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Abstract. Ligand-protein docking is an optimization problem based
on predicting the position of a ligand with the lowest binding energy
in the active site of the receptor. Molecular docking problems are tra-
ditionally tackled with single-objective, as well as with multi-objective
approaches, to minimize the binding energy. In this paper, we propose a
novel multi-objective formulation that considers: the Root Mean Square
Deviation (RMSD) difference in the coordinates of ligands and the bind-
ing (intermolecular) energy, as two objectives to evaluate the quality of
the ligand-protein interactions. To determine the kind of Pareto front
approximations that can be obtained, we have selected a set of represen-
tative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and
MOEA/D. Their performances have been assessed by applying two main
quality indicators intended to measure convergence and diversity of the
fronts. In addition, a comparison with LGA, a reference single-objective
evolutionary algorithm for molecular docking (AutoDock) is carried out.
In general, SMPSO shows the best overall results in terms of energy and
and RMSD (value lower than 2Å for successful docking results). This new
multi-objective approach shows an improvement over the ligand-protein
docking predictions that could be promising in in silico docking studies
to select new anticancer compounds for therapeutic targets that are
multidrug resistant.

Keywords: Molecular Docking, Multi-Objective Optimization, Nature
Inspired Metaheuristics, Algorithm Comparison

1 Introduction

Ligand-protein docking is an optimization problem which aims at predicting the
position of a small molecule (ligand) to a receptor (macromolecule) with the goal
of finding the ligand position to the receptor with a minimum binding energy.
Molecular docking problem has been tackled with single-objective algorithms,
to minimize the binding energy [11], as well as with multi-objective approaches,
to minimize the intermolecular energy Einter (energy interaction between lig-
and and the target) and the intramolecular energy Eintra (the internal energy
compound) [4].
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In this regard, a number of studies based on the application of multi-objective
algorithms to the ligand-protein docking have been proposed. A first attempt
was carried out in 2006 by Oduguwa et al. [15], in which three evolutionary multi-
objective algorithms (NSGA-II, PAES, and SPEA) were applied to evaluate
three objectives such as the Einter, Eintra and shape complementarities on three
molecular complexes. Grosdidier et al. [5] proposed a new hybrid evolutionary
algorithm called EADock that optimizes two different energy score functions
that evaluate the Einter, Eintra and the solvation free energy. In 2008, Janson et
al. [7] designed a parallel multi-objective algorithm using AutoDock 3.05 energy
function, called ClustMPSO, minimizing as objectives the Einter and Eintra
when dealing with six molecular complexes. In the same year, Boisson et al. [1]
implemented a parallel evolutionary bi-objective model based on optimizing two
objectives: the sum of Einter and Eintra and a surface term for the docking of
six instances. Sandoval-Perez et al. [16] used the implementation of NSGA-II
provided by the jMetal framework to optimize bound and non-bound energy
terms of ligand/receptor as objectives applied to four docking instances. Gu
et al. [6] developed a new multi-objective approach based on optimizing the
solutions generated by an aggregated scoring function that includes terms from
force-field, empirical and knowledge-based scoring functions.

In all these previous publications, a series of different multi-objectives formu-
lations have been proposed that focus on energy scoring function. However, they
do not consider guiding the search with a new objective when the co-crystallized
ligand is known, which could complement the traditional energy function.

With this motivation, we propose in this work a novel multi-objective approach
consisting minimizing: (1) the binding energy (the unbound and bound energy
terms of the ligand/receptor complex), and (2) the Root-Mean-Square-Deviation
(RMSD) score, when the co-crystallized ligand pose is known. These two main
objectives have been used to evaluate the quality of the ligand-protein interactions.
With this aim, we compare and analyze the performance of four multi-objective
metaheuristics when solving 11 flexible ligand-receptor docking complexes taken
from the AutoDock 4.2 benchmark [12]. This dataset includes flexible ligands with
different sizes and flexible side-chains of HIV-protease receptors for more realistic
results. The algorithms used in this study are: Nondominated Sorting Genetic
Algorithm II (NSGA-II) [2], Speed Modulation Multi-Objective Particle Swarm
Optimization (SMPSO) [13], Third Evolution Step of Generalized Differential
Evolution (GDE3) [8], and Multi-Objective Evolutionary Algorithm Based on
Decomposition (MOEA/D) [18]. These algorithms constitute a varied set of
evolutionary and difference-vector multi-objective techniques representative of
the state of the art, performing different learning procedures and inducing different
behaviors in terms of convergence and diversity.

