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Abstract: Several types of high voltage direct current (HVDC) breakers have been introduced and
commercialized. Each of them has advantages and disadvantages. Among them, the hybrid HVDC
breaker is highly successful. One of the most important concerns that the hybrid HVDC breaker has
faced is high power loss throughout its fault current breaking process. The hybrid HVDC breaker
comprises a high voltage bidirectional main HVDC breaker. A significant number of electronic
switches need to be connected in a series where anti-parallel diodes are essentially embraced. During
fault inception, a number of series solid-state switches and a number of series diodes dramatically
increase the power loss of the main breaker. This study, firstly, studies the power loss of the hybrid
HVDC breaker and later develops a structure of a full-bridge hybrid breaker (FBHB) to reduce the
losses of the current structure both in the normal and fault protection states. In this paper simulations
are done based on PSCAD. In addition to the analytical study and simulations, we show that the
developed structure substantially decreases the amount of power lost during the normal operation
and fault current breaking stage.

Keywords: HVDC breaker; power loss; ABB hybrid HVDC breaker

1. Introduction

A high voltage direct current (HVDC) system is a prominent solution for the integra-
tion of the energy source of offshore wind farms to the alternative current (AC) grid [1].
However, HVDC systems are far more vulnerable to direct current (DC) faults in compar-
ison with AC systems. Once a DC fault takes place, the relatively low impedance of the
HVDC system is a serious concern as fault penetration is much faster and sharper than in
the case of AC systems [2]. Although several HVDC breakers have been developed, their
performance always is debatable [3–6].

The most important characteristics of DC breakers are their rapid operation, low
power loss, capability of reclosing, prevention of overvoltage and arcing [4]. In recent
years, the hybrid HVDC breaker has been introduced as one of the most promising devices
for HVDC grid applications [7–11]. Small conductive power losses of the hybrid breaker
are because of using the solid-state low voltage switch [9]. There are several structures
that have been presented in recent research to enhance the performance of the hybrid
breaker such as a controllable reactor-based breaker [12], an L-C-type DC breaker [13] and
a parallel-bridge HVDC breaker [14].

On the other hand, series reactors as fault current limiters are integrated to the hybrid
breaker, which causes the fault current rate of rise to decrease [15,16]. A superconductive
fault current limiter (FCL) [17,18] influences hybrid breaker operation as well as inductive
FCLs [19,20]. Furthermore, a fault current limiter has been used to enrich solid-state
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breakers [21–23]. As of the present day, a hybrid HVDC breaker consists of a series
reactor [24,25] that is able to limit the magnitude and rising rate of a fault current [24–27]
and is commercialized for power grids [28,29]. In short, the limitation of the fault current
magnitude can substantially decrease main breaker power loss during faults, which this
issue can reach by fault current limiters. In addition, a few other types of DC hybrid
breakers have been utilized for developing HVDC lines. In the Zhangbei 500 kV project
and Nan’ao 160 kV projects in China, the topology of the DC circuit breakers were a
combination of mechanical and solid-state-based electronic switches. A topology of a
coupling mechanical HVDC circuit breaker [30] was used in the Nan’ao 160 kV project,
which operated based on stored energy in the reservoir capacitor bank. In the Zhangbei
500 kV project, there were several topologies such as hybrid direct current circuit breaker
(DCCB) with current a commutation drive circuit [31] and an H-bridge modular cascaded
hybrid DC breaker [32,33] that properly protected the DC system from a fault current.

In this paper, a bridge structure of a hybrid breaker (BHB) is presented and its power
loss and performance are compared with an ABB hybrid breaker as a DC breaker already
in the market [28], which can prove the prosperity of the proposed power loss reduction in
such breakers. The contributions of the proposed BHB are as follows:

• DC circuit breaker power loss reduction;
• Decreasing number of power electronic sections in a DC circuit breaker;
• Decreasing forward voltage drop of main breaker;
• Decreasing forward voltage drop of load commutation switch.

The rest of the paper is organized as follows. Section 2 presents a concern of DC system
faults and describes the details of the hybrid breaker. Section 3 presents the topology of the
BHB and its details. In Section 4, analytical studies and a simulation clarify the performance
of the BHB. In Section 5, a brief comparison is given and in the last section conclusions are
summarized by presenting the achieved results of the paper.

