, the pro-
cess is completed. If this is not the case, the process of
selecting different valves apertures (which is carried out
by the fmincon function) and virtual loops simulation is
computed once more.

Algorithm 1: Nonlinear optimization problem

Input : Tinlet(k), Toutlet(k), Tloop(n, k), Q(k),
I(k), EfficiencyLoopi , LoopsParams

Output: V alvei
1 Obtain the solar field (loops) clusters. K number

of groups or decision variables;
2 For each group of loops, create an equivalent loop

(VLoop);
3 VLoop segments temperatures = Mean(Group

loops estimated segments temperatures obtained
with the UKF);

4 VLoop efficiency = Mean(Group loops estimated
efficiency obatined with the CMP observer);

5 Simulate the virtual loops (K VLoops) using the
reduced DPM with a N2 prediction horizon;

6 Compute the cost function at instant N2;
7 If J is minimum goto (8). If not go back to (5);
8 End

6.4. K-Means loops clustering

The objective of a cluster analysis is to carry out a
division of a data set into blocks or clusters containing
elements similar to each other. One of the most popu-
lar clustering methods is K-means. The goal is to find
K points called centroids of the clusters. The data will
be grouped to maximize the similarity between the data
points and the associated centroids. A data point is con-

sidered to be in a particular cluster if it is closer to that
cluster’s centroid than any other centroid.

The classical method uses an iterative heuristic tech-
nique by means of which the centroids of the clusters are
obtained, known as Lloyd’s algorithm (Lloyd, 1982). K-
Means finds the best centroids by the following steps:

1. Obtain an initial set of k means c1(1), . . . , ck(1) ran-
domly.

2. Data assignment step: Each observation is assigned
to the cluster with the least squared Euclidean dis-
tance with respect to the mean.

S
(t)
i =

{
xp :

∥∥xp − c(t)i

∥∥2 ≤ ∥∥xp − c(t)j

∥∥2
∀j, 1 ≤ j ≤ k

} (15)

Notice that xp may be assigned to several clusters,
S(t), but it will only be assign to one cluster, S(t).

3. Update step of the centroids: New means are com-
puted. These new values will be the be the centroids
of the observations in the new clusters.

c
(t+1)
i =

1

|S(t)
i |

∑
xj∈S(t)

i

xj (16)

where |S(t)
i | is the number of points assigned to the

cluster i.

4. Repeat steps 2 and 3 until convergence is achieved.
Convergence will be reached when the assignments
(step 2) no longer change.

For the case of the solar plant, the main variables to
cluster the loops are the loop outlet temperature and the
estimated efficiency. Fig. 7 shows the groups by colours in
which the 90 loops, with the reflectivity ranges shown in
Table 2, have been clustered. The members of each cluster
are detailed in Table 3.
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Figure 7 Example 1: Clustering result (10 groups) for 90 loops when
loops are not defocusing
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Table 3
Clusters and Loop members

Valve Group Loops Number

1 69 75 83 85 86 87 90

2 2 9 12 14 16 22 23 28

3 40 48 55 60 62 63 79 81 89

4 4

5 1 17 21 24 25 26 27 30 31 32 34 35 38 43 44

6 3 6 7 8 18

7 29 51 56 57 59 70 73 74 76 77 78 80 82 84

8 5 10 11 13 15 19 20

9 33 36 37 39 41 42 45 46 49 50 52 58 68 72

10 47 53 54 61 64 65 66 67 71 88

However, in order to obtain a robust clustering, the
defocus angle applied to every loop is also taken into ac-
count in the Euclidian distance calculation by the cluster-
ing technique.

This helps to discriminate better if several loops have
a similar outlet temperature and a similar estimated effi-
ciency but may be defocusing with different angles. These
loops can be grouped in the same cluster.
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Figure 8 Example 2: Clustering result (10 groups) for 90 loops when
there are loops defocusing

Fig. 8 shows the clustering (10 groups) of 90 loops in
which there are two groups of loops which have approx-
imately the same temperature and estimated reflectivity
but the defocus angle is different. These groups are in-
cluded in two different clusters.

7. Results

In this section, results from simulations are presented.
In the first simulation case, the plant is affect by a

stable radiation levels. The proposed strategy is tested
with 10 and 20 decision variables (valves). The valves
are grouped using the above-mentioned k-means cluster-
ing algorithm. Both scenarios have been graphically and
numerically compared to the case presented in section 5

where no valve control was considered. A second case is
presented showing results in situations of medium but con-
tinuous irradiance transients.

The first case is presented in Figs. 9, 10, 11, 12 and 13
for which a high reference temperature has been used, 391
◦C.

Through the proposed strategy using clustering of 10
decision variables (valves), it can be observed how the ef-
fect of acting on the valves achieves a thermal equilibrium
of the field as seen in Fig. 10. The loops are concentrated
in a much narrow range than the case without valve con-
trol, Fig. 4. It can also be observed how the defocusing
actions have diminished to a great extent compared to
that of Fig. 4 since the temperatures are now more ho-
mogeneous. An average temperature difference of 20◦C is
reduced to a 4 ◦C approximately.
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Figure 9 Field outlet temperature (top) and flow-rate (bottom) com-
parison with stable radiation.

Results when 20 decision variables are applied, see Fig.
10, are similar to the obtained with 10 variables, although
in this case the defocus actions are somewhat smaller.
Since there is a greater number of valves to balance the
field, a finer adjustment can be obtained and therefore re-
move some defocus actions.