This paper is organized as follows: Section 2 describes the molecular dock-
ing problem from a multi-objective formulation. Studied algorithms are briefly
described in Section 3. Section 4 reports the experimentation methodology and
Section 5 analyzes the results obtained. Finally, Section 6 contains concluding
remarks and future lines of research.
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2 The problem: Multi-Objective Docking

A multi-objective optimization problem is characterized by two spaces: the
decision and the objective spaces. The former involves all the possible feasible
solutions, and the latter includes their corresponding objective values.

Decision space. The main objective in the molecular docking problem is to
find an optimized conformation between the ligand (L) and the receptor (R) that
results in the lowest binding energy. The ligand-receptor interaction is evaluated
by an energy function calculated through three components representing degrees
of freedom: (1) the translation of the ligand molecule, involving the three axis
values (x, y, z) in cartesian coordinate space; (2) the ligand orientation, modeled
as a four variables quaternion including the angle slope (θ); and (3) the flexibilities,
represented by the free rotation of torsion (dihedral angles) of the ligand and
sidechains of the receptor. Each problem solution for AutoDock and jMetal (the
tools we have used) is encoded by a real-value vector of 7 + n variables, in which
the first three values correspond to the ligand translation, the next four values
correspond to the ligand and/or macromolecule orientation, and the remaining
n values are the ligand torsion dihedral angles. Furthermore, in order to allow
a rapid evaluation of the energy conformations, a grid-based methodology is
implemented. The energy interaction is calculated and assigned to each grid point
and is evaluated to obtain the energy of a given ligand pose [12].

Objective space. Our bi-objective formulation consists of: the Einter and
the RMSD score. The Einter is the energy function as used in Autodock, that is
calculated as follows:

Einter = QR−L
bound +QR−L

unbound (1)

QR−L
bound and QR−L

bound are the states of bound and unbound of the ligand-receptor
complex, respectively.
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Each pair of energetic evaluation terms includes evaluations (Q) of disper-
sion/repulsion (vdw), hydrogen bonds (hbond), electrostatics (elec) and des-
olvation (sol). Weights Wvdw, Whbond, Wconf , Welec, and Wsol of Equation 2
are constants for Van der Waals, hydrogen bonds, torsional forces, electrostatic
interactions and desolvation, respectively. rij represents the interatomic distance,
Aij and Bij in the first term are Lennard-Jones parameters taken from the
Amber force field. Similarly, Cij and Dij in the second term are Lennard-Jones
parameters for maximum well depth of potential energies between two atoms,
and E(t) represents the angle-dependent directionality. The third term uses a
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Coulomb approach for electrostatics. Finally, the fourth term is calculated from
the volume (V ) of the atoms that are surrounding a given atom weighted by S,
and an exponential term which involves atom distances. An extended explanation
of all these variables can be found in [12].

The RMSD is a measure of similarity between the real ligand position in
the receptor and the computed position of the docking ligand, that takes into
account symmetry, partial symmetry (e.g. symmetry within a rotatable branch)
and near-symmetry in a simple heuristic way. Ideally, the lower RMSD score the
better solution is. A ligand-receptor docking solution with a RMSD score below
2Å is considered as a solution with high docking accuracy. It is worth noting
that other docking solutions can be returned with higher RMSD scores and low
values of Einter, indicating that other possible interaction ligand sites should be
considered. The RMSD score for two identical structures a and b is defined as
follows:

RMSDab = max(RMSD
′

ab, RMSD
′

ba), with RMSD
′

ab =

√
1

N

∑
i

min
j
rij2

(3)

The sum is over all N heavy atoms in structure a, the minimum is over all
atoms in structure a with the same element type as atom i in structure b.

3 Algorithms

We have included in our study four algorithms which are representative of the
state-of-the-art in the multi-objective optimization field. A brief description of
each one of them is given next:

NSGA-II: NSGA-II [2] is a generational genetic algorithm, which uses the typical
genetic operators (selection, crossover and mutation) to obtain new individuals
from the original population. To promote convergence, a non-dominated sorting
procedure based on Pareto ranking is used, while the crowding distance density
estimator is applied to foster the diversity of the set of found solutions.

GDE3: The Generalized Differential Evolution (GDE) algorithm [8] is based on
NSGA-II, but the genetic mutation and selection operators are replaced by their
differential evolution counterparts. Furthermore, GDE3 modifies the crowding
distance of NSGA-II as well to generate a better distributed set of solutions.