2. DC Fault Challenges and HVDC Hybrid Breaker Operation

The HVDC fault current is fed by the discharging current of the DC line capacitor
and the injected current of the voltage source converter (VSC) that is provided by the AC
side. Considering the low impedance of the DC line and the high provided fault current
by the DC system, a fault occurrence can damage the solid-state devices. This situation is
illustrated in Figure 1 where the fault occurred in the positive terminal of the DC line.
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Figure 1. Fault occurrence in the high voltage direct current (HVDC) line. 
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Figure 1. Fault occurrence in the high voltage direct current (HVDC) line.

To protect the HVDC system against a fault current, a hybrid breaker is implemented
in the DC line. A structure of this type of breaker is depicted in Figure 2. This topology
consists of an inductive limiter that is connected in a series with the residual mechanical
breaker. Moreover, there are two parallel branches. One is the load commutation switch
(LCS) IGBT branch and its series ultrafast disconnector (UFD). The second branch is
comprised of series diodes, IGBTs and parallel arresters. The features data of the hybrid
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breaker parts and DC system parameters are listed and described in Table 1. Its operation
in the fault occurrence is as follows: when a fault detection signal is received by the breaker
as a trip comment, the LCS opens and the current will be commutated to the main breaker
while in the normal operation state this switch conducts the line current by imposing a very
low impedance to the DC line. Until the UFD isolates the LCS from the DC system voltage
in the fault state, the current will pass through the main breaker. Immediately thereafter,
the main breaker switches off the fault current and dissipated energy is damped by the
conducted current of the arresters throughout the damping time constant. In terms of the
main breaker operation, this switch contacts the current throughout approximately 1 m/s
in the fault occurrence state. The structure of the main breaker consists of packed 4.5 kV
IGBTs and series diodes that are connected in series. The voltage of each packed switch is
3.65 V [30]. Considering a 200 kV direct voltage, this breaker must tolerate almost 400 kV
as the peak of the recovery voltage. Consequently, 89 series IGBTs and 89 series diodes
must be prepared to tolerate the voltage level. Moreover, considering the fault current
curve, the main breaker power loss can be calculated as presented in Equation (7).
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Figure 2. Structure of the ABB HVDC hybrid breaker.

Table 1. Hybrid breaker components and direct current (DC) system parameters.

Components Description Value

LCS Low voltage high current IGBT switch 2 kA, 5 kV
UFD Mechanical HV ultrafast disconnector 400 kV, 2 m/s

Main breaker Series IGBT and anti-parallel diodes 2 kA, 400 kV

Arrester Voltage-dependent resistor for
dissipation energy damping 4 MJ

Limiter inductor Series reactor as a current limiter 100 mH
Vline Positive or negative pole voltage 200 kV
Iline The DC line maximum current 2 kA
Lline The DC line inductance 50 mH
Rline The DC line resistance 0.5 Ω
Cline The DC line modeled capacitor 0.6 uf
CS The DC line Smoothing capacitor 80 mF

Rfault Fault resistance 0.01 Ω

3. The Concept of the BHB

In this section, the concept of the BHB is discussed. This topology consists of a high
current low voltage full-bridge that works as a bidirectional switch, the unidirectional main
breaker, unidirectional LCS switch, UFD and arrester. The proposed BHB is depicted in
Figure 3.

In this topology, the main breaker and the LCS are unidirectional switches. It means
that there are no diodes in these switches and the number of the semiconductor switches
becomes half. For instance, D1, D2 and the LCS are a contacted line current in a forward
direction; besides D3, D4 and the LCS the backward line current is contacted. Therefore,
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the main breaker can break a fault current in both current directions. In the forward direct
fault instance, first of all the LCS including a high current low voltage IGBT switch is
turned off and it commutates the current to the main breaker switch. The fault current
is then conducted through the main breaker. Thereafter, the UFD commences to isolate
the LCS from the DC system voltage and breaking process voltage stress. After opening
the UFD, the main breaker opens the faulty line and ultimately the stored energy in the
DC system is damped by the operation of an arrester. An arrester as a nonlinear voltage
depended resistor comprises of a series of units. By increasing the voltage in the main
breaker terminals, the arrester starts to conduct the current and its operation is finished by
suppressing voltage stress. By considering the proper operation of the BHB, the leakage
current is passed through the equipment of the BHB, which can cause a high power loss.
Thus, the residual switch opens the faulty line in the final stage to impose a high isolation
to the HVDC line. According to the above-mentioned operational process of the BHB, the
fault current is interrupted using less amounts of semiconductor rather than the hybrid
HVDC breaker.
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4. Power Loss Study of the BHB and the Hybrid Breaker