It is possible to verify that this technique does not af-
fect the performance of the field, referring to Fig. 9 where
the flow-rate and field outlet temperatures of each of the 3
simulations are compared. When the valve control is ap-
plied, the outlet temperature is even higher than when it
is not, and the flow-rate remains the same since the plant
is in saturation. That is to say, the plant is actually at a
higher saturation level than what it looked like but also the
number of defocus actions made on the loops is decreasing.
In this case, the obtained average temperature difference
has been decreased to a value of 2.4 ◦C approximately.

The actions on the different groups of valves are shown
in Figs. 11 and 12.
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Figure 10 Loops temperatures (left) and defocus angles (right) results of the valve control strategy for thermal balance with 10 clusters (top)
and 20 clusters (bottom) for a stable radiation.
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Figure 11 Valve control actions for the 10 clusters simulations with
stable radiation.

A comparison of the total traveled defocus angles by
each of the loops is shown in Fig. 13. As it can be seen,
the defocus angles are now more distributed and the sum
of all of them is smaller than when the field is not bal-

anced. Table 4 shows the numerical results where it is
finally checked that the number of actions and angles trav-
eled with the thermal equilibrium has decreased consider-
ably in the whole field.
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Figure 12 Valve control actions for the 20 clusters simulations with
stable radiation.
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Figure 13 Loops traveled defocus angles comparison with stable ra-
diation.

The case of medium but continuous transients is pre-
sented in Figs. 14, 15, 16, 17, 18 and 19.
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Figure 14 Loops temperatures (top) and defocus angles (bottom)
when there is no valve control under transient radiation.

For this simulation, a clustering of 10 groups of loops

has been applied. The case when no valve control is ap-
plied is presented in Fig. 14. It can be observed the dis-
parity in the loops outlet temperatures and the defocus-
ing control actions needed for the most efficient loops to
avoid oil degradation. Once more, the results of the outlet
temperatures of the case with valve control show a clear
success in the thermal balance of the field, see Fig. 16.
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Figure 15 Field outlet temperature (top) and flow-rate (bottom)
comparison with transient radiation.

Due to the irradiance transients, a lower temperature
has been applied to ensure that the plant is in saturation
and thus comply with the optimum operating tempera-
ture, 386 ◦C. In fact, in Fig. 15, where the comparison
of the field outlet temperatures and flow-rates is shown,
it is observed that said temperature is above the refer-
ence practically at all times, ensuring that the plant is in
saturation.

When applying the proposed strategy it is possible to
avoid 100% of the defocusing actions when there is no valve
control. As in the previous case, the valve actions are
shown in Figs. 17 and 18 is shown. The numerical results
for this scenario are presented in table 5. The average
difference in the outlet temperature of the loops is reduced
from 20.5 ◦C to 4.3 ◦C approximately. Results show that
a better homogenization can be achieved when a 20 valve
control is applied. In this case, the average difference in
the outlet temperature of the loops is reduced from 20.5
◦C to 2.8 ◦C approximately.

The number of total control actions is lower than in the
previous case. However, due to transients, defocus control
actions when thermal balancing is not applied are much
more aggressive, higher defocus angles and thus a higher
number of traveled angle, something that will ultimately
damage the actuators, structures and flexible hoses.
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Figure 16 Loops temperatures for 10 variables (left) and 20 variables (right) results of the valve control strategy for thermal balance with
transient radiation.
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Figure 17 Valve control actions for 10 clusters simulations with tran-
sient radiation.
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Figure 18 Valve control actions for 20 clusters simulations with tran-
sient radiation.
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Figure 19 Loops traveled defocus angles comparison with transient
radiation.

Table 4
Number of defocus and valve actions, case 1 (stable radiation).

Control Defocusing Actions Valve Actions Total Traveled Degrees

No Valve Control 18337 0 371.72

Valve Control 10 1964 350 79.87

Valve Control 20 1809 386 70.17

Table 5
Number of defocus and valve actions, case 2 (transient radiation).

Control Defocusing Actions Valve Actions Total Traveled Degrees

No Valve Control 8021 0 469.52

Valve Control 10 0 223 0

Valve Control 20 0 444 0

8. Conclusion

In this paper, within the framework of the OCONTSO-
LAR project, a case study regarding a nonlinear valve con-
trol model based strategy in a 50 MW solar plant nonlinear

14



simulation model has been presented. A simulation of the
state of the field has been presented when the loops have
different reflectivity values. Applying a single controller,
based on global dynamics linear models, produces a ther-
mal unbalance of the field that causes a great disparity in
the outlet temperature of the loops. This causes that the
most efficient loops have to be defocused more frequently
to avoid HTF degradation temperature. An optimization
has been presented to obtain a thermal balance of the field
in which a loops clustering is used to reduce the computa-
tion time within the sampling time of the controller.

The results show that by applying a clustering of 10
and 20 groups of loops, the actions of the valves, calcu-
lated by the optimization process, considerably reduce the
difference between the outlet temperature of loops. This
results in a reduction of the defocus actions applied on the
loops as well as possible energy losses. The reduction of
the number of control signals to be applied will help to
reduce the energy consumption required by these actua-
tors as well as reduce the deterioration suffered by both
the actuators and the structures of the loops and flexi-
ble hoses. In the first scenario, the control actions were
reduced from 18337 defocus actions and 372 traveled de-
grees to 1809 and 1964 defocus actions and around 70 and
79 traveled degrees. In the second scenario, the defocus ac-
tions were completely eliminated, showing that it was not
necessary to defocus the field, and that defocusing was due
to thermal imbalance.
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