SMPSO: SMPSO [13] is a multi-objective particle swarm optimization algorithm.
Its main feature is the limitation of the particle speed to allow new effective
particle positions to be produced when the speed becomes too high. SMPSO uses
the polynomial mutation as the turbulence factor and an external archive that
stores the non-dominated solutions found during the search.
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MOEA/D: MOEA/D [18] has become the typical representative decomposition-
based multi-objective algorithm, where a multi-objective problem is decomposed
into a set of single-objective subproblems that then optimized simultaneously.
In this study we have used the variant MOEA/D-DE [9], which applies differen-
tial evolution as variation operators. This algorithm also applies a polynomial
mutation operator to improve its search capability.

In short, we have selected the most widely used algorithm in the field (NSGA-
II), a solver based in differential evolution (GDE3), a PSO (SMPSO) and an
algorithm based on decomposition (MOEA/D).

4 Experimentation

In this section, we include the selected benchmark problems, the experimentation
methodology we have followed, and the parameter settings of the algorithms.

4.1 Benchmark Problems

In this study, we have selected a benchmark composed of 11 complexes having
receptor and ligand flexibility. The selection of these complexes has been motivated
as they are actually difficult docking problems containing a wide range of ligand
sizes (from small to large inhibitors). The receptors of these complexes have
a tunnel-shaped active site that wraps around a peptidomimetic inhibitor [12].
The receptor is a dimer whose subunits are bridged by an arginine-aspartate
salt bridge at the end of the tunnel. The docking studies performed with these
instances in [12] to test the energy function of AutoDock 4.2 demonstrated that
the most difficult problems are those which involve smaller ligands. This is due to
the flexibility added to the receptor side-chains (ARG-8) that increases the space
of ligand interaction. These instances have been taken from the PDB database1

and they have been properly prepared for the docking simulations.
Table 1 summarizes the set of problems selected showing the PDB accession

code, the X-ray crystal structures names and the structure resolution (Å). For
all instances, the torsional degrees of freedom (flexibility) for ligands and macro-
molecules are 10 and 6, respectively, selecting those torsions that allow the fewest
number of atoms to move around the ligand core. Therefore, the total number of
solution variables (n) is 23 (3 for translation, 4 for rotation quaternion, and 16
for torsional degrees).

4.2 Methodology

For this work, we have carried out a thorough experimentation consisting in
performing 30 independent runs for each combination of algorithm and molecular
instance. From these executions, we have calculated the median and interquar-
tile range (IQR) as measures of central tendency and statistical dispersion,

1 In URL: http://www.rcsb.org/pdb/home/home.do
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Table 1. The accession codes, the X-ray crystal structure and resolution taken from
PDB database are presented.

PDB Code Protein-ligand complexes Resolution (Å)

1AJV HIV-1 protease/AHA006 2.00
1AJX HIV-1 protease/AHA001 2.00
1BV9 HIV-1 protease/α-D-glucose 2.20
1D4K HIV-1 protease/Macrocyclic peptidomimetic inhibitor 8 1.85
1G2K HIV-1 protease/AHA047 1.95
1HIV HIV-1 protease/U75875 2.00
1HPX HIV-1 protease/KNI-272 2.00
1HTF HIV-1 protease/GR126045 2.20
1HTG HIV-1 protease/GR137615 2.00
1HVH HIV-1 protease/Q8261 1.80
2UPJ HIV-1 protease/U100313 3.00

respectively. We have considered two quality indicators to assess the algorithm
performance: Hypervolume (IHV ) and Unary Additive Epsilon Indicator (Iε+) [3].
The first indicator takes into account both convergence and diversity, whereas the
second one (Iε+) gives a measure of the convergence degree of the obtained Pareto
front approximations. In this sense, it is worth noting that we are dealing with a
real-world optimization problem, and therefore the true Pareto fronts to calculate
these two metrics are not known. To cope with this issue, we have generated
a reference Pareto front for each instance by combining all the non-dominated
solutions computed in all the executions of all the algorithms.

As mentioned, we have used the implementation of the four algorithms studied
provided in the jMetalCpp framework [10] in combination with AutoDock 4.2
to evaluate the new generated solutions. To cope with the high computational
requirements needed by carry out our experiments, we have used the Condor2

system, a middleware platform managing close to 400 cores that acts as a
distributed task scheduler (each task dealing with one independent run).