In this section, the operation of both the BHB and the hybrid breaker was simulated
and then its power loss was analytically studied to clarify the performance enhancement
of the proposed BHB. HVDC line parameters were included as shown in Table 1 while
the considered diagram for simulation was configured as in Figure 4. The model detail
was selected from a point-to-point HVDC line of the CIGRE B4-58 MT HVDC test system.
In Figure 4 it is illustrated that the fault occurred in the positive terminal of the DC line
whereas the fault current was provided by the capacitor and send ending of the VSC. On
the other hand, the studied DC breakers were connected to the faulty line.
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4.1. Hybrid Breaker Operation Analysis

In this case, a fault occurred between the positive terminal and the ground at t1 = 6.1 m/s
whereas the line was protected by a hybrid breaker. After a short delay, the LCS was turned
off at t2 = 6.4 m/s to commutate the current to the main breaker. The line fault current was
passed by the main breaker from t2 to t3 = 8.1 m/s and then by operating the UFD, the
main breaker operation was opened and the current passed through an arrester to damp
the stored energy in the system. The line current equation in the three above-mentioned
states is given in Equations (1)–(3). Its simulated line current signal is demonstrated in
Figure 5a, which experienced almost 5.8 kA as its maximum value.

i(t) =
Vdc(

Req + Rlcs
)(1 − e

−(
Req + Rlcs
Leq + Lsr )

)
t0 ≤ t < t1 (1)

where Req was the equivalent resistance of the DC system and Rlcs was the resistance of
the LCS. Additionally, Leq was the equivalent inductance of DC system and Lsr was the
inductance of the limiter series reactor. Vdc was the voltage of the DC system and i(t) was
the DC line current. In Equation (2), the resistance of the conducted pass was increased by
Rmb as the resistance of the main breaker.

i(t) =
Vdc(

Req + Rmb
)(1 − e

−(
Req + Rmb
Leq + Lsr )

)
t1 ≤ t < t2. (2)

By operating the main breaker to an open status, the current passed through a non-
linear resistor as the arrester. The behavior of the arrester depended on its structure. The
signal of the main breaker current is given in Figure 5c and its maximum value reached
5.7 kA. Equation (3) describes the line current in the third part of the hybrid breaker
function.

i(t) =
v(t)
R(V)

=
v(t)

R f + e−αv(t)
t2 ≤ t < t3. (3)
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Here, v(t) was the voltage of the breaker and R(V) was the voltage-dependent resistor
of the arrester. Rf was the constant resistor of the arrester, α was a coefficient of the arrester
and e-α defined the nonlinear behavior of the arrester.

In the terms of the voltage signal of the hybrid breaker, the voltage drop in the first
section of the breaker operation was close to zero because of the very low impedance of
LCS as shown in Figure 4. In Equation (4), Rlcs was the resistance of the switch, iline was
the line current, Vlcs was the forward voltage drop of the IGBTs and Vd was the forward
voltage drop of the diodes, respectively. In the second phase of the breaker operation, the
voltage drop appeared on the main breaker as shown in Equation (5) and in the last section,
the voltage drop of the breaker consisted of voltage stress and line voltage depending on
the arrester behavior as shown in Equation (6). The voltage signal is reported in Figure 5b.
As a simulation result, its maximum exceeded 500 kV.

v(t) = Rlcsiline + Vlcs + Vd t0 ≤ t < t1. (4)

v(t) =
RmbVdc(

Req + Rmb
)(1 − e

−(
Req+Rmb
Leq+Lsr )

)
+ n

(
Vf s + Vf d

)
t1 ≤ t < t2. (5)

v(t) =
Reqv(t)(

R f + e−αv(t)
) +

(
Leq + Lsr

)
d

 Reqv(t)(
R f + e−αv(t)

)
/dt t2 ≤ t < t3. (6)

In Equation (5), n was the number of solid-state elements, Vfs was a forward voltage
drop of the IGBT and Vfd was a forward voltage drop of the diodes, respectively. Figure 5c
demonstrates only the current of the main breaker, which considered its voltage drop as a
result from its power loss during its close state as shown in Figure 5d. The peak value of
power loss in the hybrid breaker reached close to 34 MW. The following Equation presents
the main breaker power loss.

ploss(t) = Rmb

(
Vdc(

Req + Rmb
)(1 − e

−(
Req+Rmb
Leq+Lsr )

))2

+ n
(

Vf s + Vf d

)( Vdc(
Req + Rmb

)(1 − e
−(

Req+Rmb
Leq+Lsr )

))
. (7)