4.3 Parameter Setup

The selected algorithms have been configured with a population size of 150
individuals (particles in the case of SMPSO). The stopping condition has been
set to compute a number of 1,500,000 function evaluations. These values were
chosen because they are the default settings used by AutoDock and they have
been used in other studies [14].

Each algorithm has been configured using the parameter setup recommended
in the research study where it was proposed, and these parameters are used as
default in the jMetal framework. In particular, SBX crossover and polynomial
mutation are the variation operators used in NSGA-II. The distribution indexes
for both operators are ηc = 20 for crossover, and ηm = 20 for mutation. The

2 In URL: http://research.cs.wisc.edu/htcondor/
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Table 2. Median and interquartile range of IHV for each algorithm and instance. Best
and second best median results have dark and light gray backgrounds, respectively.

NSGAII SMPSO GDE3 MOEAD
1AJV 0.00e+ 000.0e+00 3.51e− 014.0e−02 0.00e+ 000.0e+00 0.00e+ 002.9e−01

1AJX 0.00e+ 000.0e+00 5.52e− 012.0e−02 0.00e+ 000.0e+00 7.47e− 036.8e−01

1D4K 0.00e+ 000.0e+00 4.93e− 011.3e−01 0.00e+ 000.0e+00 0.00e+ 000.0e+00

1G2K 0.00e+ 000.0e+00 3.32e− 013.3e−02 0.00e+ 000.0e+00 0.00e+ 004.1e−01

1HIV 0.00e+ 000.0e+00 5.96e− 011.3e−01 0.00e+ 000.0e+00 0.00e+ 000.0e+00

1HPX 0.00e+ 000.0e+00 2.04e− 011.8e−01 1.27e− 016.5e−01 0.00e+ 001.1e−01

1HTF 0.00e+ 000.0e+00 5.26e− 021.3e−01 0.00e+ 004.6e−03 2.78e− 023.3e−01

1HTG 0.00e+ 000.0e+00 3.51e− 025.6e−02 0.00e+ 000.0e+00 0.00e+ 001.9e−01

1HVH 0.00e+ 000.0e+00 7.67e− 013.7e−02 0.00e+ 000.0e+00 5.31e− 017.7e−01

1VB9 0.00e+ 000.0e+00 7.34e− 016.5e−02 0.00e+ 000.0e+00 0.00e+ 001.4e−01

2UPJ 0.00e+ 000.0e+00 5.86e− 019.8e−02 0.00e+ 000.0e+00 1.90e− 015.8e−01

crossover probability is pc = 0.9 and the mutation probability is pm = 1/n, being
n the number of decision variables of the tackled problem. NSGA-II applies
binary tournament selection. In the case of GDE3 (variant rand/1/bin), the two
DE control parameters µ and Cr take a value of 0.5, whereas in MOEA/D µ is
set to 0.5 and Cr is set to 1.0. Both MOEA/D and SMPSO use the polynomial
mutation with the same settings applied in NSGA-II. In SMPSO, the acceleration
coefficients ϕ1 and ϕ2 are set to 1.5, the inertia weight is W = 0.9, and the
polynomial mutation is applied to one sixth of the particles in the swarm.

5 Results

This section is devoted to presenting and analyzing the results obtained in our
study. We start by assessing the performance of the algorithms and then they
are compared with the values of a single-objective approach.

5.1 Performance Comparisons

We start our analysis by discussing the results yielded by applying the IHV
indicator. Let us remind that this indicator is the sum of the contributed volume
of each point of a front in respect to a reference point, and the higher the
convergence and diversity degrees of a front, the higher its IHV value. Table 2
shows the median and interquartile range of the computed solutions for IHV
quality indicators for the set of 11 docking instances and the four algorithms
being compared. According to these results, SMPSO achieves the best IHV
values in all the eleven considered problems and MOEA/D is the second best
performing technique. We have to note that many cells have a IHV value equal
to zero; this happens when all the points of the produced fronts are beyond
the limits of the reference point. This happens in most of the problems in all
the algorithms excepting SMPSO, which indicates we are facing a very hard
optimization problem.

A similar behavior can be observed in Table 3 with regards to Iε+, which is a
convergence measure. According to these results, SMPSO obtains the best Iε+
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Table 3. Median and interquartile range of Iε+ for each algorithm and instance. Best
and second best median results have dark and light gray backgrounds, respectively.

NSGAII SMPSO GDE3 MOEAD
1AJV 5.23e+ 001.2e+00 5.60e− 019.8e−02 5.00e+ 001.0e+00 3.87e+ 004.4e+00

1AJX 3.43e+ 002.4e+00 2.61e− 017.2e−02 1.49e+ 003.3e−01 1.01e+ 002.0e+00

1D4K 8.06e+ 002.7e+00 4.56e− 011.4e−01 8.56e+ 005.7e−01 4.65e+ 002.8e+00

1G2K 4.28e+ 001.4e+00 5.71e− 011.2e−01 3.93e+ 001.3e+00 2.69e+ 003.6e+00

1HIV 5.12e+ 001.2e+00 2.63e− 012.1e−01 4.69e+ 001.4e+00 4.07e+ 001.6e+00

1HPX 1.42e+ 013.6e+00 6.32e− 012.8e−01 6.71e− 011.1e+01 1.03e+ 011.3e+01

1HTF 1.76e+ 005.5e−01 9.30e− 013.0e−01 1.13e+ 008.0e−01 7.94e− 019.2e−01

1HTG 7.48e+ 007.1e−01 9.63e− 016.6e−02 6.82e+ 008.7e−01 5.03e+ 006.4e+00

1HVH 5.94e+ 001.5e+00 1.34e− 012.7e−02 4.93e+ 001.7e+00 4.16e− 012.1e+00

1VB9 8.59e+ 002.4e+00 1.33e− 015.6e−02 7.85e+ 001.3e+00 7.04e+ 004.9e+00

2UPJ 3.42e+ 002.4e+00 3.03e− 016.6e−02 3.56e+ 001.1e+00 7.64e− 012.7e+00

Table 4. Average Friedman’s rankings with Holm’s Adjusted p-values (α = 0.05) of
compared algorithms (SMPSO, GDE3, MOEA/D, and NSGA-II) for the test set of
11 docking instances. Symbol * indicates the control algorithm and column at right
contains the overall ranking of positions with regards to IHV and Iε+.

Hypervolume (HV) Epsilon (Iε+)

Algorithm FriRank HolmAp Algorithm FriRank HolmAp

*SMPSO 1.02 - *SMPSO 1.09 -

MOEA/D 2.68 2.24e-03 MOEA/D 2.00 9.87e-02

GDE3 3.09 1.45e-04 GDE3 3.09 2.79e-04
NSGA-II 3.22 5.21e-05 NSGA-II 3.81 7.25e-07

values in ten out of the eleven problems, while MOEA/D gets the best value in
one problem (1HTF) and the second best in all of them but 1HPX.

In order to provide these results with statistical meaning (in this study
α = 0.05), non-parametric statistical tests have been applied because in several
cases the distributions of results did not follow the conditions of normality and
homoscedasticity [17]. Therefore, the analyses and comparisons focus on the entire
distribution of each of the two metrics studied. Specifically, we have applied
Friedman’s ranking and Holm’s post-hoc multicompare tests [17] to know which
algorithms are statistically worse than the control one (with the best ranking).

In this regard, as shown in Table 4, SMPSO is the best ranked technique
according to IHV (with a value of 1.02), followed by MOEA/D, GDE3, and
NSGA-II. Therefore, SMPSO is established as the control algorithm for IHV
in the post-hoc Holm test, which is compared with the remaining algorithms.
The adjusted p-values (HolmAp in Table 4) resulting from these comparisons
are, for the last three algorithms (MOEA/D, GDE3, and NSGA-II), lower than
the confidence level, meaning that SMPSO is statistically better than these
algorithms. In the case of Iε+, SMPSO is better ranked than the remaining
compared algorithms, although without statistical differences in the case of
MOEA/D. SMPSO is statistically better than GDE3 and NSGA-II.

In summary, SMPSO shows the overall best balance for the two quality
indicators, followed by MOEA/D. These results are graphically supported by
two examples included in Fig. 1, where the reference fronts obtained for two
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Fig. 1. Reference front contributions of docking instances 1D4K and 1HIV. SMPSO
and MOEA/D contribute with practically all the solutions of the reference fronts.

representative instances 1D4K and 1HIV are plotted. In these graphs, the con-
tributions, in terms of solutions, of each algorithm to the global reference front
are plotted with different points and colors. As it is easily observable, SMPSO
and MOEA/D contribute with almost all solutions taking part to the reference
front. Interestingly, SMPSO converges to the region biased towards the RMSD
objective, whereas MOEA/D generate non-dominated solutions in a different
region to the ones of SMPSO, thereby giving cue to the energy optimization. We
can state that the specific learning procedures induced by SMPSO and MOEA/D
lead these algorithms to search in different regions of the problem landscape,
hence generating solutions in complementary parts of the reference front.