4.2. BHB Operation Analysis

In the first and third phase of the DC breaker operation, the BHB operated the same
as the hybrid breaker. The only difference that enhanced the BHB operation was related to
the second phase of the operation when the current was conducted by the main breaker. In
this part, it was clear that the resistance of the main breaker and its forward voltage drop
was considerably reduced. Accordingly, the current of the BHB main breaker, its voltage
drop and power loss was calculated as follows:

i(t) =
Vdc(

Req + Rbhb
)(1 − e

−(
Req+Rbhb
Leq+Lsr )

)
t1 ≤ t < t2. (8)

v(t) =
RbhbVdc(

Req + Rbhb
)(1 − e

−(
Req+Rbhb
Leq+Lsr )

)
+ n

(
Vf s

)
t1 ≤ t < t2. (9)

ploss(t) = Rbhb

(
VDC(

Req + Rbhb
)(1 − e

−(
Req+Rbhb
Leq+Lsr )

))2

+ n
(

Vf s

)( Vdc(
Req + Rbhb

)(1 − e
−(

Req+Rbhb
Leq+Lsr )

))
. (10)

Here, Rbhb was the resistance of the BHB main breaker that was less than Rmb. It
was shown that the power loss in Equation 10 was drastically decreased because of the
elimination of the diode’s voltage drop. In Figure 6, the line current, BHB voltage drop,
main breaker current and main breaker power loss are depicted. In Figure 6a it is shown
that the peak of the line current experienced a very small increase from 5.8 kA to 5.9 kA
because of the BHB voltage drop decreasing. As a result of BHB benefits, the voltage drop
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of the main breaker was considerably reduced as shown in Figure 6b. This voltage was
reduced from 387 V to 324 V. In Figure 6c, the current of the main breaker is depicted once
the LCS commutated the current to the main breaker and its peak reached almost 5.9 kA.
The power loss of the main breaker decreased from almost 34 MW to approximately 17 MW
as shown in Figure 6d.
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5. Comparison of the BHB and the Hybrid Breaker

In this section, a comparison of the hybrid breaker and the proposed BHB is reported.
In the BHB, the LCS consisted of a series of unidirectional IGBTs but did not have anti-
parallel diodes. Additionally, the main breaker of the BHB consisted only of unidirectional
IGBTs whereas no diodes were used. Thus, the forward voltage drop of the main breaker
and its equivalent resistance was substantially lower than the hybrid breaker. The power
loss of the main breaker of the BHB was entirely less than the hybrid breakers. To show the
comparison of the BHB and the hybrid breaker Table 2 is given. Here, the nominal voltage
of the DC system was considered to be 200 kV, 2 kA.
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Table 2. Comparison of the BHB and the hybrid breaker.

Compared Factors BHB Hybrid Breaker

Number of LCS IGBTs 10 IGBT switches 10 IGBT switches
Number of LCS diodes 0 10

Number of main breaker IGBTs 89 IGBT switches 89 IGBT switches
Main breaker forward voltage drop 324 V 387 V

LCS forward voltage drop 0.9 V 1.78 V
Number of main breaker diodes 0 89

Number of full-bridge diodes 4 0
Main breaker peak power loss during fault current 17 MW 34 MW

As shown in Table 2, the main breaker forward voltage drop decreased up to 16% and
the LCS forward voltage became half. In addition, the number of anti-parallel diodes in
the BHB reached zero. To sum up, the power loss of the main breaker as shown in Table 2
was substantially decreased (near to the half of the power loss in the hybrid breaker). To
depict this enhancement, Figure 7 compares the power loss of both breakers together.
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As shown in Figure 7, the power loss of the main breakers reached the first peak after
0.1 m/s and then its rate considerably decreased. Thereafter, the main breakers experienced
their maximum power loss in t = 8 m/s. In Figure 7, it is clearly shown that not only was
the magnitude of power loss in the BHB significantly lower than the hybrid breaker, which
was a decrease of up to 50%, but also the rate of power loss was considerably decreased
from almost 16,700 in the DC hybrid breaker to 7900 in the BHB.

6. Conclusions

In this paper, a new topology named bridge-type hybrid breaker (BHB) was developed
and studied for the purpose of the hybrid HVDC breaker power loss reduction throughout
its operation. By utilizing a diode full-bridge, the developed unidirectional hybrid breaker
became a bidirectional breaker. As has been shown, there was no need to install anti-
parallel diodes compared with the hybrid HVDC breaker. In the developed breaker, the
forward voltage of the main breaker and its resistance was substantially decreased while
the number of solid-state switches was reduced. Consequently, by developing this type
of DC circuit breaker, the power loss of the DC circuit breaker was properly reduced,
which directly depended on a considerable decrease of the number of series semiconductor
switches.
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