5.2 Comparison Single Versus Multi-objective

After the performance comparison of multi-objective algorithms, we are now
interested in knowing how competitive their solutions are against those yielded
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Table 5. Best RMSD scores (Å) calculated from all SMPSO solutions in comparison
with the best RMSD values of LGA single-objective solutions.

1AJV 1AJX 1BV9 1D4K 1G2K 1HIV 1HPX 1HTF 1HTG 1HVH 2UPJ
SMPSO 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.03 0.00 0.11 0.03
LGA 5.23 5.12 4.46 4.46 4.46 6.47 6.09 3.89 0.38 6.71 4.55

Fig. 2. Set of non-dominated solutions obtained by SMPSO with regards to those by
LGA, for instance 1HTF. Corresponding ligand conformation structures (captured from
AutoDock) of two representative solutions are shown at right side.

by the LGA single-objective technique provided by Autodock 4.2. This way, we
will be able to determine whether our bi-objective formulation has a positive
effect in the search of solutions with the lowest RMSD score, or not. The values
are included in Table 5, in which we can observe that SMPSO outperforms LGA
in all the instance problems with large and small ligands.

With the multi-objective approach proposed here, SMPSO is able to return
better results (RMSD scores below 2Å) for all the instances, since the optimization
procedure is actively guided to compute solutions to the real ligand pose.

The use of RMSD as objective to guide the search procedure could be
counterintuitive, since it would restrict us to work only with molecular structures
whose co-crystallized ligand are known beforehand (experimentally determined).
Nevertheless, this new focus is useful in those typical cases in which the active
site of a given therapeutic target mutates and makes it multidrug resistant.
Therefore, new compounds analogous to the reference ligand should be tested to
be considered as new pharmacological candidates.

Fig. 2 shows the non-dominated solutions obtained by SMPSO, for molecule
1HTF. In addition, the two solutions with the best binding energy and RMSD
values obtained by LGA are also plotted. In order to visualize the computed
ligand docked to the active site of the HIV-protease receptor, we have selected
two solutions with the best RMSD values. The best RMSD solutions for the LGA
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and the SMPSO are 3.89Å and 0.39Å with binding energies of -5.99 kcal/mol
and -18.04 kcal/mol, respectively. As Fig. 2 shows, the ligand computed by the
SMPSO is docked to the active site of the receptor with a better pose than the
LGA computed ligand that is partially inside.

6 Conclusions

In this paper, we propose a novel multi-objective formulation of the molecular
docking problem, where the RMSD and binding energy are the goals to optimize.
This new approach has been incorporated in four multi-objective algorithms:
NSGA-II, SMPSO, GDE3 and MOEA/D. A heterogenous set of 11 protein-ligand
complexes with flexible ligands and receptors were selected in order to carry out
the experiments. The main conclusions can be outlined as follows:

1. Using a multi-objective approach to solve the molecular docking could lead
to a broad set of solutions, which can be selected according to the weight of
the RMSD and binding energy, instead of only focusing on energy values.

2. SMPSO provides the best overall performance according to the two quality
indicators used, and for the studied molecular instances.

3. For all studied molecular instances, SMPSO converges to the region biased
towards the RMSD, whereas MOEA/D generates its fronts of non-dominated
solutions in a different region, thereby giving cue to energy optimization.

4. According to the single-objective (AutoDock 4.2) fitness function, SMPSO
algorithm find, in most of the cases, better solutions than the ones obtained
by LGA. This is a noticeable result since SMPSO is a general purpose
optimization technique, while LGA is specifically adapted to deal with the
molecular docking problem.

5. The use of RMSD as objective to guide the search is useful in those typical
cases in which the active site of a given therapeutic target mutates and makes
it multi-drug resistant.

As future work, the most natural extension would be to design a hybrid algo-
rithm combining search procedures from both SMPSO and MOEA/D algorithms
in order to get solutions covering the full Pareto front. To test this, a greater
number of molecular instances could be used and the solutions obtained could
be studied from a more biological point of view.
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